首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Few in vitro screening studies on the biological activities of plant extracts that are intended for oral administration consider the effect of the gastrointestinal system. This study investigated this aspect on extracts of Camellia sinensis (green tea) and Salvia officinalis (sage) using antimicrobial activity as a model for demonstration. Both the crude extracts and their products after exposure to simulated gastric fluid (SGF) as well as simulated intestinal fluid (SIF) were screened for antimicrobial activity. The chromatographic profiles of the crude plant extracts and their SGF as well as SIF products were recorded and compared qualitatively by means of high performance liquid chromatography coupled to mass spectrometry. The effect of epithelial transport on the crude plant extracts was determined by applying them to an in vitro intestinal epithelial model (Caco-2). The crude extracts for both plants exhibited reduced antimicrobial activity after exposure to SGF, while no antimicrobial activity was detected after exposure to SIF. These results suggested chemical modification or degradation of the antimicrobial compounds when exposed to gastrointestinal conditions. This was confirmed by a reduction of the peak areas on the LC–UV–MS chromatograms. From the chromatographic profiles obtained during the transport study, it is evident that some compounds in the crude plant extracts were either not transported across the cell monolayer or they were metabolised during passage through the cells. It can be deduced that the gastrointestinal environment and epithelial transport process can dramatically affect the chromatographic profiles and biological activity of orally ingested natural products.  相似文献   

2.
Short cationic lipopeptides are amphiphilic molecules that exhibit antimicrobial activity mainly against Gram-positives. These compounds bind to bacterial membranes and disrupt their integrity. Here we examine the structure-activity relation (SAR) of lysine-based lipopeptides, with a prospect to rationally design more active compounds. The presented study aims to explain how antimicrobial activity of lipopeptides is affected by the charge of lipopeptide headgroup and the length of lipopeptide acyl chain. The obtained SAR models suggest that the lipophilicity of short synthetic cationic lipopeptides is the major factor that determines their antimicrobial activities. In order to link the differences in antimicrobial activity to the mechanism of action of lipopeptides containing one and two hydrophobic chains, we additionally performed molecular dynamic (MD) simulations. By using combined coarse-grained and all-atom simulations we also show that these compounds neither affect the organization of the membrane lipids nor aggregate to form separate phases. These results, along with the onset of antimicrobial activity of lipopeptides well below the critical micelle concentration (CMC), indicate that lipopeptides do not act in a simple detergent-like manner.  相似文献   

3.
Surfactants, both chemical and biological, are amphiphilic compounds which can reduce surface and interfacial tensions by accumulating at the interface of immiscible fluids and increase the solubility, mobility, bioavailability and subsequent biodegradation of hydrophobic or insoluble organic compounds. Investigations on their impacts on microbial activity have generally been limited in scope to the most common and best characterized surfactants. Recently a number of new biosurfactants have been described and accelerated advances in molecular and cellular biology are expected to expand our insights into the diversity of structures and applications of biosurfactants. Biosurfactants play an essential natural role in the swarming motility of microorganisms and participate in cellular physiological processes of signaling and differentiation as well as in biofilm formation. Biosurfactants also exhibit natural physiological roles in increasing bioavailability of hydrophobic molecules and can complex with heavy metals, and some also possess antimicrobial activity. Chemical- and indeed bio-surfactants may also be added exogenously to microbial systems to influence behaviour and/or activity, mimicking the latter effects of biosurfactants. They have been exploited in this way, for example as antimicrobial agents in disease control and to improve degradation of chemical contaminants. Chemical surfactants can interact with microbial proteins and can be manipulated to modify enzyme conformation in a manner that alters enzyme activity, stability and/or specificity. Both chemical- and bio-surfactants are potentially toxic to specific microbes and may be exploited as antimicrobial agents against plant, animal and human microbial pathogens. Because of the widespread use of chemical surfactants, their potential impacts on microbial communities in the environment are receiving considerable attention.  相似文献   

4.
5.
Thirty-four thiosemicarbazones and S-alkyl thiosemicarbazones, and some of their Zn(II) and Pd(II) complexes were obtained and purified to investigate antimicrobial activity. MIC values of the compounds were determined by the disc diffusion method against Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi, Shigella flexneri, Staphylococcus aureus, S. epidermidis, and Candida albicans. The thiosemicarbazones show antibacterial and antifungal effects in free ligand and metal-complex form. Picolinaldehyde-S-methyl- and -S-benzylthiosemicarbazones did not affect the tested microorganisms but their Zn(II) complexes showed selective activity. The antimicrobial activity is relatively high in Me2SO, but the antimicrobial potential is changed in a certain range with Me2SO, HCONMe2, EtOH and CHCl3.  相似文献   

6.
In an effort to establish new drug candidates with improved antimicrobial and anticancer activities, we report here synthesis, molecular modeling, and in vitro biological evaluation of novel substituted N-amino phthalamide derivatives (3a-b, 4a-b, 5a-j, and 6). Structures of the newly synthesized compounds were described by IR, 1H & 13CNMR and LC-MS spectral data. The novel compounds were evaluated for their antibacterial activity against four types of Gm+ve and two for Gm−ve types, and antifungal activity against three fungi microorganisms by well diffusion method. Of these novel compounds, Schiff bases showed mostly promising antibacterial activity compared to reference drugs. A successful step was done for explanation of their mode of action through molecular docking of most active molecules at DNA gyrase B enzyme and further were biologically tested. Moreover, the antiproliferative activity was tested against two human carcinoma cell lines (Human colon carcinoma (HCT-116) and human breast adenocarcinoma (MCF-7)) showing promising anticancer activity compared to doxorubicin drug. The data from structure-activity relationship (SAR) analysis revealed that the lypophilic properties of these compounds might be essential parameter for their activity and suggest that 2-amino phthalamide scaffold derivatives 5g and 5h exhibited good antimicrobial and anticancer activities and might used as leads for further optimization.  相似文献   

7.
8.
Synthesis and chemical and physical characterization of four new complex compounds of thiobenzpyrolidide [1-(pyrolidine)-thiobenzoyl] with Pd(II), Pt(II), Cu(I) and Hg(II) are presented. The purposed chemical structure for these complexes is suggested by the elemental chemical analysis, molecular mass measurements, electric conductivities as well as by UV-VIS and IR spectra. The obtained compounds may in principle be used as enzyme inhibitors having a pronounced insecticidal action.  相似文献   

9.
A series of 2-fluorophenyl-4,6-disubstituted [1,3,5]triazines (1) and (2) were synthesized and evaluated for their antimicrobial activity against three representative gram-positive bacteria and two fungi. The structure–activity relationship (SAR) demonstrates that the 3- or 4-fluorophenyl component attached directly to the triazine ring was essential for activity. Of these compounds, 14, 15, and 25 demonstrated significant activity against all selected organisms compared to control. These compounds were generally nontoxic and may prove useful as antimicrobial agents.  相似文献   

10.
The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling.   总被引:11,自引:0,他引:11  
Mutations in the neurofibromatosis type II (NF2) tumor suppressor predispose humans and mice to tumor development. The study of Nf2+/- mice has demonstrated an additional effect of Nf2 loss on tumor metastasis. The NF2-encoded protein, merlin, belongs to the ERM (ezrin, radixin, and moesin) family of cytoskeleton:membrane linkers. However, the molecular basis for the tumor- and metastasis- suppressing activity of merlin is unknown. We have now placed merlin in a signaling pathway downstream of the small GTPase Rac. Expression of activated Rac induces phosphorylation and decreased association of merlin with the cytoskeleton. Furthermore, merlin overexpression inhibits Rac-induced signaling in a phosphorylation-dependent manner. Finally, Nf2-/- cells exhibit characteristics of cells expressing activated alleles of Rac. These studies provide insight into the normal cellular function of merlin and how Nf2 mutation contributes to tumor initiation and progression.  相似文献   

11.
A new series of Schiff base ligands derived from sulfonamide and their metal(II) complexes [cobalt(II), copper(II), nickel(II) and zinc(II)] have been synthesized and characterized. The nature of bonding and structure of all the synthesized compounds has been explored by physical, analytical and spectral data of the ligands and their metal(II) complexes. The authors suggest that all the prepared complexes possess an octahedral geometry. The ligands and metal(II) complexes have been screened for their in vitro antibacterial activity against bacterial strains, Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, Salmonella typhi and for antifungal activity against fungal strains, Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata. These assays enabled the identification of the metal complexes as an effective antimicrobial agent with low cytotoxicity.  相似文献   

12.
Terpenes with antimicrobial activity from Cretan propolis   总被引:1,自引:0,他引:1  
Five terpenes, the diterpenes: 14,15-dinor-13-oxo-8(17)-labden-19-oic acid and a mixture of labda-8(17),13E-dien-19-carboxy-15-yl oleate and palmitate as well as the triterpenes, 3,4-seco-cycloart-12-hydroxy-4(28),24-dien-3-oic acid and cycloart-3,7-dihydroxy-24-en-28-oic acid were isolated from Cretan propolis. Moreover, 18 known compounds were also isolated, seven of them for the first time as propolis components. All structures were established on the basis of spectroscopic analysis and chemical evidence. All isolated compounds were tested for antimicrobial activity against some Gram-positive and Gram-negative bacteria as well as against some human pathogenic fungi showing a broad spectrum of antimicrobial activity.  相似文献   

13.
Some copper chelates have potent antitumour activity, and in some cases also the free ligands have activity in vivo. Yet, little is known about their antimicrobial properties. Copper(II) chelates of the thiosemicarbazones of a-N-heterocyclic carboxaldehydes constitute one important group of such agents, also their ligands having marked antitumour activity. Both the ligands and chelates inhibit ribonucleotide reductase. Some ligands have been or are under clinical trials as antineoplastic agents. I report here a study on the antimicrobial properties of the prototype compounds of this group, pyridine-2-carboxaldehyde thiosemicarbazone and its copper(II) chelate. They were tested against nine microbes, including bacteria (Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis and Streptococcus lactis), yeasts (Candida albicans and Saccharomyces cerevisiae) and one mold (Aspergillus niger). Two clinical isolates of Bacillus sp. and one reference strain were also studied. Both the ligand and the chelate had marked activity. The ligand displayed considerable activity against all bacteria except for S. lactis, and its activity against E. coli and P. aeruginosa was that high that practical applications might be considued. It was highly active against A. niger and moderately active against C. albicans. The chelate was highly active against S. epidermidis and S. cerevisiae. Both compounds inhibited the clinical isolates markedly. Since some related ligands have been or are in clinical trials on humans or are entering them, their route to clinical use, also as antimicrobials, might be much more straightforward than that of substances, whose toxicity in humans is wholly unexplored.  相似文献   

14.
The paper reports the synthesis, the chemical characterization and the IR data of new Pt(II) and Pt(IV) complexes, as well as their cytostatic activities on KB cells and antitumour properties against three tumour systems (P388 and L1210 leukemias and advanced B16 melanoma). The following ligands were used: 2,5-dichloroaniline, 3,4-dichloroaniline, 2,4,6-trichloroaniline, 3,4,5-trichloroaniline, 2,3,4,5-tetrachloroaniline and 2,3,5,6-tetrachloroaniline. The tri- and tetrachloroaniline-Pt(II) complexes displayed a fairly good antileukemic activity but lower than cisplatin. The effect of these compounds against advanced B16 melanoma appears more interesting. They show an activity comparable or in some cases higher than cisplatin and other 1,2-diaminocyclohexane-Pt(II) complexes. The M.O. Huckel's calculations were performed on the ligand molecules in order to help us to draw a structure-activity relationship for new compounds.  相似文献   

15.
The antibacterial activity against Bacillus subtilis, Staphylococcus aureus and Escherichia coli, as well as the antifungal activity against Aspergillus niger of a series of anilide derivatives have been modeled using augmented multivariate image analysis applied to quantitative structure–activity relationship (aug-MIA-QSAR). This QSAR approach is based on 2D molecular shape, as well as atomic sizes and colors to encode chemical, physical and biological properties. Predictive models with r2 from 0.65 to 0.83 were used to estimate the antimicrobial activities of novel anilide analogs, which were built from the combination of substructures of the most active antimicrobial compounds along the series. Given the synergistic effect of different substituents to provide new molecules, promising compounds were proposed, highlighting a considerable multi-antimicrobial activity.  相似文献   

16.
We report herein the synthesis and biological activity of a new kind of azetidinone derivatives of benzotriazole. The reaction was carried out by both conventional and microwave methods. The chemical structures of all the synthesized compounds were deduced according to FTIR, (1)H NMR, (13)C NMR and FAB-mass spectral along with microanalytical data. All the synthesized compounds of series 5a-i were evaluated for their antitubercular activity against Mycobacterium tuberculosis H37RV and antimicrobial activity against some selected microorganism. Unexpectedly, some azetidinone derivatives of benzotriazole displayed better activities.  相似文献   

17.
Maggots of Lucilia sericata are widely used in the therapy of infected wounds and skin ulcers. Antimicrobial materials released by the insects during their feeding period in order to suppress microbial competitors and potential pathogens play the key role both in the maggots’ survival in their natural habitats (animal corpses) and their therapeutic efficacy. Although the antimicrobial activity of the maggots’ excretion was demonstrated about a hundred years ago, little is known about the nature of its active compounds. We studied the structural characteristics and antimicrobial activities of the compounds released by L. sericata maggots into the environment. To isolate the compounds, excretion was collected from the culture of actively feeding last instar larvae, active compounds were purified using a combination of liquid chromatography and antibacterial growth inhibition assay and characterized by mass spectrometry. Two groups of antibacterial compounds were isolated from the excretion: polypeptides with molecular masses ranging from 6466 to 9025 Da and small molecules with molecular masses ranging from 130 to 700 Da. The polypeptides characterized by the masses of 8882 and 9025 Da and showing selective activity against Gram-negative bacteria correspond well to diptericins, antimicrobial peptides previously found in the hemolymph of Calliphoridae maggots and known to be part of immune response to bacterial pathogens. Other high-molecular compounds with masses 6466, 6633, 5772, and 8631 Da have no clear analogs among antimicrobial peptides present in the hemolymph. The nature of small molecules present in the excretion awaits further study. Thus, the diversity of antimicrobial compounds discovered in Lucilia excretion demonstrates a sophisticated strategy that helps the maggots to fight bacteria and other microorganisms settling their environment. The strategy combines secretion of a set of antibacterial peptides involved in insect immune response as well as molecules which function outside the host organism.  相似文献   

18.
The roles of O-methyltransferases (OMTs) in microorganisms are not well understood, and are suggested to increase antimicrobial activity. Studies on OMTs cloned from microorganisms may help elucidate their roles. Streptomyces coelicolor A3(2) produces many useful natural antibiotics such as actinorhodin. Based on sequence information from S. coelicolor A3(2) genome, it was possible to clone several methyltransferases. An OMT cloned from Streptomyces coelicolor A3(2), ScOMT1 was characterized by in vivo and in vitro assays. Of 23 compounds tested, 13 were found to serve as its substrates. Of the 13 substrates, the methylated positions of 7 compounds were determined by HPLC, NMR, and MS analyses. This OMT favored ortho-dihydroxyflavones. Among the compounds tested here, the best substrate is 6,7-dihydroxyflavone.  相似文献   

19.

Complexes of 4-(((2-aminopyridin-3-yl)methylene)amino)benzoic acid ligand with cobalt(II) (1), nickel(II) (2), copper(II) (3), zinc(II) (4) and palladium(II) (5) are synthesized and characterized by using different spectroscopic methods like, UV–Visible, infrared, 1H, 13C NMR, molar conductance, ESR and elemental analysis. Quantum chemical computations were made using DFT (density functional theory), B3LYP functional and 6-31+?+G(d,p)/SDD basis set in order to determine optimized structure parameters, frontier molecular orbital parameters and NLO properties. Based on DFT and experimental evidence, the complexes ensured that the octahedral geometry have been proposed for complexes 1, 2 and 4, square planar for complexes 3 and 5. All the complexes showed only residual molar conductance values and hence they were considered as non-electrolytes in DMF. In addition, the anti-proliferative activity of the compounds was evaluated against different human cancer cell lines (IMR-32, MCF-7, COLO205, A549, HeLa and HEK 293) and cisplatin is used as a reference drug. Compounds 1 and 4 showed remarkable cytotoxicity in five cancer cell lines tested except MCF-7. Also, the compounds were examined for their in vitro antimicrobial and scavenging activities. The molecular docking results are well corroborated with the experimental anticancer activity results.

  相似文献   

20.
A new series of sulfur, selenium and tellurium peptidomimetic compounds was prepared employing the Passerini and Ugi isocyanide based multicomponent reactions (IMCRs). These reactions were clearly superior to conventional methods traditionally used for organoselenium and organotellurium synthesis, such as classical nucleophilic substitution and coupling methods. From the biological point of view, these compounds are of considerable interest because of suspected anticancer and antimicrobial activities. While the sulfur and selenium containing compounds generally did not show either anticancer or antimicrobial activities, their tellurium based counterparts frequently exhibited antimicrobial activity and were also cytotoxic. Some of the compounds synthesized even showed selective activity against certain cancer cells in cell culture. These compounds induced a cell cycle delay in the G0/G1 phase. At closer inspection, the ER and the actin cytoskeleton appeared to be the primary cellular targets of these tellurium compounds, in line with some of our previous studies. As most of these peptidomimetic compounds also comply with Lipinski’s Rule of Five, they promise good bioavailability, which needs to be studied as part of future investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号