首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antagonist actions of three sub-series of tetrahydro- β -carbolines at the serotonin 2B (5HT 2B) contractile receptor in the rat stomach fundus are analyzed in relation to the physicochemical properties of the molecules. Significant correlations are obtained between the 5HT 2B receptor antagonist affinity and the hydrophobic, steric, electronic, hydrogen bond acceptor and some indicator variables of substituents. Based on these findings, the mode of actions of these congeneric series and future strategy to synthesize more potential compounds are discussed.  相似文献   

2.
The nature of the receptor mediating serotonin contraction in the rat stomach fundus has not been clearly associated with either 5HT1 or 5HT2 receptors. We have explored the possibility that such receptors in the rat fundus may better correlate with 5HT1A or 5HT1B receptor subtypes as defined by radiolabeled ligand binding studies with brain cortical membranes. Meta chlorophenylpiperazine (CPP) and meta trifluoromethylphenylpiperazine (TFMPP), selective ligands for the 5HT1B receptor and LY165163, a selective ligand for the 5HT1A receptor, have been evaluated for their agonist and antagonist activity at serotonin receptors in the rat stomach fundus. CPP and TFMPP were partial agonists in the rat stomach fundus whereas LY165163 showed no agonist activity in this smooth muscle in concentrations up to 10(-4)M. All three phenylpiperazines antagonized serotonin-induced contractions in the rat stomach fundus. The affinity for serotonin receptors in the rat fundus was similar for all three phenylpiperazines in spite of the reported selectivity of MCPP and TFMPP for 5HT1B and of LY165163 for 5HT1A receptors. Furthermore, the affinity of these agents for serotonin receptors in the rat stomach fundus did not agree with their reported affinity for either 5HT1A or 5HT1B binding sites in rat cortical membranes. Thus, the similarity in affinities of these phenylpiperazine derivatives for serotonin receptors mediating contraction in the rat fundus along with their different affinities for 5HT1A and 5HT1B binding sites argues against the possibility that the serotonin receptor in the rat fundus is of the 5HT1A or 5HT1B subtype of serotonin receptor.  相似文献   

3.
The aim of the present study was to investigate the binding sites interactions and the selectivity of sarpogrelate to human 5-HT(2) receptor family (5-HT(2A), 5-HT(2B) and 5-HT(2C) receptor subtypes) using molecular modeling. Rhodopsin (RH) crystal structures were used as template to build structural models of the human serotonin-2A and -2C receptors (5-HT(2A)R, 5-HT(2C)R), whereas for 5-HT(2B)R, we used our previously published three-dimensional (3D) models based on bacteriorhodopsin (BR). Sarpogrelate, a novel 5-HT(2)R antagonist, was docked to the receptors. Molecular dynamics (MD) simulations produced the strongest interaction for 5-HT(2A)R/sarpogrelate complex. Upon binding, sarpogrelate constraints aromatic residues network (Trp(3.28), Phe(5.47), Trp(6.48), Phe(6.51), Phe(6.52) in 5-HT(2A)R; Phe(3.35), Phe(6.51), Trp(7.40) in 5-HT(2B)R; Trp(3.28), Phe(3.35), Phe(5.47), Trp(6.48), Phe(6.51), Phe(6.52) in 5-HT(2C)R) in a stacked configuration, preventing activation of the receptor. The models suggest that the structural origin of the selectivity of sarpogrelate to 5-HT(2A)R vs both 5-HT(2B)R and 5-HT(2C)R comes from the following results: (1) The tight interaction between the antagonist and the transmembrane domain (TMD) 3. Asp(3.32) neutralizes the cationic head and interacts simultaneously with carboxylic group hydrogen of the antagonist molecule. (2) Due to steric hindrance, Ser(5.46) (vs Ala(5.46) in 5HT(2B) and 5HT(2C)) prevents sarpogrelate to enter deeply inside the hydrophobic core of the helix bundle and to interact with Pro(5.50). (3) The side chain of Ile(4.56) (vs Ile(4.56) in 5HT(2B)R and Val(4.56) in 5HT(2C)R) constraints sarpogrelate to adjust its position by translating toward the strongly attractive Asp(3.32). These results are in good agreement with binding affinities (pKi) of sarpogrelate for 5-HT(2) receptor family expressed in transfected cell.  相似文献   

4.
M L Cohen  K Schenck 《Life sciences》1989,44(14):957-961
Both serotonin and histamine increased cutaneous vascular permeability in rats; however, serotonin was approximately 100-fold more potent than histamine. LY53857 (0.1 and 1.0 mg/kg, i.p.), a selective 5HT2 receptor antagonist, blocked serotonin- but not histamine-induced increases in cutaneous vascular permeability. the alpha 1 receptor antagonist, prazosin, did not significantly affect increases in vascular permeability produced by serotonin. These data extend previous studies with LY53857 by further documenting its selectivity as a 5HT2 receptor antagonist. In addition, these results with a selective 5HT2 receptor antagonist provide evidence that 5HT2 receptor activation may be the predominant mechanism associated with vascular permeability changes induced by serotonin.  相似文献   

5.
Serotonin (5‐HT)2C receptors play a role in psychoaffective disorders and often contribute to the antidepressant and anxiolytic effects of psychotropic drugs. During stress, activation of these receptors exerts a negative feedback on 5‐HT release, probably by increasing the activity of GABAergic interneurons. However, to date, the GABA receptor types that mediate the 5‐HT2C receptor‐induced feedback inhibition are still unknown. To address this question, we assessed the inhibition of 5‐HT turnover by a 5‐HT2C receptor agonist (RO 60‐0175) at the hippocampal level and under conditions of stress, after pharmacological or genetic inactivation of either GABA‐A or GABA‐B receptors in mice. Neither the GABA‐B receptor antagonist phaclofen nor the specific genetic ablation of either GABA‐B1a or GABA‐B1b subunits altered the inhibitory effect of RO 60‐0175, although 5‐HT turnover was markedly decreased in GABA‐B1a knock‐out mice in both basal and stress conditions. In contrast, the 5‐HT2C receptor‐mediated inhibition of 5‐HT turnover was reduced by the GABA‐A receptor antagonist bicuculline. However, a significant effect of 5‐HT2C receptor activation persisted in mutant mice deficient in the α3 subunit of GABA‐A receptors. It can be inferred that non‐α3 subunit‐containing GABA‐A receptors, but not GABA‐B receptors, mediate the 5‐HT2C‐induced inhibition of stress‐induced increase in hippocampal 5‐HT turnover in mice.

  相似文献   


6.
《Journal of Physiology》1996,90(5-6):385-386
The actions of the neuromodulator serotonin (5HT) in Aplysia sensory neurons can be dissociated on the basis of their sensitivity to the 5HT receptor antagonist cyproheptadine, and their concentration requirement to 5HT. Here we summarise a series of experiments that suggest that mechanistically distinct processes contribute to the different physiological components of short- and long-term synaptic plasticity.  相似文献   

7.
We have recently drawn attention to the fact that most non-peptide antagonists of the kinin B1 receptor reported so far are structurally related, possessing the core motif phenyl-SO2-NR-(spacer(2-4))-CO-NRR. This is found in compound A (N-[2-[4-(4,5-dihydro-1H-imidazol-2- yl)phenyl]ethyl] - 2- [(2R)-1-(2-napthylsulfonyl)-3-oxo-1,2,3,4-tetrahydroquinoxalin-2-yl]acetamide), a very potent and selective B1 receptor antagonist. A subset of specific bradykinin B2 receptor antagonists (LF16-0687, bradyzide and derivatives) possesses a similar 'scaffold' (phenyl-SO2-NR-CRR-CO-NRR). We investigated whether simple molecules mimicking the postulated pharmacophores could be identified in two public chemical databases. Receptor binding to B1 and B2 receptors expressed by rabbit cultured smooth-muscle cells was confirmed for some of these newly identified agents, with a loss of receptor subtype selectivity. For instance, compound 3[2-(3-oxo-1-(toluene-4-sulfonyl)-1,2,3,4-4H-quinoxalin-2-yl)-N-phenyl-acetamide] exhibits IC50 values of 2.13 and 126 microM in the radioligand competition assays for B1 and B2 receptors, respectively, and a pA2 of 6.27 at the rabbit B1 receptor in a functional test (Lys-des-Arg9-bradykinin-induced contractility of the isolated aorta). Compound 5 (a close analog of compound 3) is a more balanced dual antagonist of low potency (IC50 values of 30 and 117 microM, respectively). As predicted, compounds modeled on a postulated pharmacophore common to some non-peptide B1 or B2 receptor antagonists exhibit measurable binding with decreased receptor subtype selectivity. Dual B1/B(2) receptor antagonists are of possible therapeutic interest and should be developed.  相似文献   

8.
9.
M L Cohen  N Mason  K W Schenck 《Life sciences》1986,39(25):2441-2446
LY165163, a ligand reported to be selective for the 5HT1A subtype of serotonin receptor, was examined for its ability to interact with 5HT2 receptors in the rat jugular vein and alpha-receptors in the rat aorta. In these smooth muscle preparations, no agonist activity of LY165163 occurred in concentrations up to 10(-5) M. However, LY165163 was an antagonist of serotonin-induced contractions in the jugular vein and of norepinephrine-induced contractions in the rat aorta. The dissociation constant calculated for LY165163 at 5HT2 receptors in the rat jugular vein was 10(-8) M and at alpha-receptors in the rat aorta was 2 X 10(-7) M. Thus, LY165163 is a relatively potent antagonist at vascular 5HT2 sites and possesses appreciable affinity at alpha-receptors. Based on these data, the multiple receptor interactions of LY165163 must be taken into consideration when utilizing this agent as a probe for the 5HT1A subtype of serotonin receptor.  相似文献   

10.
Three N-terminal fragments of the selective tachykinin NK-2 receptor antagonist MEN 10376 (H-Asp-Tyr-DTrp-Val-DTrp-DTrp-Lys-NH2) have been synthesized and tested in several mammalian tissues in order to establish the minimum length of the peptide chain for maintenance of the antagonist activity. Biological activity has been determined on the rabbit pulmonary artery (RPA) and hamster trachea (HT) preparations, chosen as representative of the NK-2A and NK-2B receptor subtypes, respectively, and on the rabbit bronchus (RB), guinea-pig bronchus (GPB), human urinary bladder (HuUB), human ileum (HuI) and human colon (HuC) preparations to verify the previously described NK-2A character of these tissues. The N-terminal tetrapeptide was inactive in the RPA and HT, while the N-terminal hexa- and penta- peptides maintained antagonist activity in all preparation investigated. The selectivity of the latter two peptides confirms that the receptor expressed in RB, GPB, HuUB, HuC and HuI tissues is of the NK-2A type.  相似文献   

11.
Large species differences have been previously observed in the pharmacology of bradykinin (BK) B2 receptor antagonists. We investigated the effect of two novel non-peptide antagonists, compound 9 (a benzodiazepine peptidomimetic related to icatibant) and the thiosemicarbazide bradyzide on the rabbit B2 receptor (contractility of the jugular vein, competition of [3H]BK binding to a B2 receptor-green fluorescent protein (B2R-GFP) conjugate, subcellular distribution of B2R-GFP). While compound 9 is about 9000-fold less potent than icatibant, it shares with the latter peptide drug a selective, insurmountable and largely irreversible antagonist behavior against BK and the capacity to translocate B2R-GFP from the membrane into the cells. Bradyzide, reportedly very potent at rodent B2 receptors, was a competitive and reversible antagonist of moderate potency at the rabbit B2 receptor (contractility pA2 6.84, binding competition IC50 5 nM). The C-terminal region of icatibant, reproduced by compound 9, is likely to be important in the non-equilibrium behavior of icatibant. Bradyzide, a non-peptide antagonist developed on different structural grounds, is competitive at the rabbit B2 receptor.  相似文献   

12.
The prototypic arylpiperazines, meta-chlorophenylpiperazine (mCPP), meta-trifluoromethylphenylpiperazine (TFMPP) and quipazine are widely studied serotonergic ligands with nonselective effects at 5HT1 and 5HT2 receptor subtypes. The present study was designed to compare the affinities of these arylipiperazines at 5HT3 receptors, and to determine agonist or antagonist activity at 5HT3 receptors. Quipazine showed high affinity at brain 5HT3 receptors (IC50 = 4.4 nM) and was a potent agonist of the von Bezold-Jarisch reflex in anesthetized rats, a response mediated by cardiac 5HT3 receptors. In concentrations that activated 5HT3 receptors, quipazine also antagonized serotonin-induced bradycardia in anesthetized rats. Taken together, these data suggest that quipazine is an agonist/antagonist with high affinity at 5HT3 receptors in both brain and cardiac tissue. Although mCPP also showed relatively high affinity at brain 5HT3 receptors (IC50 = 61.4 nM), it did not activate the von Bezold-Jarisch reflex; instead, mCPP potently antagonized serotonin-induced bradycardia. Thus, mCPP acts as an antagonist at 5HT3 receptors in the periphery. Although both quipazine and mCPP possessed relatively high affinity at brain 5HT3 receptors, TFMPP did not bind appreciably to 5HT3 receptors in brain (IC50 = 2373 nM) and neither activated nor inhibited cardiac 5HT3 receptors. That TFMPP did not interact with 5HT3 receptors, whereas quipazine and mCPP did, is in marked contrast to the similar effects of all three arylpiperazines at other serotonin receptors. The selectivity of TFMPP for 5HT1 and 5HT2 receptors (i.e., its minimal affinity for 5HT3 receptors) suggests that this arylpiperazine may be a preferred ligand relative to mCPP when studying 5HT1 or 5HT2 receptor mediated responses.  相似文献   

13.
Cardio-respiratory reflex effects of an exogenous serotonin challenge are suggested to be modulated by activation of the peripheral 5HT2 and 5HT3 receptors. In the present experiments the blocking effects of serotoninergic active drugs: ketanserin and tropanserin (MDL 72222) were studied in six pentobarbitone-chloralose anaesthetized cats. Bolus injection of serotonin (0.05 mg.kg(-1)) into the right femoral vein evoked prompt apnea, hypotension followed by tachypnoeic breathing. Pre-treatment with ketanserin (0.1 mg.kg(-1)), 5HT2 receptor antagonist, shortened the duration of post-serotonin apnea (P < 0.05), but had no effect on the pattern of post-apnoeic breathing. 5HT3 receptor blockade with the selective antagonist MDL 72222 (0.2 mg.kg(-1)) totally eliminated respiratory response to serotonin. In breaths that followed post-serotonin apnea, peak amplitude of the integrated phrenic signal was reduced (P < 0.001), unbiased by ketanserin blockade, and remained at the baseline level in MDL treated rats. Serotonin-induced hypotension was unaffected by the blockade of 5HT2 receptors. Inactivation of 5HT3 receptors with MDL attenuated the fall in blood pressure (P < 0.05). This data suggests that the squeal of serotonin-induced pulmonary chemoreflex, i.e. respiratory arrest, post-apnoeic pattern of breathing, bradycardia, and partially hypotension are mediated by 5HT3 receptors.  相似文献   

14.
The expression of 5-hydroxytryptamine-2B (5-HT2B) receptor mRNA has recently been shown in cultured astrocytes. Here the expression of functional 5-HT2B receptors has been studied in cultured astrocytes from rat cerebral cortex, hippocampus, and brain stem. Fluo-3- and fura-2-based microspectrofluorometry was used for measuring changes in intracellular free calcium concentrations ([Ca2+]i). The 5-HT2B agonist alpha-methyl 5-HT (40 nM) produced rapid transient increases in [Ca2+]i in astrocytes from all three brain regions studied, and these responses were blocked by the selective 5-HT2B antagonist rauwolscine (1 microM). The specificity of the responses to alpha-methyl 5-HT was further demonstrated by the failure of 4-(4-fluorobenzoyl)-1-(4-phenylbutyl)-piperidine oxalate (1 microM), a specific 5-HT2A/5-HT2C antagonist, to block these responses. The 5-HT2B-induced increases in [Ca2+]i persisted in Ca2+-free buffer, indicating that the increase in [Ca2+]i results from mobilization of intracellular Ca2+ stores. The expression of 5-HT2B receptors on astroglial cells was further verified immunohistochemically and by Western blot analysis. These results provide evidence of the existence of 5-HT2B receptors on astrocytes in primary culture.  相似文献   

15.
Serotonin (5-HT) is an indirect modulator of the electric organ discharge (EOD) in the weakly electric gymnotiform fish, Brachyhypopomus pinnicaudatus. Injections of 5-HT enhance EOD waveform "masculinity", increasing both waveform amplitude and the duration of the second phase. This study investigated the pharmacological identity of 5-HT receptors that regulate the electric waveform and their effects on EOD amplitude and duration. We present evidence that two sets of serotonin receptors modulate the EOD in opposite directions. We found that the 5HT1AR agonist 8-OH-DPAT diminishes EOD duration and amplitude while the 5HT1AR antagonist WAY100635 increases these parameters. In contrast, the 5HT2R agonist alpha-Me-5-HT increases EOD amplitude but not duration, yet 5-HT-induced increases in EOD duration can be inhibited by blocking 5HT2A/2C-like receptors with ketanserin. These results show that 5-HT exerts bi-directional control of EOD modulations in B. pinnicaudatus via action at receptors similar to mammalian 5HT1A and 5HT2 receptors. The discordant amplitude and duration response suggests separate mechanisms for modulating these waveform parameters.  相似文献   

16.
An implication of 5-HT(2B) receptors in central nervous system has not yet been clearly elucidated. We studied the role of different 5-HT(2) receptor subtypes in the medullary breathing center, the pre-B?tzinger complex, and on hypoglossal motoneurons in rhythmically active transversal slice preparations of neonatal rats and mice. Local microinjection of 5-HT(2) receptor agonists revealed tonic excitation of hypoglossal motoneurons. Excitatory effects of the 5-HT(2B) receptor agonist BW723C86 could be blocked by bath application of LY272015, a highly selective 5-HT(2B) receptor antagonist. Excitatory effects of the 5-HT(2A/B/C) receptor agonist alpha-methyl 5-HT could be blocked by the preferential 5-HT(2A) receptor antagonist ketanserin. Therefore, 5-HT-induced excitation of hypoglossal motoneurons is mediated by convergent activation of 5-HT(2A) and 5-HT(2B) receptors. Local microinjection of BW723C86 in the pre-B?tzinger complex increased respiratory frequency. Bath application of LY272015 blocked respiratory activity, whereas ketanserin had no effect. Therefore, endogenous 5-HT appears to support tonic action on respiratory rhythm generation via 5-HT(2B) receptors. In preparations of 5-HT(2B) receptor-deficient mice, respiratory activity appeared unaltered. Whereas BW723C86 and LY272015 had no effects, bath application of ketanserin disturbed and blocked rhythmic activity. This demonstrates a stimulatory role of endogenous 5-HT(2B) receptor activation at the pre-B?tzinger complex and hypoglossal motoneurons that can be taken up by 5-HT(2A) receptors in the absence of 5-HT(2B) receptors. The presence of functional 5-HT(2B) receptors in the neonatal medullary breathing center indicates a potential convergent regulatory role of 5-HT(2B) and -(2A) receptors on the central respiratory network.  相似文献   

17.
B-9430 (d-Arg-[Hyp(3), Igl(5), D-Igl(7), Oic(8)]-bradykinin), where Hyp is trans-4-hydroxyproline, Igl is alpha-(2-indanyl)glycine and Oic is (3as, 7as)-octahydroindol-2-yl-carbonyl is a high affinity bradykinin B(2) receptor antagonist with effects extended to the B(1) receptors at high concentrations. The N-terminus of B-9430 has been extended with d-biotinyl (B-10330) or 5(6)-carboxyfluorescein-varepsilon-aminocaproyl (B-10380) to derive fluorescent receptor probes. The pharmacological profile of B-10380 was similar to that of B-9430 with a minor loss of potency (a competitive antagonist of bradykinin at the B(2) receptors of the human isolated umbilical vein, pA(2) 6.83; an insurmountable antagonist at the B(2) receptors in the rabbit jugular vein; a weak competitive antagonist of the B(1) receptors in the rabbit aorta, pA(2) 5.95). B-10330 and B-10380 displaced the binding of [(3)H]bradykinin from rabbit B(2) receptors with a potency slightly inferior to that of B-9430 (larger gap at the rat B(2) receptor). Treatment with B-10330 and fluorescent streptavidin did not support imaging of recombinant B(2) receptors. However, the plasma membrane of HEK 293a cells that transiently expressed recombinant rabbit B(2) receptors, but not B(1) receptors, was labeled with 5-50nM B-10380 (epifluorescence microscopy). B-10380 staining was not observed in nontransfected cells and was abolished by co-treating receptor-expressing cells with a nonpeptide antagonist. The N-terminal extension of a potent peptide antagonist of the bradykinin B(2) receptor with a fluorophore produced a fluorescent probe suitable for live cell imaging and other applications at the expense of a minor loss of affinity.  相似文献   

18.
The antagonist-bound conformation of the NR2A and NR2B subunits of N-methyl-D-aspartate (NMDA) ionotropic glutamate receptor are modeled using the crystal structure of the DCKA (5,7-dichloro-kynurenic acid)-bound form of the NR1 subunit ligand-binding core (S1S2). Five different competitive NMDA receptor antagonists [(1) DL-AP5; (2) DL-AP7; (3) CGP-37847; (4) CGP 39551; (5) (RS)-CPP] have been docked into both NR2A and NR2B subunits. Experimental studies report NR2A and NR2B subunits having dissimilar interactions and affinities towards the antagonists. However, the molecular mechanism of this difference remains unexplored. The distinctive features in the antagonist's interaction with these two different but closely related (approximately 80% sequence identity at this region) subunits are analyzed from the patterns of their hydrogen bonding. The regions directly involved in the antagonist binding have been classified into seven different interaction sites. Two conserved hydrophilic pockets located at both the S1 and S2 domains are found to be crucial for antagonist binding. The positively charged (Lys) residues present at the second interaction site and the invariant residue (Arg) located at the fourth interaction site are seen to influence ligand binding. The geometry of the binding pockets of NR2A and NR2B subunits have been determined from the distance between the C-alpha atoms in the residues interacting with the ligands. The binding pockets are found to be different for NR2A and NR2B. There are gross dissimilarities in competitive antagonist binding between these two subunits. The binding pocket geometry identified in this study may have the potential for future development of selective antagonists for the NR2A or NR2B subunit.  相似文献   

19.
Nicotinic receptors containing alpha7 subunits are widely distributed in the central nervous system and are thought to be involved in a number of functions. However, it has been difficult to study alpha7-containing receptors in vivo because of a paucity of selective agonists. A new spirooxazolidinone compound, AR-R17779, was recently described as potent agonist at alpha7 receptors, but electrophysiological studies at other types of nicotinic receptors have not been carried out. We characterized the activity of AR-R17779 at alpha7, alpha4beta2, alpha3beta4, alpha3beta2, alpha3beta2alpha5 receptors expressed in Xenopus oocytes. In addition, since there is significant homology between nicotinic alpha7 and serotonin 5HT(3) receptors, the activity of AR-R17779 at expressed 5HT(3a) receptors was also examined. Finally, actions of tropisetron and ondansetron, two 5HT(3) antagonists, were explored. AR-R17779 was found to activate alpha7 receptors, but had no activity at other types of nicotinic receptors, and also had no activity at 5HT(3a) receptors. Tropisetron activated, while ondansetron acted as an antagonist, at alpha7 nicotinic receptors. The two 5HT(3) antagonists also acted as antagonists at alpha4beta2 and alpha3beta4 nicotinic receptors. Thus, AR-R17779 was confirmed to be a selective nicotinic alpha7 receptor agonist and to be without activity at 5HT(3) receptors. In contrast, the actions of tropisetron and ondansetron on nicotinic receptors were complex.  相似文献   

20.
Cyproheptadine, a 5HT2 receptor antagonist with prominent antimuscarinic and anti-histaminic properties, was shown to have an anti-conflict effect in rats using a modified Geller-Seifter test and also enhanced extinction of conflict behaviour. The selective 5HT2 receptor antagonist ritanserin, however, had neither an anti-conflict effect nor an effect on extinction of conflict behaviour. The muscarinic receptor antagonist scopolamine, on the other hand, was active in both paradigms. The effect of cyproheptadine on extinction of conflict behaviour was decreased by co-administration of physostigmine, an acetylcholinesterase inhibitor, but not affected by the concomitant administration of the muscarine receptor agonist oxotremorine. The results suggest that the anti-conflict effect of cyproheptadine has to be ascribed to its anti-muscarinic activity and is not due to its 5HT2 antagonism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号