首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ergosterol, a membrane sterol found in fungi but not in plants, was used to estimate live mycelial biomass in ectomycorrhizae. Loblolly pine (Pinus taeda L.) seeds were sown in April 1993 and grown with standard nursery culture practices. Correlations between total seedling ergosterol and visual assessment of mycorrhizal colonization were high during July and August but low as ectomycorrhizal development continued into the growing season. Percentages of mycelial dry weight over lateral roots decreased from 9% in July to 2.5% in November because seedling lateral root dry weight accumulated faster than mycelial dry weight. Total ergosterol per seedling increased from July through February. As lateral root dry weight ceased to increase during winter months, ectomycorrhizal mycelia became the major carbohydrate sink of pine seedlings. No distinctive seasonal pattern of soil ergosterol content was observed. The impact of ectomycorrhizal fungi on plant carbohydrate source-sink dynamics can be quantitatively estimated with ergosterol analysis but not with conventional visual determination.  相似文献   

2.
We grew potted loblolly pine (Pinus taeda L.) seedlings from a single provenance under well watered and fertilized conditions at four locations along a 610 km north–south transect that spanned most of the species range to examine how differences in the above-ground environment would affect growth rate, biomass partitioning and gas exchange characteristics. Across the transect there was an 8.7°C difference in average growing season temperature, and temperature proved to be the key environmental factor controlling growth rate. Biomass growth was strongly correlated with differences in mean growing season temperature (R 2 = 0.97) and temperature sum (R 2 = 0.92), but not with differences in mean daily photosynthetic photon flux density or mean daily vapor pressure deficit. Biomass partitioning between root and shoot was unchanged across sites. There was substantial thermal acclimation of leaf respiration, but not photosynthesis. In mid-summer, leaf respiration rates measured at 25°C ranged from 0.2 μmol m−2 s−1 in seedlings from the warmest location to 1.1 μmol m−2 s−1 in seedlings from the coolest site. The greatest biomass growth occurred near the middle of the range, indicating that temperatures were sub- and supra-optimal at the northern and southern ends on the range, respectively. However, in the middle of the range, there was an 18% decrease in biomass increment between two sites, corresponding to 1.4°C increase in mean growing season temperature. This suggests that thermal acclimation was insufficient to compensate for this relatively small increase in temperature.  相似文献   

3.
4.
The development and application of genomic tools to loblolly pine (Pinus taeda L.) offer promising insights into the organization and structure of conifer genomes. The application of a high-throughput genotyping assay across diverse forest tree species, however, is currently limited taxonomically. This is despite the ongoing development of genome-scale projects aiming at the construction of expressed sequence tag (EST) libraries and the resequencing of EST-derived unigenes for a diverse array of forest tree species. In this paper, we report on the application of Illumina’s high-throughput GoldenGate™ SNP genotyping assay to a loblolly pine mapping population. Single nucleotide polymorphisms (SNPs) were identified through resequencing of previously identified wood quality, drought tolerance, and disease resistance candidate genes prior to genotyping. From that effort, a 384 multiplexed SNP assay was developed for high-throughput genotyping. Approximately 67% of the 384 SNPs queried converted into high-quality genotypes for the 48 progeny samples. Of those 257 successfully genotyped SNPs, 70 were segregating within the mapping population. A total of 27 candidate genes were subsequently mapped onto the existing loblolly pine consensus map, which consists of 12 linkage groups spanning a total map distance of 1,227.6 cM. The ability of SNPs to be mapped to the same position as fragment-based markers previously developed within the same candidate genes, as well as the pivotal role that SNPs currently play in the dissection of complex phenotypic traits, illustrate the usefulness of high-throughput SNP genotyping technologies to the continued development of pine genomics. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
The development and mapping of genetic markers based upon expressed sequence tag polymorphisms (ESTPs) in loblolly pine (Pinus taeda L.) are reported. The new markers were generated by PCR-amplification of loblolly pine genomic DNAs with primers designed from sequenced cDNAs. The cDNA libraries were constructed from RNAs expressed in the needles of loblolly pine seedlings or in the xylem from young trees. DNA polymorphisms were identified by analyzing the amplified products for differences in fragment size or restriction sites, or by examining mobility differences using denaturing gradient gel electrophoresis (DGGE). DGGE revealed more DNA polymorphisms than the other two methods. Fifty six ESTPs were mapped using either of two mapping populations and positioned onto a loblolly pine consensus genetic map. Unlike many other markers commonly used in forestry, ESTPs can be used as orthologous markers for comparative mapping, to map genes of known function, or to identify candidate genes affecting important traits in loblolly pine. Received: 10 April 2000 / Accepted: 13 July 2000  相似文献   

6.
 Adventitious root formation in cuttings from fascicular shoots in loblolly pine (Pinus taeda L.) consists of four more or less discontinuous stages: (1) proliferation of cells at the base of the cutting, (2) differentiation of wound vascular tissue and periderm, (3) dedifferentiation of a zone near the wound cambium and wound phloem to form a root initial, and (4) formation of a root meristem. Anatomical changes during adventitious root initiation are described in cuttings from donors of different types and ages. Cuttings from seedlings and 3- to 7-year-old hedged stock plants rooted better than cuttings from 3-year-old tree form donors. It is concluded that the loss of rooting capacity in loblolly pine can be arrested by shearing loblolly pine stock plants to low hedges. The process of root initiation, however, was similar in cuttings from all sources and is apparently not the cause for the rapid decline of rooting potential with increasing age of the donor plant. Received: 3 June 1997 / Accepted: 15 August 1997  相似文献   

7.
Shortleaf and loblolly pine trees (n = 93 and 102, respectively) from 22 seed sources of the Southwide Southern Pine Seed Source Study plantings or equivalent origin were evaluated for amplified fragment length polymorphism (AFLP) variation. These sampled trees represent shortleaf pine and loblolly pine, as they existed across their native geographic ranges before intensive forest management. Using 17 primer pairs, a total of 96 AFLPs between shortleaf pine and loblolly pine were produced and scored on the sample trees and two control-pollinated F1 interspecies hybrids and their parents. In addition, the well known isocitrate dehydrogenase (IDH) isozyme marker was scored for all trees. IDH detected two putative hybrids among the loblolly pine samples and two among the shortleaf pine samples, while either 13 or 12 putative hybrids were detected using all AFLP markers and IDH and either NewHybrids or Structure software, respectively. Results of this study show that later generation hybrids can be reliably identified using AFLP markers and confirmed that IDH is not a definitive marker for detecting hybrids; that is, at least in some seed sources, the alternative species’ IDH allele resides in the source species. Based on all the markers, hybridization frequency varied geographically, ranging from 30% in an Arkansas seed source to 0% in several other seed sources. The hybridization level was higher in populations west of the Mississippi River than in populations east of the river; the shortleaf pine hybridization rates were 16.3% and 2.4% and the loblolly pine rates were 4.5% and 3.3%, west and east of the river, respectively. The results suggest that hybridization between these two species is significant but varies by seed source and species, and the potential for the unintended creation of hybrids should be considered in forest management decisions regarding both natural and artificial regeneration.  相似文献   

8.
Summary Several factors that may affect induction of somatic embryogenesis in loblolly pine (Pinus taeda L.) were investigated in 1994 and 1995. Megagametophytes containing immature zygotic embryos were excised from seeds as explants. Potassium chloride, silver nitrate, myo-inositol, coconut water, or polyamine was added to the control media (U.S. patent no. 5,036,007) to determine the effects of each single ingredient or their combinations on the initiation of embryogenic tissue. Supplements of myo-inositol at 22.2 mM resulted in increases in frequencies of cell mass extrusion and proliferation compared with the control media in consecutive years. Addition of silver nitrate showed the potential to promote initiation of embryogenic culture. The combination of 10 mM potassium with 29.4 μM silver nitrate achieved the highest frequencies in both extrusion and proliferation of embryogenic tissue. The combination of silver nitrate at 29.4 μM with addition of myo-inositol at 11.1 or 22.2 mM achieved a higher conversion rate from extrusion to proliferation. Polyamine did not significantly affect the induction of somatic embryogenesis, but coconut water was inhibitory. Published with approval of the Director of Arkansas Agricultural Experimental Station.  相似文献   

9.
Summary The effects of competition on the growth of families of loblolly pine (Pinus taeda, L.) seedlings were investigated. The experimental design made it possible to evaluate the effects of crowding on growth and to determine the types and magnitudes of intergenotypic interactions among pairs of families. The results showed that intergenotypic interactions were both highly variable and pronounced in their effect on early growth. Evidence was also found for precompetition cooperating interactions occurring among seedlings surrounded by neighbors of the same family.  相似文献   

10.
The majority of genomic research in conifers has been conducted in the Pinus subgenus Pinus mostly due to the high economic importance of the species within this taxon. Genetic maps have been constructed for several of these pines and comparative mapping analyses have consistently revealed notable synteny. In contrast, little genomic research has been conducted on the Pinus subgenus Strobus, even though these pines have strong ecological relevance. We report a consensus genetic linkage map for sugar pine (Pinus lambertiana Dougl.) constructed with 399 single nucleotide polymorphisms markers derived from annotated genes. The map is 1,231 cM in length and organized into 19 linkage groups. Two of the mapping populations were derived from trees that were segregating for the major gene of resistance (Cr1) to Cronartium ribicola, the fungal pathogen responsible for white pine blister rust. The third mapping population was derived from a full-sib cross segregating for partial resistance to white pine blister rust. In addition, we report the first comparative mapping study between subgenera Strobus and Pinus. Sixty mapped markers were found in common between sugar pine and the loblolly pine reference map with 56 of them (93%) showing collinearity. All 19 linkage groups of the sugar pine consensus map coaligned to the 12 linkage groups of the loblolly pine reference map. The syntenic relationship observed between these two clades of pines provides a foundation for advancing genomic research and genetic resources in subgenus Strobus.  相似文献   

11.
12.
The development of tap root anatomical features was investigated in seedlings of loblolly pine (Pinus taeda L.) under both pot and pouch growth regimes. The roots possessed the three anatomical zones previously observed in jack pine (Pinus banksiana Lamb) and Eucalyptus pilularis Sm. - white, condensed tannin (CT), and cork - suggesting that this developmental sequence is preserved over species and growth conditions. Xylem development was centripetal and similar to that found earlier in P. sylvestris. Tracheids with lignified, secondary walls were detected distal to the point of endodermal Casparian band deposition. However, tests for ability to conduct fluid indicated that the protoxylem was capable of transport only proximal to the Casparian bands. Detailed examination of suberin lamella deposition in the endodermis demonstrated that passage cells were present through the white and CT zones. Progressive, centripetal cortical death in the CT zone did not include the endodermis, which remained alive until the cork layer formed, at which point the endodermis was crushed. Therefore, passage cells remain as functional portals for nutrient and water uptake in the CT zone even though the central cortex is dead. Tracer tests indicated that the endodermis provides an apoplastic barrier to tracer diffusion into the stele and that this function was taken over by the young cork layers. Results of this study point to a strong role for the endodermis in the regulation of nutrient and water uptake until the maturation of the first cork layer.  相似文献   

13.
14.
Fertilization commonly increases biomass production in loblolly pine (Pinus taeda L.). However, the sequence of short‐term physiological adjustments allowing for the establishment of leaf area and enhanced growth is not well understood. The effects of fertilization on photosynthetic parameters, root respiration, and growth for over 200 d following the application of diammonium phosphate were intensively investigated in an effort to establish a relative sequence of events associated with improved growth. Root respiration, foliar nitrogen concentration [N]f, and light‐saturated net photosynthesis (Asat) temporarily increased following fertilization. Asat was correlated positively with [N]f when non‐fertilized and fertilized treatments were pooled (R2 = 0.47). Increased photosynthetic capacity following fertilization was due to both improved photochemical efficiency and capacity and enhanced carboxylation capacity of Rubisco. Positive effects of fertilization on growth were observed shortly after Asat increased. Fertilized seedlings had 36.5% more leaf area and 36.5% greater total dry weight biomass at 211 d following fertilization. It is concluded that fertilization temporarily increased photosynthetic capacity, which resulted in a pool of photo‐assimilate used to build leaf area. The N from fertilizer initially invested in photosynthetic structures and enzymes probably re‐translocated to newly developing foliage, explaining the reduction in [N]f and Asat that was observed after peak levels were achieved following fertilization.  相似文献   

15.
Water status of Pinus taeda L. callus supported on Murashige and Skoog (MS) liquid medium was characterized over an 8 week period using thermocouple psychrometry. Medium with 30 gl−1 sucrose was used to produce a high water potential (Ψw) of −0.4 MPa (H), and the same medium was used to create a moderate Ψw of −0.7 MPa (M) by the addition of 10% polyethylene glycol (PEG, w/v, MW=8000). Calli were produced from cotyledon explants on H medium for 2 weeks and then transferred to either M or H medium. Callus absorption of PEG accounted for 40% of the callus dry weight and less than 7% of the callus fresh weight. Callus dry weight (without the PEG fraction) on M medium was 40% of that observed on H medium. Fresh weight on M medium was only 15% of that observed on H medium. The Ψw of both H and M media remained constant throughout the culture period. On H medium, callus Ψw and osmotic potential (Ψs) both increased 0.05 MPa/week with the callus Ψw approaching that of the external medium. On M medium, callus Ψw and Ψs both decreased more than 0.1 MPa/week with the callus Ψw decreasing greatly below that of the external medium. The latter was attributed to a rapidly produced osmotic shock induced upon callus transfer and/or PEG which caused less callus hydration and resulted in reduced growth. Callus turgor potential (Ψp) was estimated to be +0.02 to +0.09 MPa and turgor was maintained as callus Ψw increased or decreased. After 8 weeks, cell volumes from callus on M medium were 50 to 60% less than on H medium, suggesting that reduced cell volumes were related to turgor maintenance.  相似文献   

16.
Anchored reference loci provide a framework for comparative mapping. They are landmarks to denote conserved chromosomal segments, allowing the synthesis of genetic maps from multiple sources. We evaluated 90 expressed sequence tag polymorphisms (ESTPs) from loblolly pine (Pinus taeda L.) for this function. Primer sets were assayed for amplification and polymorphism in six pedigrees, representing two subgenera of Pinus and a distant member of the Pinaceae, Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco). On average, 89% of primer sets amplified in four species of subgenus Pinus, 49% in one species of subgenus Strobus, and 22% in Douglas-fir. Polymorphisms were detected for 37-61% of the ESTPs within each pedigree. Comparative mapping in loblolly and slash pine (P. elliottii Englm.) revealed that ESTPs mapped to the same location. Disrupted synteny or significant disruptions in colinearity were not detected. Thirty-five ESTPs met criteria established for anchor loci. The majority of those that did not meet these criteria were excluded when map location was known in only a single species. Anchor loci provide a unifying tool for the community, facilitating the creation of a "generic" pine map and serving as a foundation for studies on genome organization and evolution.  相似文献   

17.
Summary The effect of polyethylene glycol (PEG) combined with abscisic acid (ABA) and KCl on somatic embryo development in loblolly pine was investigated. Two embryogenic cell lines, which had not produced cotyledonary stage embryos using previously published methods, were employed in this study. As a maturation medium, basal medium was supplemented with 0 to 10% PEG (MW 3350), 10 to 40 mg/l (37.8 to 151.3 μM) ABA, 0 or 10 mM KCl, 1.5 g/l activated charcoal, 30 g/l sucrose, and 6 g/l agar. Without PEG in the maturation medium, most somatic embryos at stage 1 could not mature further. Embryogenic tissues on the maturation medium with 5 to 7.5% PEG consistently produced stage 2 and stage 3 somatic embryos. PEG at 10% significantly decreased the number of stage 2 and 3 embryos compared to PEG at 5 to 7.5% ABA at 40 mg/l (151.3 μM), combined with 7.5% PEG and 10 mM KCl, gave the maximum number of stage 3 embryos in both cell lines. ABA at 10 mg/l (37.8 μM) induced an over-proliferation of embryogenic tissues and generally failed to produce mature embryos. KCl also significantly enhanced initial stage embryo formation and subsequent embryo maturation.  相似文献   

18.
19.
During loblolly pine zygotic embryo development, increases in mRNAs for three ABA-responsive LEA-like genes coincided with the two developmental stage-specific peaks of endogenous ABA accumulation (Kapik et al. 1995). These ABA concentration profiles from zygotic embryo development were used to develop several tissue culture approaches that altered the exposure of somatic embryos to exogenous ABA. Elevating exogenous ABA at a time corresponding to mid-maturation improved the germination and resulted in more zygotic-like expression of selected genes in somatic embryos. Extending the time on maturation medium for a fourth month increased embryo yield, dry weight, and germination in high-and low-yield genotypes. Optimizing the amounts of embryogenic suspension, plated and exogenous ABA concentration increased from 22 to 66% in the early-stage bipolar embryos that developed to the cotyledonary stage.  相似文献   

20.
The effects of enhanced UV‐B radiation on the needle anatomy of loblolly pine (Pinus taeda L.) and Scots pine (Pinus sylvestris L.) were studied in the field under supplemental UV‐B radiation supplied by a modulated irradiation system. The supplemental UV‐B levels were designed to simulate either a 16 or 25% loss of stratospheric ozone over College Park, Maryland. Enhanced UV‐B radiation caused different responses in these two species. The needles of loblolly pine had larger amounts of tannin in the lumen of epidermal cells and more wall‐bound phenolics in the outer epidermal walls of UV‐B‐treated needles, whereas the most pronounced effect on Scots pine needles was increased cutinization. In both species, the outer epidermal cell walls thickened and the needle cross‐sectional and mesophyll areas decreased (statistically significantly only in Scots pine). This suggests that more carbon may have been allocated to the protection mechanisms at the expense of photosynthetic area. The difference in response between these species suggests that the response to UV‐B radiation is not mediated by a single mechanism and that no generalization with regard to the effects of UV‐B on conifers can be made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号