首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Oxidation of low-density lipoprotein (LDL) lipid is implicated in atherogenesis and certain antioxidants inhibit atherosclerosis. Ubiquinol-10 (CoQ10H2) inhibits LDL lipid peroxidation in vitro although it is not known whether such activity occurs in vivo, and, if so, whether this is anti-atherogenic. We therefore tested the effect of ubiquinone-10 (CoQ10) supplemented at 1% (w/w) on aortic lipoprotein lipid peroxidation and atherosclerosis in apolipoprotein E-deficient (apoE-/-) mice fed a high-fat diet. Hydroperoxides of cholesteryl esters and triacylglycerols (together referred to as LOOH) and their corresponding alcohols were used as the marker for lipoprotein lipid oxidation. Atherosclerosis was assessed by morphometry at the aortic root, proximal and distal arch, and the descending thoracic and abdominal aorta. Compared to controls, CoQ10-treatment increased plasma coenzyme Q, ascorbate, and the CoQ10H2:CoQ10 + CoQ10H2 ratio, decreased plasma alpha-tocopherol (alpha-TOH), and had no effect on cholesterol and cholesterylester alcohols (CE-OH). Plasma from CoQ10-supplemented mice was more resistant to ex vivo lipid peroxidation. CoQ10 treatment increased aortic coenzyme Q and alpha-TOH and decreased the absolute concentration of LOOH, whereas tissue cholesterol, cholesteryl esters, CE-OH, and LOOH expressed per bisallylic hydrogen-containing lipids were not significantly different. CoQ10-treatment significantly decreased lesion size in the aortic root and the ascending and the descending aorta. Together these data show that CoQ10 decreases the absolute concentration of aortic LOOH and atherosclerosis in apoE-/- mice.  相似文献   

2.
The apolipoprotein E gene knockout (apoE-/-) mouse develops atherosclerosis that shares many features of human atherosclerosis. Increased levels of glycosphingolipid (GSL) have been reported in human atherosclerotic lesions; however, GSL levels have not been studied in the apoE-/- mouse. Here we used HPLC methods to analyze serum and aortic GSL levels in apoE-/- and C57BL/6J control mice. The concentrations of glucosyl ceramide (GlcCer), lactosyl ceramide (LacCer), GalNAcbeta1-4Galbeta1-4Glc-Cer (GA2), and ceramide trihexoside (CTH) were increased by approximately 7-fold in the apoE-/- mouse serum compared with controls. The major serum ganglioside, N-glycolyl GalNAcbeta1-4[NeuNAcalpha2-3]Galbeta1-4Glc-Cer (N-glycolyl GM2), was increased in concentration by approximately 3-fold. A redistribution of GSLs from HDL to VLDL populations was also observed in the apoE-/- mice. These changes were accompanied by an increase in the levels of GSLs in the aortic sinus and arch of the apoE-/- mice. The spectrum of gangliosides present in the aortic tissues was more complex than that found in the lipoproteins, with the latter represented almost entirely by N-glycolyl GM2 and the former comprised of NeuNAcalpha2-3Galbeta1-4Glc-Cer (GM3), GM2, N-glycolyl GM2, GM1, GD3, and GD1a. In conclusion, neutral GSL and ganglioside levels were increased in the serum and aortae of apoE-/- mice compared with controls, and this was associated with a preferential redistribution of GSL to the proatherogenic lipoprotein populations. The apoE-/- mouse therefore represents a useful model to study the potential role of GSL metabolism in atherogenesis.  相似文献   

3.
The serine palmitoyl transferase inhibitor myriocin potently suppresses the development of atherosclerosis in apolipoprotein E (apoE) gene knockout (apoE(-/-)) mice fed a high-fat diet. This is associated with reduced plasma sphingomyelin (SM) and glycosphingolipid levels. Furthermore, oral administration of myriocin decreases plasma cholesterol and triglyceride (TG) levels. Here, we aimed to determine whether myriocin could inhibit the progression (or stimulate the regression) of established atherosclerotic lesions and to examine potential changes in hepatic and plasma lipid concentrations. Adult apoE(-/-) mice were fed a high-fat diet for 30 days, and lesion formation was histologically confirmed. Replicate groups of mice were then transferred to either regular chow or chow containing myriocin (0.3 mg/kg/day) and maintained for a further 60 days. Myriocin significantly inhibited the progression of established atherosclerosis when combined lesion areas (aortic sinus, arch, and celiac branch point) were measured. Although the inhibition of lesion progression was observed mainly in the distal regions of the aorta, regression of lesion size was not detected. The inhibition of lesion progression was associated with reductions in hepatic and plasma SM, cholesterol, and TG levels and increased hepatic and plasma apoA-I levels, indicating that the modulation of pathways associated with several classes of atherogenic lipids may be involved.  相似文献   

4.
Ong KL  Wong LY  Man YB  Leung RY  Song YQ  Lam KS  Cheung BM 《Peptides》2006,27(7):1659-1667
We studied single nucleotide polymorphisms (SNPs) and haplotypes in the urotensin-II (UTS2) and urotensin-II receptor gene (UTS2R) in Hong Kong Chinese (224 hypertensive and 306 normotensive unrelated subjects) and their relation to hypertension and the metabolic syndrome. For UTS2, the GGT haplotype (-605G, 143G and 3836T) was associated with higher plasma level of U-II and insulin, and higher homeostasis model assessment of insulin resistance index and beta-cell function. For UTS2R, the AC haplotype (-11640A and -8515C) was associated with higher 2 h plasma glucose after a 75 g oral glucose load. Therefore, U-II and its receptor may play a role in insulin resistance.  相似文献   

5.
Previous studies have indicated that LCAT may play a role in the generation of cholesteryl esters (CE) in plasma apolipoprotein B (apoB) lipoproteins. The purpose of the present study was to examine the quantitative importance of LCAT on apoB lipoprotein CE fatty acid (CEFA) composition. LCAT(-/-) mice were crossed into the LDL receptor (LDLr)(-/-) and apoE(-/-) background to retard the clearance and increase the concentration of apoB lipoprotein in plasma. Plasma free cholesterol was significantly elevated but total and esterified cholesterol concentrations were not significantly affected by removal of functioning LCAT in either the LDLr(-/-) or apoE(-/-) mice consuming a chow diet. However, when functional LCAT was removed from LDLr(-/-) mice, the CEFA ratio (saturated + monounsaturated/polyunsaturated) of plasma LDL increased 7-fold because of a 2-fold increase in saturated and monounsaturated CE, a 40% reduction in cholesteryl linoleate, and a complete absence of long chain (>18 carbon) polyunsaturated CE (20:4, 20:5n-3, and 22:6n-3), from 29.3% to 0%. Removal of functional LCAT from apoE(-/-) mice resulted in only a 1.6-fold increase in the CEFA ratio, due primarily to a complete elimination of long chain CE (7.7% to 0%).Our results demonstrate that LCAT contributes significantly to the CEFA pool of apoB lipoprotein and is the only source of plasma long chain polyunsaturated CE in these mice.  相似文献   

6.
Atherosclerosis is a complex chronic inflammatory disease in which macrophages play a critical role, and the intervention of the inflammatory process in atherogenesis could be a therapeutic strategy. In this study, we investigated the efficacy of xenogenic macrophage immunization on the atherosclerotic lesion formation in a model of murine atherosclerosis. Apolipoprotein E knockout (apoE-KO) mice were repeatedly immunized with formaldehyde-fixed cultured human macrophages (phorbol ester-stimulated THP-1 cells), using human serum albumin as a control protein or HepG2 cells as human control cells, once a week for four consecutive weeks. The vehicle phosphate-buffered saline was injected in the nonimmunized controls. THP-1 immunization induced antibodies that are immunoreactive with mouse macrophages. Although the plasma lipid levels were unchanged by the immunization, the atherosclerotic lesion area in the aortic root was significantly reduced by >50% in 16-wk-old THP-1-immunized apoE-KO mice compared with that in control mice. THP-1 immunization reduced in vivo macrophage infiltration, reduced in vitro macrophage adhesion, and changed cytokine production by macrophages to the antiatherogenic phenotype. Xenogenic macrophage immunization protects against the development of atherosclerosis in apoE-KO mice by modulating macrophage function in which antibodies induced by the immunization are likely to be involved. This method is a novel and potentially useful cell-mediated immune therapeutic technique against atherosclerosis. antibody; THP-1 cells  相似文献   

7.
Semicarbazide-sensitive amine oxidase (SSAO) catalyzes oxidative deamination of primary aromatic and aliphatic amines. Increased SSAO activity has been found in atherosclerosis and diabetes mellitus. We hypothesize that the anti-atherogenic effect of liver X receptors (LXRs) might be related to the inhibition of SSAO gene expression and its activity. In this study, we investigated the effect of LXRagonist T0901317 on SSAO gene expression and its activity in apolipoprotein E knockout (apoE−/−) mice. Male apoE−/− mice (8 weeks old) were randomly divided into four groups: basal control group; vehicle group; prevention group; and treatment group. SSAO gene expression was analyzed by real-time quantitative polymerase chain reaction and its activity was determined. The activity of superoxide dismutase and content of malondialdehyde in the aorta and liver were also determined. In T0901317-treated mice, SSAO gene expression was significantly decreased in the aorta, liver, small intestine, and brain. SSAO activities in serum and in these tissues were also inhibited. The amount of superoxide dismutase in the aorta and liver of the prevention group and treatment group was significantly higher compared with the vehicle group ( P < 0.05). Malondialdehyde in the tissues of these two groups was significantly lower compared with the vehicle group ( P < 0.05). Our results showed that T0901317 inhibits SSAO gene expression and its activity in atherogenic apoE−/− mice. The atheroprotective effect of LXR agonist T0901317 is related to the inhibition of SSAO gene expression and its activity.  相似文献   

8.
Lipoprotein lipase (LPL) is known to play a crucial role in lipoprotein metabolism by hydrolyzing triglycerides; however its role in atherogenesis has yet to be determined. We have previously shown that low density lipoprotein receptor knockout mice overexpressing LPL are resistant to diet-induced atherosclerosis due to the suppression of remnant lipoproteins. Plasma lipoproteins and atherosclerosis of apolipoprotein (apo) E knockout mice which overexpress the human LPL transgene (LPL/APOEKO) were compared with those of control apoE knockout mice (APOEKO). On a normal chow diet, LPL/APOEKO mice showed marked suppression of the plasma triglyceride levels compared with APOEKO mice (54 vs. 182 mg/dl), but no significant changes in plasma cholesterol and apoB levels. Non-high density lipoproteins (HDL) from LPL/APOEKO mice had lower triglyceride content, a smaller size, and a more positive charge compared with those from APOEKO mice. Cholesterol, apoA-I, and apoA-IV were increased in HDL. Although both groups developed hypercholesterolemia to a comparable degree in response to an atherogenic diet, the LPL/APOEKO mice developed 2-fold smaller fatty streak lesions in the aortic sinus compared to the APOEKO mice. In conclusion, overproduction of LPL is protective against atherosclerosis even in the absence of apoE.  相似文献   

9.
Oils enriched in monounsaturated fatty acids do not seem to behave similarly in protecting against the development of atherosclerosis in animal models, which has been attributed to the presence of soluble phenolic compounds. To test the relevance of other components of oils in the prevention of atherosclerosis, two olive oils from the same cultivar devoid of soluble phenolic compounds were prepared using different procedures (pressure or centrifugation), characterized and fed to apolipoprotein E-deficient mice as 10% (w/w) of their diet. The 2 olive oils had similar levels of monounsaturated fatty acids and squalene, but they differed in their content of linoleic, phytosterols, tocopherols, triterpenes and waxes, which were particularly enriched in the test olive oil obtained by centrifugation. In mice that received a diet enriched in the olive oil derived through centrifugation, the progression of atherosclerosis was delayed compared to the mice that received standard olive oil. That effect was associated with decreases in plasma triglycerides, total and non-high-density lipoprotein cholesterol and isoprostane 8-iso-prostaglandin F(2alpha). Our results clearly indicate that the preparation of olive oil is crucial in determining its antiatherosclerotic effect, which extends beyond the presence of phenolic compounds. The test olive oil exerted its antiatherosclerotic effects by modifying plasma lipids and oxidative stress, and it might be a good candidate to replace other fats in functional foods.  相似文献   

10.
Serum paraoxonase (PON1), present on high density lipoprotein, may inhibit low density lipoprotein (LDL) oxidation and protect against atherosclerosis. We generated combined PON1 knockout (KO)/apolipoprotein E (apoE) KO and apoE KO control mice to compare atherogenesis and lipoprotein oxidation. Early lesions were examined in 3-month-old mice fed a chow diet, and advanced lesions were examined in 6-month-old mice fed a high fat diet. In both cases, the PON1 KO/apoE KO mice exhibited significantly more atherosclerosis (50-71% increase) than controls. We examined LDL oxidation and clearance in vivo by injecting human LDL into the mice and following its turnover. LDL clearance was faster in the double KO mice as compared with controls. There was a greater rate of accumulation of oxidized phospholipid epitopes and a greater accumulation of LDL-immunoglobulin complexes in the double KO mice than in controls. Furthermore, the amounts of three bioactive oxidized phospholipids were elevated in the endogenous intermediate density lipoprotein/LDL of double KO mice as compared with the controls. Finally, the expression of heme oxygenase-1, peroxisome proliferator-activated receptor gamma, and oxidized LDL receptors were elevated in the livers of double KO mice as compared with the controls. These data demonstrate that PON1 deficiency promotes LDL oxidation and atherogenesis in apoE KO mice.  相似文献   

11.
To investigate the effects of abolished cholic acid (CA) synthesis in the ApoE knockout model [apolipoprotein E (apoE) KO],a double-knockout (DKO) mouse model was created by crossbreeding Cyp8b1 knockout mice (Cyp8b1 KO), unable to synthesize the primary bile acid CA, with apoE KO mice. After 5 months of cholesterol feeding, the development of atherosclerotic plaques in the proximal aorta was 50% less in the DKO mice compared with the apoE KO mice. This effect was associated with reduced intestinal cholesterol absorption, decreased levels of apoB-containing lipoproteins in the plasma, enhanced bile acid synthesis, reduced hepatic cholesteryl esters, and decreased hepatic activity of ACAT2. The upregulation of Cyp7a1 in DKO mice seemed primarily caused by reduced expression of the intestinal peptide FGF15. Treatment of DKO mice with the farnesoid X receptor (FXR) agonist GW4064 did not alter the intestinal cholesterol absorption, suggesting that the action of CA in this process is confined mainly to formation of intraluminal micelles and less to its ability to activate the nuclear receptor FXR. Inhibition of CA synthesis may offer a therapeutic strategy for the treatment of hyperlipidemic conditions that lead to atherosclerosis.  相似文献   

12.
Antioxidants can inhibit atherosclerosis in animals, though it is not clear whether this is due to the inhibition of aortic lipoprotein lipid (per)oxidation. Coantioxidants inhibit radical-induced, tocopherol-mediated peroxidation of lipids in lipoproteins through elimination of tocopheroxyl radical. Here we tested the effect of the bisphenolic probucol metabolite and coantioxidant H 212/43 on atherogenesis in apolipoprotein E and low density lipoprotein (LDL) receptor gene double knockout (apoE-/-;LDLr-/-) mice, and how this related to aortic lipid (per)oxidation measured by specific HPLC analyses. Dietary supplementation with H 212/43 resulted in circulating drug levels of approximately 200 microM, increased plasma total cholesterol slightly and decreased plasma and aortic alpha-tocopherol significantly relative to age-matched control mice. Treatment with H 212/43 increased the antioxidant capacity of plasma, as indicated by prolonged inhibition of peroxyl radical-induced, ex vivo lipid peroxidation. Aortic tissue from control apoE-/-;LDLr-/- mice contained lipid hydro(pero)xides and substantial atherosclerotic lesions, both of which were decreased strongly by supplementation of the animals with H 212/43. The results show that a coantioxidant effectively inhibits in vivo lipid peroxidation and atherosclerosis in apoE-/-;LDLr-/- mice, consistent with though not proving a causal relationship between aortic lipoprotein lipid oxidation and atherosclerosis in this model of the disease.  相似文献   

13.
The purpose of the present study was to test the hypothesis that lecithin:cholesterol acyltransferase (LCAT) deficiency would accelerate atherosclerosis development in low density lipoprotein (LDL) receptor (LDLr-/-) and apoE (apoE-/-) knockout mice. After 16 weeks of atherogenic diet (0.1% cholesterol, 10% calories from palm oil) consumption, LDLr-/- LCAT-/- double knockout mice, compared with LDLr-/- mice, had similar plasma concentrations of free (FC), esterified (EC), and apoB lipoprotein cholesterol, increased plasma concentrations of phospholipid and triglyceride, decreased HDL cholesterol, and 2-fold more aortic FC (142 +/- 28 versus 61 +/- 20 mg/g protein) and EC (102 +/- 27 versus 61+/- 27 mg/g). ApoE-/- LCAT-/- mice fed the atherogenic diet, compared with apoE-/- mice, had higher concentrations of plasma FC, EC, apoB lipoprotein cholesterol, and phospholipid, and significantly more aortic FC (149 +/- 62 versus 109 +/- 33 mg/g) and EC (101 +/- 23 versus 69 +/- 20 mg/g) than did the apoE-/- mice. LCAT deficiency resulted in a 12-fold increase in the ratio of saturated + monounsaturated to polyunsaturated cholesteryl esters in apoB lipoproteins in LDLr-/- mice and a 3-fold increase in the apoE-/- mice compared with their counterparts with active LCAT. We conclude that LCAT deficiency in LDLr-/- and apoE-/- mice fed an atherogenic diet resulted in increased aortic cholesterol deposition, likely due to a reduction in plasma HDL, an increased saturation of cholesteryl esters in apoB lipoproteins and, in the apoE-/- background, an increased plasma concentration of apoB lipoproteins.  相似文献   

14.
In the present study, we sought to investigate the effects of emotional and physiological stress on plaque instability in atherosclerosis. We used different stress-treated apolipoprotein E (ApoE)-deficient mice, which have been shown to spontaneously develop atherosclerosis with features similar to those seen in humans, as an animal model. Morphology study showed that emotional stress (ES) obviously promoted the development of atherosclerotic plaques and plaque instability evidenced by significantly increasing plaque size, plaque-to-surface ratio and plaque calcification, and enhancing the frequency of large necrotic core and medial erosion compared with control ApoE−/− mice (P < 0.01). Physiological stress (PS) treatment alone did not affect the plaque stability compared with control ApoE−/− mice (P > 0.05). However, the combination of ES and PS treatment (CS) initiated much stronger plaque instability compared with ES treatment alone (P < 0.01), increased the frequency of thin fibrous caps, and even triggered plaque rupture and buried fibrous cap. Immunohistochemical analysis indicated that both ES and CS treatment led to an increase in the accumulation of macrophages and T cells and a decrease of smooth muscle cells, reflecting an unstable atherosclerotic plaque phenotype, in the atherosclerotic lesions in ApoE−/− mice. PS alone did not affect plaque cellular components. Similarly, CS-mediated changes in atherosclerotic plaque composition were stronger than that caused by ES alone (P < 0.01). Taken together, ES treatment alone is sufficient to promote plaque instability. PS alone does not affect atherosclerotic plaque development, but can potentiate ES-mediated plaque destabilization.  相似文献   

15.
BackgroundRhodioloside is a glucoside of tyrosol isolated from Rhodiola rosea. However, its regulating effect on hepatic dyslipidemia of atherogenic mice has rarely been studied.PurposeThe specific aims of current study included to clarify lipidomic perturbation in liver tissues of apolipoprotein E deficient (apoE−/−) mice fed with high-fat diet, and to examine the effects of rhodioloside against atherosclerosis and dyslipidemia.Study DesignThe comparisons of hepatic lipidome were executed between wide type (WT) mice fed with normal diet (NDC) and apoE−/− mice fed with high-fat diet (Model), WT mice fed with high-fat diet (HFDC) versus the model mice, as well as the model mice versus rhodioloside-treated atherosclerotic mice.MethodsUltra high performance liquid chromatography coupled with a Q exactive hybrid quadrupole-orbitrap mass spectrometry (UPLC-MS/MS) was employed to provide an unbiased and simultaneous measurement of individual lipid species in liver tissues.ResultsMultivariate statistical analysis derived from LC-MS spectra revealed that high-fat diet and apoE deficiency caused a series of disturbances on glyerolipid metabolism, glycerophospholipid metabolism and sphingolipid metabolism. Rhodioloside administration showed atheroprotective effects on the apoE−/− mice with regulating the levels of 1 phosphatidylcholine, 2 phosphatidylserines, 5 alkyldiacylglycerols and 3 alkenyldiacylglycerols back to normal. In particular, PC (4:0/15:0) was positively associated with high-density lipoprotein cholesterol in blood, both of which could be ameliorated by rhodioloside.ConclusionOur results identified the abnormal hepatic lipids in atherosclerosis progression that could efficiently improved by rhodioloside. These lipids contributed to biological understanding of atherogenic dyslipidemia in liver and could also served as sensitive indicators for drug target screening.  相似文献   

16.
17.
Physical exercise is the cornerstone of cardiovascular disease treatment. The present study investigated whether exercise training affects atherosclerotic plaque composition through the modification of inflammatoryrelated pathways in apolipoprotein E knockout (apoE−/−) mice with diabetic atherosclerosis. Forty-five male apoE−/− mice were randomized into three equivalent (n=15) groups: control (CO), sedentary (SED), and exercise (EX). Diabetes was induced by streptozotocin administration. High-fat diet was administered to all groups for 12 weeks. Afterwards, CO mice were euthanatized, while the sedentary and exercise groups continued high-fat diet for 6 additional weeks. Exercising mice followed an exercise program on motorizedtreadmill (5 times/week, 60 min/session). Then, blood samples and atherosclerotic plaques in the aortic root were examined. A considerable (P<0.001) regression of the atherosclerotic lesions was observed in the exercise group (180.339±75.613×103µm2) compared to the control (325.485±72.302×103 µm2) and sedentary (340.188±159.108×103µm2) groups. We found decreased macrophages, matrix metalloproteinase-2 (MMP-2), MMP-3, MMP-8 and interleukin-6 (IL-6) concentrations (P<0.05) in the atherosclerotic plaques of the exercise group. Compared to both control and sedentary groups, exercise training significantly increased collagen (P<0.05), elastin (P<0.001), and tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) (P<0.001) content in the atherosclerotic plaques. Those effects paralleled with increased fibrous cap thickness and less internal elastic lamina ruptures after exercise training (P<0.05), while body-weight and lipid parameters did not significantly change. Plasma MMP-2 and MMP-3 concentrations in atherosclerotic tissues followed a similar trend. From our study we can conclude that exercise training reduces and stabilizes atherosclerotic lesions in apoE−/− mice with diabetic atherosclerosis. A favorable modification of the inflammatory regulators seems to explain those beneficial effects.Key words: diabetes, atherosclerosis, exercise, matrix metalloproteinases, plaque stability.  相似文献   

18.
Little is known about how hypercholesterolaemia affects Ca2+ signalling in the vasculature of ApoE−/− mice, a model of atherosclerosis. Our objectives were therefore to determine (i) if hypercholesterolaemia alters Ca2+ signalling in aortic endothelial cells before overt atherosclerotic lesions occur, (ii) how Ca2+ signals are affected in older plaque-containing mice, and (iii) whether Ca2+ signalling changes were translated into contractility differences. Using confocal microscopy we found agonist-specific Ca2+ changes in endothelial cells. ATP responses were unchanged in ApoE−/− cells and methyl-β-cyclodextrin, which lowers cholesterol, was without effect. In contrast, Ca2+ signals to carbachol were significantly increased in ApoE−/− cells, an effect methyl-β-cyclodextrin reversed. Ca2+ signals were more oscillatory and store-operated Ca2+ entry decreased as mice aged and plaques formed. Despite clearly increased Ca2+ signals, aortic rings pre-contracted with phenylephrine had impaired relaxation to carbachol. This functional deficit increased with age, was not related to ROS generation, and could be partially rescued by methyl-β-cyclodextrin. In conclusion, carbachol-induced calcium signalling and handling are significantly altered in endothelial cells of ApoE−/− mice before plaque development. We speculate that reduction in store-operated Ca2+ entry may result in less efficient activation of eNOS and thus explain the reduced relaxatory response to CCh, despite the enhanced Ca2+ response.  相似文献   

19.
Integration of multiple hormonal and neuronal signaling pathways in the medial preoptic area (mPOA) is required for elicitation of male sexual behavior in most vertebrates. Perturbation of nitric oxide synthase (NOS) activity in the mPOA causes significant defects in male sexual behavior. Although activins and their signaling components are highly expressed throughout the brain, including the mPOA, their functional significance in the central nervous system (CNS) is unknown. Here, we demonstrate a neurophysiologic role for activin signaling in male reproductive behavior. Adult activin receptor type II null (Acvr2-/-) male mice display multiple reproductive behavioral deficits, including delayed initiation of copulation, reduced mount, and intromission frequencies, and increased mount, intromission, and ejaculation latencies. These behavioral defects in the adult mice are independent of gonadotropin-releasing hormone (GnRH) homeostasis or mating-induced changes in luteinizing hormone (LH) and testosterone levels. The impairment in behavior can be correlated to the nitric oxide content in the CNS because Acvr2-/- males have decreased NOS activity in the mPOA but not the rest of the hypothalamus or cortex. Olfactory acuity tests confirmed that Acvr2-/- mice have no defects in general odor or pheromone recognition. In addition, motor functions are not impaired and the mutants demonstrate normal neuromuscular coordination and balance. Furthermore, the penile histology in mutant mice appears normal, with no significant differences in the expression of penile differentiation marker genes compared with controls, suggesting the observed behavioral phenotypes are not due to structural defects in the penis. Our studies identify a previously unrecognized role of activin signaling in male sexual behavior and suggest that activins and/or related family members are upstream regulators of NOS activity within the mPOA of the forebrain.  相似文献   

20.
Oxidation of lipoproteins is thought to be an early event in atherogenesis. To evaluate whether aortic lipoprotein lipid (per)oxidation contributes to atherosclerosis, we investigated the time-dependent changes to lipids and antioxidants in plasma and aortas of apolipoprotein E gene knockout (apoE-/-) mice receiving a high fat diet, and compared these changes with lesion development. Circulating buoyant lipoproteins and associated cholesterol (C), cholesteryl esters (CE), and alpha-tocopherol (alpha-TOH) increased within 1 month then remained largely constant up to 6 months. Coenzyme Q (CoQ) remained unchanged for the first 3 months and increased marginally after 6 months. With increasing duration of the diet, plasma lipids showed an increased propensity to undergo peroxyl radical-induced (per)oxidation. Absolute concentrations of aortic C, hydroperoxides and hydroxides of CE (CE-O(O)H) and alpha-TOH increased gradually while aortic CE increased more markedly with changes to cholesteryl linoleate being most pronounced. Aortic CoQ remained largely unchanged. Overall, the extent of aortic CE (per)oxidation remained low (相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号