首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An in vivo to in vitro cytokinesis-block micronucleus assay technique using cytochalasin B (Cyt-B) was established in xenografted human and murine tumors, and the correlation between radiosensitivity measured by this assay and that measured by a colony-forming assay was investigated. Tumors were irradiated in situ, excised immediately, and disaggregated to single cells that were plated for the micronucleus and colony-forming assays. Some of the tumor cells were irradiated in vitro rather than in vivo. For the micronucleus assay, Cyt-B (0.5-3 micrograms/ml) was added to dishes soon after plating or in vitro irradiation and the cells were subsequently fixed and stained at intervals (12-144 h). The micronucleus frequency in binucleate cells was evaluated under conditions of maximum yield of the binucleate cells. The micronucleus frequency after irradiation was quite variable depending on the tumor type and the average number of micronuclei per single binucleate cell after 4 Gy ranged from 0.2 to 1.4. The results of in vitro irradiation were not significantly different from those of in vivo irradiation for all tumors. A good correlation was found between the radiosensitivity determined by the micronucleus assay and that found with the colony-forming assay in six human tumors (r = 0.94 approximately 0.98) but not in four murine tumors because of one exceptional tumor. When this tumor was excluded, a correlation was also found for the remaining nine tumors (r = 0.62 approximately 0.96). These results indicated that the cytokinesis-block micronucleus assay has some promise as a rapid predictive assay of radiosensitivity.  相似文献   

2.
Postirradiation tumor volume response, cellular repopulation dynamics, cell-cycle perturbations, and phase-specific cell survival were characterized in rat rhabdomyosarcoma R-1 tumors (the R2C5 subline) following an in situ 10-Gy dose of 225-kVp X rays. This X-ray dose produced a 7.5-day delay in tumor growth to twice the volume measured at the time of irradiation, and reduced the initial surviving fraction of R2C5 cells to 0.17 as measured by the excision assay procedure. The surviving fraction of R2C5 cells returned to unity by the 16th day after tumor irradiation. On the basis of flow cytometry measurements of DNA content in tumor cells stained with a noncytotoxic concentration of Hoechst 33342 (5 microM, 2 h, 37 degrees C), a transient G2 block was observed 1 day after irradiation. Flow cytometry measurements also demonstrated that the tetraploid R2C5 cells constituted only 30% of the total tumor cell population, with the remainder being diploid host cells comprised of macrophages, monocytes, lymphocytes, and granulocytes. Large numbers of host cells infiltrated the irradiated tumors, leading to an increase in the percentage of diploid cells by Day 2 and reaching a level of more than 80% of the total tumor cell population by 4 to 8 days after irradiation. The influx of host cells into irradiated tumors was correlated temporally with a significant 12-fold decrease in the surviving fraction of R2C5 cells that occurred between Days 2 and 4 postirradiation. When the diploid host cell population was removed by cell sorting procedures, the surviving fraction of R2C5 cells at Day 4 was substantially greater than that in the presence of the host cells. Experiments involving the mixing of 4/1 and 12/1 ratios of diploid host cells and tetraploid tumor cells isolated from irradiated and unirradiated tumors demonstrated that the cytotoxic effect of the host cells was specific for the irradiated tumor cells. The significant toxic effect of host cells on irradiated tumor cells was observed only at 2 to 4 days after irradiation, and not at earlier or later times. The data obtained in these experiments indicate that the immunogenicity of R2C5 cells is increased significantly by irradiation, and a resultant cell-mediated host immune response produced a delayed decrease in tumor cell survival that is most pronounced 4 days after irradiation. The cell survival characteristics of R2C5 cells in different cell-cycle phases were found to be similar through the 16-day postirradiation interval that was studied.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effect of hyperglycemia (elevated blood glucose level) on the response of a murine tumor to irradiation given alone or in combination with hyperthermia was studied. Tumors were early generation isotransplants of a spontaneous C3H/Sed mouse fibrosarcoma, FSa-II. Single-cell suspensions were transplanted into the foot, and irradiation was given when each tumor reached an average diameter of 7 mm. Following irradiation, the tumor growth time to reach 1000 mm3 was studied and the dose-response curve between the tumor growth time and radiation dose was fitted. Preadministration of glucose increased the size of the hypoxic and chronically hypoxic cell fractions without altering the slope of the dose-response curve where the chronically hypoxic cell fraction is determined as the fraction of cells which were not oxygenated under hyperbaric oxygen conditions. Hyperthermia given prior to irradiation enhanced the tumor response to irradiation, but simultaneously increased the size of the hypoxic and chronically hypoxic cell fractions. Similar results were observed following hyperthermia given after irradiation. When hyperthermia at 43.5 degrees C was given 24 h before irradiation, the size of the hypoxic cell fraction increased with increasing treatment time, while a substantial decrease in the chronically hypoxic cell fraction was observed. Administration of glucose 60 min before hyperthermia further increased the size of the hypoxic cell fraction. Possible mechanisms explaining why glucose administration increases the hypoxic cell fractions are discussed.  相似文献   

4.
Proliferation and hypoxia affect the efficacy of radiotherapy, but radiation by itself also affects the tumor microenvironment. The purpose of this study was to analyze temporal and spatial changes in hypoxia, proliferation and apoptosis after irradiation (20 Gy) in cells of a murine adenocarcinoma tumor line (C38). The hypoxia marker pimonidazole was injected 1 h before irradiation to label cells that were hypoxic at the time of irradiation. The second hypoxia marker, CCI-103F, and the proliferation marker BrdUrd were given at 4, 8 and 28 h after irradiation. Apoptosis was detected by means of activated caspase 3 staining. After immunohistochemical staining, the tumor sections were scanned and analyzed with a semiautomatic image analysis system. The hypoxic fraction decreased from 22% in unirradiated tumors to 8% at both 8 h and 28 h after treatment (P < 0.01). Radiation did not significantly affect the fraction of perfused vessels, which was 95% in unirradiated tumors and 90% after treatment. At 8 h after irradiation, minimum values for the BrdUrd labeling index (LI) and maximum levels of apoptosis were detected. At 28 h after treatment, the BrdUrd labeling and density of apoptotic cells had returned to pretreatment levels. At this time, the cell density had decreased to 55% of the initial value and a proportion of the cells that were hypoxic at the time of irradiation (pimonidazole-stained) were proliferating (BrdUrd-labeled). These data indicate an increase in tumor oxygenation after irradiation. In addition, a decreased tumor cell density without a significant change in tumor blood perfusion (Hoechst labeling) was observed. Therefore, it is likely that in this tumor model the decrease in tumor cell hypoxia was caused by reduced oxygen consumption.  相似文献   

5.
M Urano  J Kahn 《Radiation research》1983,96(3):549-559
The effect of hyperthermia on the size of hypoxic and chronically hypoxic cell fractions in murine tumors was studied. The chronically hypoxic cell fraction was defined as a fraction of tumor cells which were not oxygenated under hyperbaric oxygen. Animals were C3Hf/Sed mice derived from our defined flora mouse colony. Tumors were FSa-II and MCa which were early generation isotransplants of a spontaneous fibrosarcoma and a mammary carcinoma, respectively. TCD50 (50% tumor control dose) or the radiation dose which yields a local tumor control in half the treated animals and TG (tumor growth) time or the time required for half the treated tumors to reach 1000 mm3 from the first treatment day were experimental end points. Hyperthermia was given by immersing animal feet into a water bath maintained at 43.5 +/- 0.1 degrees C. Animal tumors were irradiated with a 137Cs unit under hypoxic conditions, in air or under O2 30 psi. The hypoxic cell fraction increased immediately after hyperthermia in both MCa and FSa-II tumors. The chronically hypoxic cell fraction was, on the other hand, decreased following hyperthermia. The decrease was more substantial in the MCa than in FSa-II.  相似文献   

6.
The effect of perfluorochemicals in combination with carbogen breathing on the response of SCK tumors of mice to fractionated irradiation was investigated. The SCK tumors of A/J mice were irradiated twice a day at 3 Gy per fraction (6 Gy per day), with a total dose of 18 Gy over 3 days. When the host animals were treated with an intravenous (iv) injection of 12 ml/kg of Fluosol-DA 20% before the first daily tumor irradiation and carbogen breathing during every X irradiation with Fluosol-DA 20% injection without carbogen breathing. The hypoxic cell fraction, as determined by an in vivo-in vitro cloning assay, decreased significantly, and the intratumor pO2, as determined with microelectrodes, was markedly increased by Fluosol-DA 20% injection and carbogen breathing. It was concluded that oxygenation of hypoxic cells in SCK tumors during the course of fractionated irradiation was improved by the iv injection of Fluosol-DA 20% and carbogen breathing.  相似文献   

7.
Measurements were made of clonogenic cell survival in rat rhabdomyosarcoma tumors as a function of time following in situ irradiation with single or fractionated doses of 225-kVp X rays or with 557-MeV/u neon ions in the distal position of a 4-cm extended-peak ionization region. Single doses of 20 Gy of X rays or 7 Gy of peak neon ions reduced the initial surviving fraction to approximately 0.025 for each modality. Daily fractionated doses (four fractions in 3 days) of either peak neon ions (1.75 Gy per fraction) or X rays (6 Gy per fraction) achieved a cell survival of approximately 0.02-0.03 after the fourth dose of radiation. In the single-dose experiments, significant 5- and 10-fold decreases in the fraction of clonogenic cells were observed between the third and fourth days after irradiation with peak neon ions and X rays, respectively. After the sixth day postirradiation, the residual clonogenic cells exhibited a rapid burst of proliferation leading to doubling times for the surviving cell fractions of approximately 1.5 days. Radiation-induced growth delay was consistent with the cellular repopulation dynamics. In the fractionated-dose experiments with both radiation modalities, a large delayed decrease in cell survival was observed at 1-3 days after completion of the fractionated-dose schedule. Cellular repopulation was consistent with postirradiation tumor volume regression and regrowth for both radiation modalities. The extent of decrease in survival following the four-fraction radiation schedule was approximately two times greater in X-irradiated than in neon-ion-irradiated tumors that produced the same survival level immediately after the fourth dose. Mechanisms underlying the marked reduction in cell survival 3-4 days postirradiation are discussed, including the possible role of a toxic host cell response against the irradiated tumor cells.  相似文献   

8.
Repair of potentially lethal damage (PLD) was studied in the RIF-1 tumor system in several different growth states in vivo and in vitro. Exponentially growing, fed plateau, and unfed plateau cells in cell culture as well as small and large subcutaneous or intramuscular tumors were investigated. Large single doses of radiation followed by variable repair times as well as graded doses of radiation to generate survival curves immediately after irradiation or after full repair were investigated. All repair-promoting conditions studied in vitro (delayed subculture, exposure of cells to depleted growth medium after irradiation) increased surviving fraction after a single dose. The D0 of the cell survival curve was also increased by these procedures. No PLD repair was observed for any tumors irradiated in vivo and maintained in the animal for varying times prior to assay in vitro. The nearly 100% cell yield obtained when this tumor is prepared as a single-cell suspension for colony formation, the representative cell sample obtained, and the constant cell yield per gram as a function of time postirradiation suggest that this discrepancy is not an artifact of the assay system. The most logical explanation of these data and information on radiocurability of this neoplasm is that PLD repair, which is so frequently demonstrated in vitro, may not be a major factor in the radioresponse of this tumor when left in situ.  相似文献   

9.
The relationship of clonogenic cells, cellular radiation sensitivity at tumor control does in vivo, and tumor rescuing units at different tumor sizes was investigated in the human squamous cell carcinoma FaDu growing in NCr/Sed nude mice. The composition of the tumors was determined in single cell suspensions and compared to tumor control data after single-dose irradiation. To avoid the influence of varying oxygen concentrations in the tumors, all irradiations were performed under clamp hypoxia. Nude mice and animals further immunosuppressed by 6-Gy whole-body irradiation were used to assess the immunological effects. The numbers of total cells, cells excluding trypan blue, host cells, and colony-forming cells increased linearly with the weight of FaDu tumors. Comparable results were obtained for cell suspensions prepared from tumors growing in nude of pretreated nude mice. The radiation dose required to control 50% of tumors (TCD50) of different sizes between 36 and 470 mm3 increased from 52.1 to 60.1 Gy when the tumors were maintained in normal nude mice and from 50.8 to 61.3 Gy in whole-body-irradiated mice. The D0 of FaDu cells in vivo was calculated by regression analysis of TCD50 vs the logarithm of the clonogenic cell number, assuming an oxygen enhancement ratio of 3.0. The resultant D0S of 1.1 and 1.2 Gy in vivo correspond well to the radiosensitivity of FaDu cells in vitro determined previously. Assuming the single-hit multitarget model of cell killing and extrapolation numbers between 2 and 20, the mean number of tumor rescuing units would be 10(5) to 10(6) for a 100-mm3 tumor growing in whole-body-irradiated nude mice. Comparison of the number of tumor rescuing units to the estimated number of clonogenic cells does not conflict with the assumption that every surviving clonogenic cell is able to repopulate FaDu tumors after irradiation; however, it seems more likely that more than one clonogenic cells is necessary. The proportion of tumor rescuing units in the clonogenic cell population is independent of tumor size.  相似文献   

10.
In these studies we have used wild-type Chinese hamster ovary cells (AA8) and a mutant cell line (UV-41) deficient in excision repair to compare sister chromatid exchange (SCE) induction after X irradiation under oxic and hypoxic conditions. X irradiation of AA8 cells under oxic conditions induced only a slight increase in SCEs, whereas at each dose tested a significantly greater number of SCEs were induced in hypoxic cells. When AA8 cells were X-irradiated and the addition of bromodeoxyuridine (BrdU) was delayed for 20 h to allow DNA lesions to be repaired, the levels of SCEs detected in both oxic and hypoxic cells returned to background levels. X irradiation of UV-41 cells also induced only a slight increase of SCEs in oxic cells, whereas a significant number of SCEs were induced in hypoxic cells. However, in contrast to results with AA8 cells, when hypoxic UV-41 cells were X-irradiated and the addition of BrdU was delayed for 20 h, the number of SCEs remained significantly above background levels. In combination with previous alkaline elution data, these results are consistent with the possibility that DNA-protein crosslinks are responsible for the SCEs induced by X irradiation of hypoxic cells. Irrespective of the mechanism(s) involved, the data presented suggest that the SCE assay may potentially aid in the detection of hypoxic tumor cells.  相似文献   

11.
The variation in hypoxic fraction as a function of time after various priming doses of radiation has been investigated in a C3H mouse mammary carcinoma in situ. The hypoxic fraction was calculated from data for local tumor control. Untreated tumors were found to contain 4.8% radiobiologically hypoxic cells. Within minutes after a priming dose of 20 Gy given in air, the hypoxic fraction increased to a value not significantly different from 100%. After 4 h, reoxygenation was complete (hypoxic fraction 1.3%), and the hypoxic fraction stabilized at a level significantly below the untreated value. Following a priming dose of 40 Gy the reoxygenation pattern was different: The hypoxic fraction stayed above the pretreatment value for 4 h, and pronounced reoxygenation occurred after 12 h (hypoxic fraction 0.4%). At longer time intervals the hypoxic fraction again increased to--and slightly above--the oxygenation level of untreated tumors. The present findings show that reoxygenation in solid tumors is a function of radiation dose, and the data suggest that mechanisms other than a decrease in tumor cell O2 consumption are involved in tumor reoxygenation.  相似文献   

12.
Abstract. The effects of extreme hypoxia on cell cycle progression were studied by simultaneous determination of DNA and bromodeoxyuridine (BrdU) contents of individual cells. V79-379A cells were pulse-labelled with BrdU (1 μM, 20 min, 37°C) and then incubated for up to 12 hr in BrdU-free medium under either aerated or extremely hypoxic conditions. After the incubation interval (0-12 hr), the cells were trypsinized and fixed in 50% EtOH. Propidium iodide and a fluorescein-labelled monoclonal antibody to BrdU were then used to quantify DNA content and incorporated BrdU, respectively. Measurements in individual cells were made by simultaneous detection of green and red fluorescence upon excitation at 488 nm using flow cytometry. Bivariate analysis revealed progression of BrdU-labelled cells in aerated cultures out of S phase, into G2 and cell division, with halving of mean fluorescence, and back into S phase by approximately 9 hr after the BrdU pulse. Hypoxia immediately arrested cells in all phases of the cell cycle. Both the DNA distribution and the bivariate profile of cells that were fixed from 2 to 12 hr after induction of hypoxia were identical to the 0 hr controls. the percent of cells with green fluorescence in a mid-S phase window remained 100% and the mean fluorescence of these cells remained at control (0 hr) levels. This indicates that, under hypoxic conditions, cells were moving neither into nor out of S phase. Cultures that had been hypoxic for 12 hr exhibited an increasing rate of BrdU uptake with time after re-aeration. Re-aerated cells were able to complete or initiate DNA synthesis, but their rates of progression through the cell cycle were markedly reduced. A large fraction of cells appeared unable to divide up to 12 hr following release from hypoxia.  相似文献   

13.
Recently, a system that measures tissue oxygen tension using time-resolved luminescence-based optical sensors has become available commercially (Oxford Optronix, Oxford, England). Two experiments were conducted using this system. First, the oxygen tension distribution was measured in two tumor lines: a spontaneous mouse fibrosarcoma, FSa-II, and a human squamous cell carcinoma xenograft, FaDu. The area in which the pO(2) was equal to or lower than 2.5 mmHg was defined as the hypoxic lesion, and the hypoxic cell fraction was taken as the fraction of these measurements in a tumor. The measured hypoxic cell fractions were compared with those determined by the paired cell survival assay for tumors of various sizes. Second, the tumor tissue pO(2) was measured continuously after administration of two different anesthetics to evaluate the effect of these drugs on tissue pO(2). Results indicated a good agreement between the hypoxic cell fractions measured by this system and those determined by the paired cell survival curve assay for tumors smaller than approximately 500 mm(3). For tumors larger than approximately 500 mm(3), the hypoxic cell fractions measured by the oxygen probe system were higher than those measured by the paired cell survival assay. This may suggest that the hypoxic cell fraction measured by the oxygen probes included both hypoxic and necrotic areas in large tumors where necrotic lesions occupied a significant portion of the tumor. Continuous measurements of pO(2) after anesthesia (Nembutal, or ketamine plus xylazine) showed a consistent rise in the pO(2) during the first 20-30 min of measurement. Subsequently, the pO(2) values became constant or continued to rise slowly. For comparison, the tumor cell survivals were assayed after a dose of 20 Gy given in air at 5, 20 and 60 min after anesthesia. The result showed a decrease in cell survival only in tumors irradiated 20 min after an injection of Nembutal.  相似文献   

14.
Radiosensitivity of late recurrent tumors which emerged after radiotherapy was investigated. Tumors observed were fibrosarcomas. Recurrences emerged in the irradiated area approximately 200 days after a 50% tumor control dose of radiation of 60Co gamma rays or mixed irradiation with fast neutrons and gamma rays. The recurrent and radiation-induced tumors were differentiated by karyotype analysis. Once transplanted into fresh mice, the recurrent tumors grew more slowly than the original tumor. Tumorigenicity of the late recurrences was lower than that of the original tumor. Radiosensitivity of the late recurrences, which was examined using methods to assess control, tumor growth delay, and colony forming assays, was significantly higher than that of the original tumor. D0 values of hypoxic tumor cells were significantly smaller in two of the three recurrences compared to the original tumor. Oxic cells, when irradiated in vitro, also showed smaller D0 values for the recurrent tumors than the original tumor. Hypoxic cell fractions were between 0 and 14% in the late recurrences and 10% in the original tumor. These results are consistent with the hypothesis that radiotherapy causes mutation of tumor cells which results in increased radiosensitivity of surviving tumor cells.  相似文献   

15.
Fast neutrons have been used in the clinical radiation therapy of tumors largely because of experimental evidence that their cytotoxic effects are much less dependent on oxygen levels than those of low-LET photons. The potential therapeutic advantage of fast neutrons based on hypoxia alone can be calculated as the "hypoxic gain factor", which is the ratio of the OERs for the fast-neutron compared to the photon beams. The hypoxic gain factor that is generally anticipated based on studies with established mammalian cell lines is about 1.6. However, surprisingly few studies have examined the influence of hypoxia on the fast-neutron radiosensitivity of human tumor cells of different histological types. For this reason, we have determined the OERs of five human tumor cell lines exposed to 62.5 MeV (p-->Be) cyclotron-generated fast neutrons or 4 MeV photons from a clinical linear accelerator. The OERs for four chemotherapy-naive cell lines, HT29/5, Hep2, HeLa and RT112, were invariably greater for photons than for neutrons, but all of these values were lower than expected on the basis of the previous literature. Despite their low OERs, these cell lines showed hypoxic gain factors that were within the range of 1.31-1.63, indicating that such effects cannot entirely explain the disappointing clinical results obtained with fast neutrons. In contrast, comparison of the surviving fractions at clinically relevant doses (1.6 Gy of neutrons and 2.0 Gy of photons) for these four tumor cell lines suggested that little benefit should result from neutron treatment. Only the cisplatin-resistant OAW42-CP line showed a significant hypoxic gain factor by this method of analysis. We conclude that, at the dose fractions used in clinical radiation therapy, there may not be a radiobiological precedent for higher local control rates after fast-neutron irradiation of hypoxic tumor cells.  相似文献   

16.
The effects of extreme hypoxia on cell cycle progression were studied by simultaneous determination of DNA and bromodeoxyuridine (BrdU) contents of individual cells. V79-379A cells were pulse-labelled with BrdU (1 microM, 20 min, 37 degrees C) and then incubated for up to 12 hr in BrdU-free medium under either aerated or extremely hypoxic conditions. After the incubation interval (0-12 hr), the cells were trypsinized and fixed in 50% EtOH. Propidium iodide and a fluorescein-labelled monoclonal antibody to BrdU were then used to quantify DNA content and incorporated BrdU, respectively. Measurements in individual cells were made by simultaneous detection of green and red fluorescence upon excitation at 488 nm using flow cytometry. Bivariate analysis revealed progression of BrdU-labelled cells in aerated cultures out of S phase, into G2 and cell division, with halving of mean fluorescence, and back into S phase by approximately 9 hr after the BrdU pulse. Hypoxia immediately arrested cells in all phases of the cell cycle. Both the DNA distribution and the bivariate profile of cells that were fixed from 2 to 12 hr after induction of hypoxia were identical to the 0 hr controls. The percent of cells with green fluorescence in a mid-S phase window remained 100% and the mean fluorescence of these cells remained at control (0 hr) levels. This indicates that, under hypoxic conditions, cells were moving neither into nor out of S phase. Cultures that had been hypoxic for 12 hr exhibited an increasing rate of BrdU uptake with time after re-aeration. Re-aerated cells were able to complete or initiate DNA synthesis, but their rates of progression through the cell cycle were markedly reduced. A large fraction of cells appeared unable to divide up to 12 hr following release from hypoxia.  相似文献   

17.
It has been suggested that chronically hypoxic tumor cells may be more radiosensitive than acutely hypoxic or even aerobic cells. In the present study we have used the fact that chronically, but not acutely, hypoxic cells that are transformed with a vector containing an enhanced green fluorescent protein (EGFP) driven by a hypoxia-responsive promoter become green (high EGFP) at low oxygen concentrations and can be viably sorted from transplanted tumors in vitro. We showed that the fluorescence of HT 1080 human fibrosarcoma cells stably transfected with this vector increases constantly with decreasing O2 concentrations (<2%, longer than 1 h, half maximum approximately 0.2% for longer than 8 h), and that cells subjected to repeated cycles of hypoxia/reoxygenation (simulating acutely hypoxic cells) showed only background fluorescence. To test the radiosensitivity of acutely and chronically hypoxic cells in tumors, we isolated high-EGFP ("chronically hypoxic") and low-EGFP cells (containing both acutely hypoxic and aerobic cells) from HT 1080 xenograft tumors by fluorescence-activated cell sorting (FACS), immediately after in situ treatment with 20 Gy (ambient or clamped), and plated the cells to determine clonogenic survival in vitro. We found that the survival of high-EGFP cells after irradiation was not affected by clamping, suggesting that all, or almost all, of these cells were fully (chronically) hypoxic. Also, the survival of the low-EGFP cells irradiated under clamped conditions (acutely hypoxic cells) was not significantly different from that of the high-EGFR cells (chronically hypoxic) cells irradiated under nonclamped (or clamped) conditions. We therefore conclude that, at least in this tumor model, the radiation sensitivity of chronically hypoxic cells is similar to that of the acutely hypoxic cells.  相似文献   

18.
PR-000350, a novel hypoxic radiosensitizer, is a 2-nitroimidazole nucleoside analog and has begun to be used for clinical cancer therapy. In this study, using U937 monoblastoid cells we investigated the mechanisms of enhanced cell killing by PR-000350. When cells were irradiated under an extremely hypoxic condition, the apoptotic rate was strongly suppressed. However, a remarkable increase in the DNA fragmentation rate as well as in the ladder formation was observed when hypoxic cells were irradiated in the presence of 5 mM PR-000350. DNA histograms of the PR-000350 treated group showed enhancement of the sub-G1 fraction and simultaneous suppression of the progression of the cell cycle from the S to G2/M phase at 4–8 h after X-irradiation, suggesting the importance of the S phase in the induction of apoptotic cell death. Flow cytometric and immunohistochemical analyses after BrdU labelling revealed that apoptotic cell death is induced mainly in the BrdU-positive cells. In addition, by using cell synchronization technique it was proved that the S phase is the most sensitive fraction to the radiosensitizing effect of PR-000350. These results suggest that PR-000350 strongly enhances tumor cell killing by promoting X-ray induced-apoptosis preferentially in the S-phase fraction. PR-000350 is a new type radiosensitizer and promise to provide an effective anti-cancer activity against hypoxic tumor cells that are resistant to the usual radiotherapy.  相似文献   

19.
A Chinese hamster V79 xenograft model was developed to determine whether cells subjected to a hypoxic tumor microenvironment would be more likely to undergo mutation at the HPRT locus. V79-171b cells stably transfected with VEGF and EGFP were grown subcutaneously in immunodeficient NOD/ SCID mice. V79-VE tumors were characterized for host cell infiltration, doubling time, hypoxic fraction, vascular perfusion, and response to ionizing radiation. When irradiated in vitro, the mutant frequency for a given surviving fraction did not differ for cells grown in vivo or in vitro. Similar results were obtained using HCT116 human colorectal carcinoma cells grown as xenografts. However, V79-VE cells grown as xenografts were significantly more resistant to killing than monolayers. The background mutant frequency and the radiation-induced mutant frequency did not differ for tumor cells close to or distant from blood vessels. Similarly, tumor cells from well-perfused regions showed the same rate of strand break rejoining and the same rate of loss of phosphorylated histone H2AX as cells sorted from poorly perfused regions. Therefore, deleterious effects of the tumor microenvironment on DNA repair efficiency or mutation induction could not be demonstrated in these tumors. Rather, development of multicellular resistance in V79-VE tumors acted to reduce mutant frequency for a given dose of radiation.  相似文献   

20.
Effect of 20 nM vindesine sulphate (VDS) treatment was studied on cell survival, growth kinetics and micronuclei induction in V79 cells exposed to 0-300 cGy of gamma-radiation at 16, 22 and 28 h post-irradiation. Treatment of V79 cells with VDS before exposure to different doses of gamma radiation resulted in a significant decline in cell survival and growth kinetic when compared with the concurrent PBS+irradiation group. The decline in cell survival and growth kinetics was dose related. Similarly, the cell proliferation indices also declined in a dose dependent manner in both PBS+irradiation and VDS+irradiation groups and this decline was higher in VDS+irradiation group in comparison with the PBS+irradiation group. In contrast, the frequency of micronuclei increased in a dose related manner in both PBS+irradiation and VDS+irradiation groups. However, the frequency of micronuclei was significantly greater in the VDS+irradiation group when compared to the PBS+irradiation group at all the post-irradiation time periods studied and the dose response for both groups was linear for all the scoring time periods. The biological response was determined by plotting surviving fraction and micronuclei frequencies on X- and Y-axes, respectively. The plot between surviving fraction and micronuclei induction showed a close correlation. The surviving fraction of V79 cells reduced with the increasing frequency of micronuclei in both groups and the relationship between micronuclei induction and cell survival could be fitted on a linear quadratic model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号