首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Despite the high sensitivity and relatively high tolerance for contaminants of matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) there is often a need to purify and concentrate the sample solution, especially after in-gel digestion of proteins separated by two-dimensional gel electrophoresis (2-DE). A silicon microextraction chip (SMEC) for sample clean-up and trace enrichment of peptides was manufactured and investigated. The microchip structure was used to trap reversed-phase chromatography media (POROS R2 beads) that facilitates sample purification/enrichment of contaminated and dilute samples prior to the MALDI-TOF MS analysis. The validity of the SMEC sample preparation technique was successfully investigated by performing analysis on a 10 nM peptide mixture containing 2 m urea in 0.1 m phosphate-buffered saline with MALDI-TOF MS. It is demonstrated that the microchip sample clean-up and enrichment of peptides can facilitate identification of proteins from 2-DE separations. The microchip structure was also used to trap beads immobilized with trypsin, thereby effectively becoming a microreactor for enzymatic digestion of proteins. This microreactor was used to generate a peptide map from a 100 nM bovine serum albumin sample.  相似文献   

2.
Since the completion of the human genome sequence, attention has now focused on establishing reference maps of body fluids such as plasma and urine for detecting diagnostic markers of disease. Although some progress has been made, challenges still remain in the development of an optimal sample preparation method for proteomic analysis of urine. We have developed a simple and efficient urine preparation method for two-dimensional (2-D) gel electrophoresis which involves precipitation of proteins with simultaneous desalting. Acetonitrile precipitation produced 2-D gel separations with the highest resolution and the greatest number of protein spots compared to precipitation by other organic solvents. The method was applied to observe changes in the urinary proteome over a 6 week period and to establish a reference map of a healthy subject. A total of 339 proteins from 159 genes was identified from healthy male urine by peptide mass fingerprinting. The profiles of the urinary proteome at three times in 1 day and on four different days were compared and were found to vary in number and spatial location of the proteins on the map. The method was also shown to be applicable to the higher concentrations of protein found in the urine of an ovarian cancer subject. We have developed a facile and robust method for preparing urine for 2-D gels that will encourage further use of urine.  相似文献   

3.
A microfabricated proteomic sample preparation and sample presentation device, Integrated Selective Enrichment Target, (ISET), comprising an array of 96 perforated nanovials is described. Each perforated nanovial can be filled with solid-phase extraction media for purification and concentration of peptides prior to matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). The validity of the ISET sample preparation is shown by analysis of low nM-pM standard samples, as well as biological samples. The ISET solid-phase extraction sample preparation was compared to ZipTip and MassPREP PROtarget sample preparation, demonstrating a superior performance with respect to number of detected peptides and signal intensity of detected peptides.  相似文献   

4.
5.
6.
An improved solid-phase extraction (SPE) method was developed to isolate and concentrate trace levels of selected POPs (persistent organochlorine pollutants) in human serum prior to GC–MS in SIM mode or GC–ECD quantitation. The extraction involves denaturation of serum proteins with formic acid, SPE using C18 Empore™ disk cartridges, followed by elimination of lipid interferences using a sulfuric acid wash of the eluate. Use of the SPE disk improved assay throughput and gave a cleaner analytical matrix compared with previously reported solid-phase and liquid–liquid extraction techniques. The extraction method provided consistent recoveries at three fortification levels using 13C12 PCB 149 as internal standard. Recoveries ranged from 48 to 140% for organochlorine pesticides (6.25, 12.5 and 25 ng/ml) and 71 to 126% for polychlorinated biphenyls (0.625, 1.25 and 2.5 ng/ml).  相似文献   

7.
Dendritic cells (DCs) are specialized leukocytes that orchestrate the adaptive immune response. Mass spectrometry (MS)-based proteomic study of these cells presents technical challenges, especially when the DCs are human in origin due to the paucity of available biological material. Here, to maximize MS coverage of the global human DC proteome, different cell disruption methods, lysis conditions, protein precipitation, and protein pellet solubilization and denaturation methods were compared. Mechanical disruption of DC cell pellets under cryogenic conditions, coupled with the use of RIPA (radioimmunoprecipitation assay) buffer, was shown to be the method of choice based on total protein extraction and on the solubilization and identification of nuclear proteins. Precipitation by acetone was found to be more efficient than that by 10% trichloroacetic acid (TCA)/acetone, allowing in excess of 28% more protein identifications. Although being an effective strategy to eliminate the detergent residue, the acetone wash step caused a loss of protein identifications. However, this potential drawback was overcome by adding 1% sodium deoxycholate into the dissolution buffer, which enhanced both solubility of the precipitated proteins and digestion efficiency. This in turn resulted in 6 to 11% more distinct peptides and 14 to 19% more total proteins identified than using 0.5 M triethylammonium bicarbonate alone, with the greatest increase (34%) for hydrophobic proteins.  相似文献   

8.
Development of high throughput systems for purification and analysis of proteins is essential for the success of today's proteomic research. We have developed an affinity chromatography technology that allows the customization of high capacity/high throughput chromatographic separation of proteins. This technology utilizes selected chromatography media that are dehydrated to form uniform SwellGel discs. Unlike wet resin slurries, these discs are easily adaptable to a variety of custom formats, eliminating problems associated with resin dispensing, equilibration, or leakage. Discs can be made in assorted sizes (resin volume 15 microl-3 ml) dispensed in various formats (384-, 96-, 48-, and 24-well microplates or columns) and different ligands can be attached to the matrix. SwellGel discs rapidly hydrate upon addition of either water or the protein sample, providing dramatically increased capacity compared to coated plates. At the same time, the discs offer greater stability, reproducibility, and ease of handling than standard wet chromatography resins. We previously reported the development of SwellGel for the purification of 6x His- and glutathione-S-transferase (GST)-tagged fusion proteins [Prot. Exp. Purif. 22 (2001) 359-366]. In this paper, we discuss an expanded list of SwellGel stabilized chromatographic methods that have been adapted to high throughput formats for processing protein samples ranging from 10 microl to 10 ml (1 microg to 50 mg protein). Data are presented applying SwellGel discs to high throughput proteomic applications such as affinity tag purification, protein desalting, the removal of abundant proteins from serum including albumin and immunoglobulin, and the isolation of phosphorylated peptides for mass spectrometry.  相似文献   

9.
The polypyrrole (PPy) and polythiophene (PTh) solid phase microextraction (SPME) coatings were obtained with the use of the electropolymerisation and linear sweep voltammetry. Such fibers were modified by an ozone treatment in a gaseous phase in the concentration of 2.1 ± 0.2 × 10(-5) mol dm(-3). Both kinds of fibers were applied in the microextraction of linezolid from standard solutions to compare the extraction efficiencies displayed by these sorption phases. In these investigations a better adsorption capacity was obtained for polypyrrole fibers and hence only these kinds of fibers were utilized in the measurements from human plasma. In all measurements the concentrations of the drugs were in the range from 1 to 20 μg ml(-1) (standard solutions) and 1 to 15 μg ml(-1) (human plasma). Before the measurements, an optimization of the desorption solution experiments was performed. The correlation coefficients (R) obtained in the standard solution and human plasma were in the range from 0.8399 to 0.9970. The relative standard deviations (RSDs) were in the range of 0.1-7.6%.  相似文献   

10.
Identification of deamidated sites in proteins is commonly used for assignment of N-glycosylation sites. It is also important for assessing the role of deamidation in vivo. However, nonenzymatic deamidation occurs easily in peptides under conditions commonly used in treatment with trypsin and PNGase F. The impact on proteomic sample preparation has not yet been evaluated systematically. In addition, the (13)C peaks of amidated peptides can be misassigned as monoisotopic peaks of the corresponding deamidated ones in database searches. The 19.34 mDa mass difference between them is proposed as a means for eliminating the resulting false positive identifications in large-scale proteomic analysis. We evaluated five groups of proteomic data, obtained mainly through an electrostatic repulsion-hydrophilic interaction chromatography (ERLIC)-reverse phase (RP) chromatography sequence, and ascertained that nonenzymatic asparagine deamidation occurred to some extent on 4-9% of the peptides, resulting in the false positive identification of many N-glycosylation sites. A comprehensive investigation indicated that the chief causative factors were the mildly alkaline pH and prolonged incubations at 37 °C during proteomic sample preparation. An improved protocol is proposed featuring tryptic digestion at pH 6 and deglycosylation at pH 5, resulting in a significant decrease in nonenzymatic deamidation while conserving adequate digestion efficiency. The number of identified deamidation sites was improved significantly by increasing the sample loading amount in liquid chromatography-tandem MS. This permitted the identification of a significant number of glutamine deamidation sites, which featured sequence motifs largely different from those for asparagine deamidation: -Q-V-, -Q-L- and -Q-G- and, to a lesser extent, -Q-A- and -Q-E-.  相似文献   

11.
Garaguso I  Borlak J 《Proteomics》2008,8(13):2583-2595
The analytical performance of MALDI-MS is highly influenced by sample preparation and the choice of matrix. Here we present an improved MALDI-MS sample preparation method for peptide mass mapping and peptide analysis, based on the use of the 2,5-dihydroxybenzoic acid matrix and prestructured sample supports, termed: matrix layer (ML). This sample preparation is easy to use and results in a rapid automated MALDI-MS and MS/MS with high quality spectra acquisition. The between-spot variation was investigated using standard peptides and statistical treatment of data confirmed the improvement gained with the ML method. Furthermore, the sample preparation method proved to be highly sensitive, in the lower-attomole range for peptides, and we improved the performance of MALDI-MS/MS for characterization of phosphopeptides as well. The method is versatile for the routine analysis of in-gel tryptic digests thereby allowing for an improved protein sequence coverage. Furthermore, reliable protein identification can be achieved without the need of desalting sample preparation. We demonstrate the performance and the robustness of our method using commercially available reference proteins and automated MS and MS/MS analyses of in-gel digests from lung tissue lysate proteins separated by 2-DE.  相似文献   

12.
Challenges associated with the efficient and effective preparation of micro- and nanoscale (micro- and nanogram) clinical specimens for proteomic applications include the unmitigated sample losses that occur during the processing steps. Herein, we describe a simple "single-tube" preparation protocol appropriate for small proteomic samples using the organic cosolvent, trifluoroethanol (TFE) that circumvents the loss of sample by facilitating both protein extraction and protein denaturation without requiring a separate cleanup step. The performance of the TFE-based method was initially evaluated by comparisons to traditional detergent-based methods on relatively large scale sample processing using human breast cancer cells and mouse brain tissue. The results demonstrated that the TFE-based protocol provided comparable results to the traditional detergent-based protocols for larger, conventionally sized proteomic samples (>100 microg protein content), based on both sample recovery and numbers of peptide/protein identifications. The effectiveness of this protocol for micro- and nanoscale sample processing was then evaluated for the extraction of proteins/peptides and shown effective for small mouse brain tissue samples (approximately 30 microg total protein content) and also for samples of approximately 5000 MCF-7 human breast cancer cells (approximately 500 ng total protein content), where the detergent-based methods were ineffective due to losses during cleanup and transfer steps.  相似文献   

13.
The filter-aided sample preparation (FASP) method allows gel-free processing of biological samples solubilized with detergents for proteomic analysis by mass spectrometry. In FASP detergents are removed by ultrafiltration, and after protein digestion peptides are separated from undigested material. Here we compare the effectiveness of different filtration devices for analysis of proteomes and glycoproteomes. We show that Microcon and Vivacon filtration units with nominal molecular weight cutoffs of 30,000 and 50,000 (30 and 50 k, respectively) are equally suitable for FASP, whereas Microcon 30 k units are most appropriate for mapping of N-glycosylation sites. The use of filters with these relatively large cutoffs facilitates depletion of detergents.  相似文献   

14.
The precision with which the dissociation constant, KD, can be obtained from isothermal titration calorimetry depends on, among other factors, the concentrations of the interacting species. The so-called c value—the ratio of analyte concentration to KD—should fall in the range of 1 to 1000 for reliable KD determination. On the basis of simulated, noise-free data, Biswas and Tsodikov [5] recently suggested an optimal c value of 5 to 20. By contrast, we find an optimum at c > 40 on determining the KD confidence intervals through simulations containing noise levels typical of state-of-the-art microcalorimeters.  相似文献   

15.
Methods for samples preparation in proteomic research   总被引:1,自引:0,他引:1  
Sample preparation is one of the most crucial processes in proteomics research. The results of the experiment depend on the condition of the starting material. Therefore, the proper experimental model and careful sample preparation is vital to obtain significant and trustworthy results, particularly in comparative proteomics, where we are usually looking for minor differences between experimental-, and control samples. In this review we discuss problems associated with general strategies of samples preparation, and experimental demands for these processes.  相似文献   

16.
The preparation of samples for injection into a high-performance liquid chromatography from assay mixtures for the determination of cytochrome P-450-dependent testosterone hydroxylation has been substantially facilitated. By replacing the multiple cumbersome extraction steps of the conventional method with a single column extraction the time for sample preparation was reduced from hours to minutes. The new procedure also yields better recoveries for most of the testosterone metabolites than the original protocol. The use of extraction columns for sample preparation allows the simultaneous treatment of a large number of samples or even the automation of the whole assay procedure. The modified procedure is a straightforward, easy-to-perform method that should greatly facilitate the implementation of the testosterone hydroxylation assay for sharply discriminating between many individual cytochrome P-450 species in routine enzyme diagnostics.  相似文献   

17.
Clinically relevant biomarkers are urgently needed for improving patient diagnosis, risk stratification, prognosis and therapeutic treatments. There is a particularly compelling motivation for identifying protein-based indicators of early-stage disease for more effective interventions. Despite recent progress, the proteomic discovery process remains a daunting challenge due to the sheer heterogeneity and skewed protein abundances in biofluids. Even the most advanced mass spectrometry systems exhibit limiting overall dynamic ranges and sensitivities relative to the needs of modern biomedical applications. To this end, we report the development of a robust, rapid, and reproducible high performance ion-exchange liquid chromatography pre-fractionation method that allows for improved proteomic detection coverage of complex biological specimens using basic tandem mass spectrometry screening procedures. This form of sample simplification prior to global proteomic profiling, which we refer to collectively as 'fractionomics', increases the number and diversity of proteins that can be confidently identified in tissue and cell lysates as compared to the straight analysis of unfractionated crude extracts.  相似文献   

18.
An improved method for the determination of serotonin in platelet-rich plasma (PRP) and platelet-poor plasma (PPP), by reversed-phase high-performance liquid chromatograpy with electrochemical detection and direct plasma injection, is described. The chromatographic system comprises a strong cation-exchange pre-column and a C18 analytical column. The method is selective, rapid, simple and sensitive, and offers good reproducibility and recovery. Reference values for serotonin concentrations in healthy adults (n = 10) are 31 nM for PPP and 6 nmol per 109 platelets for PRP. The conditions used for the preparation of PRP and PPP may influence the serotonin concentration in PRP.  相似文献   

19.
A new technique for sample preparation on-line with LC and GC-MS assays was developed. Microextraction in a packed syringe (MEPS) is a new miniaturised, solid-phase extraction technique that can be connected on-line to GC or LC without any modifications. In MEPS approximately 1mg of the solid packing material is inserted into a syringe (100-250 microl) as a plug. Sample preparation takes place on the packed bed. The bed can be coated to provide selective and suitable sampling conditions. The new method is very promising. It is very easy to use, fully automated, of low cost and rapid in comparison with previously used methods. This paper presents the development and validation of a method for microextraction in packed syringe MEPS on-line with GC-MS. Local anaesthetics in plasma samples were used as model substances. The method was validated and the standard curves were evaluated by the means of quadratic regression and weighted by inverse of the concentration: 1/x for the calibration range 5-2000 nM. The applied polymer could be used more than 100 times before the syringe was discarded. The extraction recovery was between 60 and 90%. The results showed close correlation coefficients (R>0.99) for all analytes in the calibration range studied. The accuracy of MEPS-GC-MS was between 99 and 115% and the inter-day precision (n=3 days), expressed as the relative standard deviation (R.S.D.%), was 3-10%.  相似文献   

20.
An analytical process generally involves four main steps: (1) sample preparation; (2) analytical separation; (3) detection; and (4) data handling. In the bioanalytical field, sample preparation is often considered as the time-limiting step. Indeed, the extraction techniques commonly used for biological matrices such as liquid-liquid extraction (LLE) and solid-phase extraction (SPE) are achieved in the off-line mode. In order to perform a high throughput analysis, efforts have been engaged in developing a faster sample purification process. Among different strategies, the introduction of special extraction sorbents, such as the restricted access media (RAM) and large particle supports (LPS), allowing the direct and repetitive injection of complex biological matrices, represents a very attractive approach. Integrated in a liquid chromatography (LC) system, these extraction supports lead to the automation, simplification and speeding up of the sample preparation process. In this paper, RAM and LPS are reviewed and particular attention is given to commercially available supports. Applications of these extraction supports, are presented in single column and column-switching configurations, for the direct analysis of compounds in various biological fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号