首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell cycle checkpoints that monitor DNA damage and spindle assembly are essential for the maintenance of genetic integrity, and drugs that target these checkpoints are important chemotherapeutic agents. We have examined how cells respond to DNA damage while the spindle-assembly checkpoint is activated. Single cell electrophoresis and phosphorylation of histone H2AX indicated that several chemotherapeutic agents could induce DNA damage during mitotic block. DNA damage during mitotic block triggered CDC2 inactivation, histone H3 dephosphorylation, and chromosome decondensation. Cells did not progress into G1 but seemed to retract to a G2-like state containing 4N DNA content, with stabilized cyclin A and cyclin B1 binding to Thr14/Tyr15-phosphorylated CDC2. The loss of mitotic cells was not due to cell death because there was no discernible effect on caspase-3 activation, DNA fragmentation, or viability. Extensive DNA damage during mitotic block inactivated cyclin B1-CDC2 and prevented G1 entry when the block was removed. The mitotic DNA damage responses were independent of p53 and pRb, but they were dependent on ATM. CDC25A that accumulated during mitosis was rapidly destroyed after DNA damage in an ATM-dependent manner. Ectopic expression of CDC25A or nonphosphorylatable CDC2 effectively inhibited the dephosphorylation of histone H3 after DNA damage. Hence, although spindle disruption and DNA damage provide conflicting signals to regulate CDC2, the negative regulation by the DNA damage checkpoint could overcome the positive regulation by the spindle-assembly checkpoint.  相似文献   

2.
Cyclin-dependent kinase 1 (CDK1) inhibitory phosphorylation controls the onset of mitosis and is essential for the checkpoint pathways that prevent the G(2)- to M-phase transition in cells with unreplicated or damaged DNA. To address whether CDK2 inhibitory phosphorylation plays a similar role in cell cycle regulation and checkpoint responses at the start of the S phase, we constructed a mouse strain in which the two CDK2 inhibitory phosphorylation sites, threonine 14 and tyrosine 15, were changed to alanine and phenylalanine, respectively (CDK2AF). This approach showed that inhibitory phosphorylation of CDK2 had a major role in controlling cyclin E-associated kinase activity and thus both determined the timing of DNA replication in a normal cell cycle and regulated centrosome duplication. Further, DNA damage in G(1) CDK2AF cells did not downregulate cyclin E-CDK2 activity when the CDK inhibitor p21 was also knocked down. We were surprised to find that this was insufficient to cause cells to bypass the checkpoint and enter the S phase. This led to the discovery of two previously unrecognized pathways that control the activity of cyclin A at the G(1) DNA damage checkpoint and may thereby prevent S-phase entry even when cyclin E-CDK2 activity is deregulated.  相似文献   

3.
Y Gu  J Rosenblatt    D O Morgan 《The EMBO journal》1992,11(11):3995-4005
We have examined the role of phosphorylation in the regulation of human cyclin-dependent kinase-2 (CDK2), a protein closely related to the cell cycle regulatory kinase CDC2. We find that CDK2 from HeLa cells contains three major tryptic phosphopeptides. Analysis of site-directed mutant proteins, expressed by transient transfection of COS cells, demonstrates that the two major phosphorylation sites are Tyr15 (Y15) and Thr160 (T160). Additional phosphorylation probably occurs on Thr14 (T14). Replacement of T160 with alanine abolishes the kinase activity of CDK2, indicating that phosphorylation at this site (as in CDC2) is required for kinase activity. Mutation of Y15 and T14 stimulates kinase activity, demonstrating that phosphorylation at these sites (as in CDC2) is inhibitory. Similarly, CDK2 is activated in vitro by dephosphorylation of Y15 and T14 by the phosphatase CDC25. Analysis of HeLa cells synchronized at various cell cycle stages indicates that CDK2 phosphorylation on T160 increases during S phase and G2, when CDK2 is most active. Phosphorylation on the inhibitory sites T14 and Y15 is also maximal during S phase and G2. Thus, the activity of a subpopulation of CDK2 molecules is inhibited at a time in the cell cycle when overall CDK2 activity is increased.  相似文献   

4.
CDC25B is one of the three human dual-specificity phosphatases involved in the activation ofcyclin-dependent kinases at key stages of the cell division cycle. CDC25B that is responsiblefor the activation of CDK1-cyclin B1 is regulated by phosphorylation. The STK15/Aurora-Akinase locally phosphorylates CDC25B on serine 353 at the centrosome during the G2/Mtransition. Here we have investigated this phosphorylation event during the cell cycle, and inresponse to activation of the G2 DNA damage checkpoint. We show that accumulation of theS353-phosphorylated form of CDC25B at the centrosome correlates with the relocalisation ofcyclin B1 to the nucleus and the activation of CDK1 at entry into mitosis. Upon activation ofthe G2/M checkpoint by DNA damage, we demonstrate that Aurora-A is not activated andconsequently CDC25B is not phosphorylated. We show that ectopic expression of Aurora-Aresults in a bypass of the checkpoint that partially overcome by a S353A mutant of CDC25B.Finally, we show that bypass of the G2/M checkpoint by the CHK1 kinase inhibitor UCN-01results in the activation of Aurora-A and phosphorylation of CDC25B on S353. These resultsstrongly suggest that Aurora-A-mediated phosphorylation of CDC25B at the centrosome is animportant step contributing to the earliest events inducing mitosis, upstream of CDK1-cyclinB1 activation.  相似文献   

5.
The activity of the mitosis-promoting kinase CDC2-cyclin B is normally suppressed in S phase and G2 by inhibitory phosphorylation at Thr14 and Tyr15. This work explores the possibility that these phosphorylations are responsible for the G2 arrest that occurs in human cells after DNA damage. HeLa cell lines were established in which CDC2AF, a mutant that cannot be phosphorylated at Thr14 and Tyr15, was expressed from a tetracycline-repressible promoter. Expression of CDC2AF did not induce mitotic events in cells arrested at the beginning of S phase with DNA synthesis inhibitors, but induced low levels of premature chromatin condensation in cells progressing through S phase and G2. Expression of CDC2AF greatly reduced the G2 delay that resulted when cells were X- irradiated in S phase. However, a significant G2 delay was still observed and was accompanied by high CDC2-associated kinase activity. Expression of wild-type CDC2, or the related kinase CDK2AF, had no effect on the radiation-induced delay. Thus, inhibitory phosphorylation of CDC2, as well as additional undefined mechanisms, delay mitosis after DNA damage.  相似文献   

6.
Topoisomerase II poisons like Adriamycin (ADR, doxorubicin) are clinically important chemotherapeutic agents. Adriamycin-induced DNA damage checkpoint activates ATM and ATR, which could in turn inhibit the cell cycle engine through either CHK1 or CHK2. In this study, we characterized whether CHK1 or CHK2 is required for Adriamycin-induced checkpoint. We found that both CHK1 and CHK2 were phosphorylated after Adriamycin treatment. Several lines of evidence from dominant-negative mutants, short hairpin RNA (shRNA), and knockout cells indicated that CHK1, but not CHK2, is critical for Adriamycin-induced cell cycle arrest. Disruption of CHK1 function bypassed the checkpoint, as manifested by the increase in CDC25A, activation of CDC2, increase in histone H3 phosphorylation, and reduction in cell survival after Adriamycin treatment. In contrast, CHK2 is dispensable for Adriamycin-induced responses. Finally, we found that CHK1 was upregulated in primary hepatocellular carcinoma (HCC), albeit as an inactive form. The presence of a stockpile of dormant CHK1 in cancer cells may have important implications for treatments like topoisomerase II poisons. Collectively, the available data underscore the pivotal role of CHK1 in checkpoint responses to a variety of stresses.  相似文献   

7.
8.
A master regulator of DNA replication, CDC6 also functions in the DNA-replication checkpoint by preventing DNA rereplication. Cyclin-dependent kinases (CDKs) regulate the amount and localization of CDC6 throughout the cell cycle; CDC6 phosphorylation after DNA replication initiation leads to its proteolysis in yeast or translocation to the cytoplasm in mammals. Overexpression of CDC6 during the late S phase prevents entry into the M phase by activating CHEK1 kinase that then inactivates CDK1/cyclin B, which is essential for the G2/M-phase transition. We analyzed the role of CDC6 during resumption of meiosis in mouse oocytes, which are arrested in the first meiotic prophase with low CDK1/cyclin B activity; this is similar to somatic cells at the G2/M-phase border. Overexpression of CDC6 in mouse oocytes does not prevent resumption of meiosis. The RNA interference-mediated knockdown of CDC6, however, reveals a new and unexpected function for CDC6; namely, it is essential for spindle formation in mouse oocytes.  相似文献   

9.
Cyclin D1 is required at high levels for passage through G1 phase but must be reduced to low levels during S phase to avoid the inhibition of DNA synthesis. This suppression requires the phosphorylation of Thr286, which is induced directly by DNA synthesis. Because the checkpoint kinase ATR is activated by normal replication as well as by DNA damage, its potential role in regulating cyclin D1 phosphorylation was tested. We found that ATR, activated by either UV irradiation or the topoisomerase IIβ binding protein 1 activator, promoted cyclin D1 phosphorylation. Small interfering RNA against ATR inhibited UV-induced Thr286 phosphorylation, together with that seen in normally cycling cells, indicating that ATR regulates cyclin D1 phosphorylation in normal as well as stressed cells. Following double-stranded DNA (dsDNA) breakage, the related checkpoint kinase ATM was also able to promote the phosphorylation of cyclin D1 Thr286. The relationship between these checkpoint kinases and cyclin D1 was extended when we found that normal cell cycle blockage in G1 phase observed following dsDNA damage was efficiently overcome when exogenous cyclin D1 was expressed within the cells. These results indicate that checkpoint kinases play a critical role in regulating cell cycle progression in normal and stressed cells by directing the phosphorylation of cyclin D1.  相似文献   

10.
Li J  Wang Y  Sun Y  Lawrence TS 《Radiation research》2002,157(3):322-330
The WEE1 protein kinase carries out the inhibitory phosphorylation of CDC2 on tyrosine 15 (Tyr15), which is required for activation of the G(2)-phase checkpoint in response to DNA damage. PD0166285 is a newly identified WEE1 inhibitor and is a potential selective G(2)-phase checkpoint abrogator. To determine the role of TP53 in PD0166285-induced G(2)-phase checkpoint abrogation, human H1299 lung carcinoma cells expressing a temperature-sensitive TP53 were used. Upon exposure to gamma radiation, cells cultured under nonpermissive conditions (TP53 mutant conformation) underwent G(2)-phase arrest. However, under permissive conditions (TP53 wild-type conformation), PD0166285 greatly inhibited the accumulation of cells in G(2) phase. This abrogation was accompanied by a nearly complete blockage of Tyr15 phosphorylation of CDC2, an increased activity of CDC2 kinase, and an enhanced sensitivity to radiation. However, under permissive conditions (TP53 wild-type conformation), PD0166285 neither disrupted the G(2)-phase arrest nor increased cell death. The compound inhibited Tyr15 phosphorylation only partially and did not activate CDC2 kinase activity. To understand the potential mechanism(s) by which TP53 inhibits PD0166285-induced G(2)-phase checkpoint abrogation, two TP53 target proteins, 14-3-3rho and CDKN1A (also known as p21), that are known to be involved in G(2)-phase checkpoint control in other cell models were examined. It was found that 14-3-3rho was not expressed in H1299 cells, and that although CDKN1A did associate with CDC2 to form a complex, the level of CDKN1A associated with CDC2 was not increased in response to radiation or to PD0166285. The level of cyclin B1, required for CDC2 activity, was decreased in the presence of functional TP53. Thus inhibition of PD0166285-induced G(2)-phase checkpoint abrogation by TP53 was achieved at least in part through partial blockage of CDC2 dephosphorylation of Tyr15 and inhibition of cyclin B1 expression.  相似文献   

11.
The cyclin-dependent kinase inhibitor p21 is required for a sustained G(2) arrest after activation of the DNA damage checkpoint. Here we have addressed the mechanism by which p21 can contribute to this arrest in G(2). We show that p21 blocks the activating phosphorylation of Cdc2 on Thr(161). p21 does not interfere with the dephosphorylation of two inhibitory phosphorylation sites on Cdc2, Thr(14) and Tyr(15), indicating that p21 targets a different event in Cdc2 activation as the well described DNA damage checkpoint pathway involving Chk1 and Cdc25C. Taken together our data show that a cell is equipped with at least two independent pathways to ensure efficient inhibition of Cdc2 activity in response to DNA damage, influencing both positive and negative regulatory phosphorylation events on Cdc2.  相似文献   

12.
Cyclin-dependent kinases (CDKs) are essential for regulating key transitions in the cell cycle, including initiation of DNA replication, mitosis and prevention of re-replication. Here we demonstrate that mammalian CDC6, an essential regulator of initiation of DNA replication, is phosphorylated by CDKs. CDC6 interacts specifically with the active Cyclin A/CDK2 complex in vitro and in vivo, but not with Cyclin E or Cyclin B kinase complexes. The cyclin binding domain of CDC6 was mapped to an N-terminal Cy-motif that is similar to the cyclin binding regions in p21(WAF1/SDI1) and E2F-1. The in vivo phosphorylation of CDC6 was dependent on three N-terminal CDK consensus sites, and the phosphorylation of these sites was shown to regulate the subcellular localization of CDC6. Consistent with this notion, we found that the subcellular localization of CDC6 is cell cycle regulated. In G1, CDC6 is nuclear and it relocalizes to the cytoplasm when Cyclin A/CDK2 is activated. In agreement with CDC6 phosphorylation being specifically mediated by Cyclin A/CDK2, we show that ectopic expression of Cyclin A, but not of Cyclin E, leads to rapid relocalization of CDC6 from the nucleus to the cytoplasm. Based on our data we suggest that the phosphorylation of CDC6 by Cyclin A/CDK2 is a negative regulatory event that could be implicated in preventing re-replication during S phase and G2.  相似文献   

13.
It has been suggested that the survival response of p53 defective tumor cells to agents that inhibit DNA replication or damage DNA may be largely dependent on cell cycle checkpoints that regulate the onset of mitosis. In human cells, the mitosis-inducing kinase CDC2/cyclin B is inhibited by phosphorylation of threonine-14 and tyrosine-15, but the roles of these phosphorylations in enforcing checkpoints is not known. We have investigated the situation in a human cervical carcinoma cell line (HeLa cells) and found that low level expression of a mutant nonphosphorylatable form of CDC2 abrogates regulation of the endogenous CDC2/cyclin B. Disruption of this pathway is toxic and renders cells highly sensitive to killing by DNA damage or by inhibition of DNA replication. These findings establish the importance of inhibitory phosphorylation of CDC2 in the survival mechanism used by human cells when exposed to some of the most common forms of anticancer therapy.  相似文献   

14.
MCM4, a subunit of a putative replicative helicase, is phosphorylated during the cell cycle, at least in part by cyclin-dependent kinases (CDK), which play a central role in the regulation of DNA replication. However, detailed characterization of the phosphorylation of MCM4 remains to be performed. We examined the phosphorylation of human MCM4 at Ser3, Thr7, Thr19, Ser32, Ser54, Ser88 and Thr110 using anti-phosphoMCM4 sera. Western blot analysis of HeLa cells indicated that phosphorylation of MCM4 at these seven sites can be classified into two groups: (a) phosphorylation that is greatly enhanced in the G2 and M phases (Thr7, Thr19, Ser32, Ser54, Ser88 and Thr110), and (b) phosphorylation that is firmly detected during interphase (Ser3). We present data indicating that phosphorylation at Thr7, Thr19, Ser32, Ser88 and Thr110 in the M phase requires CDK1, using a temperature-sensitive mutant of mouse CDK1, and phosphorylation at sites 3 and 32 during interphase requires CDK2, using a dominant-negative mutant of human CDK2. Based on these results and those from in vitro phosphorylation of MCM4 with CDK2/cyclin A, we discuss the kinases responsible for MCM4 phosphorylation. Phosphorylated MCM4 detected using anti-phospho sera exhibited different affinities for chromatin. Studies on the nuclear localization of chromatin-bound MCM4 phosphorylated at sites 3 and 32 suggested that they are not generally colocalized with replicating DNA. Unexpectedly, MCM4 phosphorylated at site 32 was enriched in the nucleolus through the cell cycle. These results suggest that phosphorylation of MCM4 has several distinct and site-specific roles in the function of MCM during the mammalian cell cycle.  相似文献   

15.
Fibroblast growth factors (FGFs) negatively regulate long bone development by inhibiting the proliferation of chondrocytes that accumulate in the G1 phase of the cycle following FGF treatment. Here we report that FGF also causes a striking but transient delay in mitotic entry in RCS chondrocytes by inactivating the cyclin B1-associated CDK1(CDC2) kinase. As a consequence of this inactivation, cells accumulate in the G2 phase of the cycle for the first 4-6 hours of the treatment. Cyclin B1/CDK1 activity is then restored and cells reach a G1 arrest. The reduced cyclin B1/CDK1 activity was accompanied by increased CDK1 inhibitory phosphorylation, likely caused by increased activity and expression of the Myt1 kinase. FGF1 also caused dephosphorylation of the CDC25C phosphatase, that however appears due the inactivation of cyclin B1/CDK1 complex in the CDK1 feedback loop, and not the activation of specific phosphatases. The inactivation of the cyclin B1/CDK1 complex is a direct effect of FGF signaling, and not a consequence of the G2 arrest as it can be observed also in cells blocked at mitosis by Nocodazole. The Chk1 and ATM/ATR kinase are known to play essential roles in the G2 checkpoint induced by DNA damage/genotoxic stress, but inhibition of Chk1 or ATM/ATR not only did not prevent, but rather potentiated the FGF-induced G2 arrest. Additionally our results indicate that the transient G2 arrest is induced by FGF in RCS cell through mechanisms that are independent of the G1 arrest, and that the G2 block is not strictly required for the sustained G1 arrest but may provide a pausing mechanism that allows the FGF response to be fully established.  相似文献   

16.
Activation of Cdc2/cyclin B kinase and entry into mitosis requires dephosphorylation of inhibitory sites on Cdc2 by Cdc25 phosphatase. In vertebrates, Cdc25C is inhibited by phosphorylation at a single site targeted by the checkpoint kinases Chk1 and Cds1/Chk2 in response to DNA damage or replication arrest. In Xenopus early embryos, the inhibitory site on Cdc25C (S287) is also phosphorylated by a distinct protein kinase that may determine the intrinsic timing of the cell cycle. We show that S287-kinase activity is repressed in extracts of unfertilized Xenopus eggs arrested in M phase but is rapidly stimulated upon release into interphase by addition of Ca2+, which mimics fertilization. S287-kinase activity is not dependent on cyclin B degradation or inactivation of Cdc2/cyclin B kinase, indicating a direct mechanism of activation by Ca2+. Indeed, inhibitor studies identify the predominant S287-kinase as Ca2+/calmodulin-dependent protein kinase II (CaMKII). CaMKII phosphorylates Cdc25C efficiently on S287 in vitro and, like Chk1, is inhibited by 7-hydroxystaurosporine (UCN-01) and debromohymenialdisine, compounds that abrogate G2 arrest in somatic cells. CaMKII delays Cdc2/cyclin B activation via phosphorylation of Cdc25C at S287 in egg extracts, indicating that this pathway regulates the timing of mitosis during the early embryonic cell cycle.  相似文献   

17.
Cell division cycle protein, CDC6, is essential for the initiation of DNA replication. CDC6 was recently shown to inhibit the microtubule-organizing activity of the centrosome. Here, we show that CDC6 is localized to the spindle from pro-metaphase I (MI) to MII stages of oocytes, and it plays important roles at two critical steps of oocyte meiotic maturation. CDC6 depletion facilitated the G2/M transition (germinal vesicle breakdown [GVBD]) through regulation of Cdh1 and cyclin B1 expression and CDK1 (CDC2) phosphorylation in a GVBD-inhibiting culture system containing milrinone. Furthermore, GVBD was significantly decreased after knockdown of cyclin B1 in CDC6-depleted oocytes, indicating that the effect of CDC6 loss on GVBD stimulation was mediated, at least in part, by raising cyclin B1. Knockdown of CDC6 also caused abnormal localization of γ-tubulin, resulting in defective spindles, misaligned chromosomes, cyclin B1 accumulation, and spindle assembly checkpoint (SAC) activation, leading to significant pro-MI/MI arrest and PB1 extrusion failure. These phenotypes were also confirmed by time-lapse live cell imaging analysis. The results indicate that CDC6 is indispensable for maintaining G2 arrest of meiosis and functions in G2/M checkpoint regulation in mouse oocytes. Moreover, CDC6 is also a key player regulating meiotic spindle assembly and metaphase-to-anaphase transition in meiotic oocytes.  相似文献   

18.
The cellular level of the CDC25A phosphatase is tightly regulated during both the normal and genotoxic-perturbed cell cycle. Here, we describe a caspase-dependent cleavage of this protein at residue D223 in non-genotoxic apoptotic conditions. This specific proteolysis generates a catalytically active C-terminal fragment that localizes to the nuclear compartment. Accumulation of this active CDC25A fragment leads to reduced inhibitory phosphorylation of the CDC25A substrate cyclin-dependent kinase 2 (CDK2) on Tyr15. Moreover, CDK2 was found stably associated with this fragment, as well as with an ectopically expressed CDC25A224-525 truncation mutant that mimicks the cleavage product. Ectopic expression of this mutant induced CDK2 Tyr15 dephosphorylation, whereas its catalytically inactive version did not. Finally, this 224-525 mutant initiated apoptosis when transfected into HeLa cells, whereas its catalytic inactive form did not. Altogether, this study demonstrates for the first time that caspase-dependent cleavage of CDC25A is a central step linking CDK2 activation with non-genotoxic apoptotic induction.  相似文献   

19.
Parvoviruses halt cell cycle progression following initiation of their replication during S-phase and continue to replicate their genomes for extended periods of time in arrested cells. The parvovirus minute virus of mice (MVM) induces a DNA damage response that is required for viral replication and induction of the S/G2 cell cycle block. However, p21 and Chk1, major effectors typically associated with S-phase and G2-phase cell cycle arrest in response to diverse DNA damage stimuli, are either down-regulated, or inactivated, respectively, during MVM infection. This suggested that parvoviruses can modulate cell cycle progression by another mechanism. In this work we show that the MVM-induced, p21- and Chk1-independent, cell cycle block proceeds via a two-step process unlike that seen in response to other DNA-damaging agents or virus infections. MVM infection induced Chk2 activation early in infection which led to a transient S-phase block associated with proteasome-mediated CDC25A degradation. This step was necessary for efficient viral replication; however, Chk2 activation and CDC25A loss were not sufficient to keep infected cells in the sustained G2-arrested state which characterizes this infection. Rather, although the phosphorylation of CDK1 that normally inhibits entry into mitosis was lost, the MVM induced DDR resulted first in a targeted mis-localization and then significant depletion of cyclin B1, thus directly inhibiting cyclin B1-CDK1 complex function and preventing mitotic entry. MVM infection thus uses a novel strategy to ensure a pseudo S-phase, pre-mitotic, nuclear environment for sustained viral replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号