首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Temporal environmental variation is a leading hypothesis for the coexistence of desert annual plants. Environmental variation is hypothesized to cause species-specific patterns of variation in germination, which then generates the storage effect coexistence mechanism. However, it has never been shown how sufficient species differences in germination patterns for multispecies coexistence can arise from a shared fluctuating environment. Here we show that nonlinear germination responses to a single fluctuating physical environmental factor can lead to sufficient differences between species in germination pattern for the storage effect to yield coexistence of multiple species. We derive these nonlinear germination responses from experimental data on the effects of varying soil moisture duration. Although these nonlinearities lead to strong species asymmetries in germination patterns, the relative nonlinearity coexistence mechanism is minor compared with the storage effect. However, these asymmetries mean that the storage effect can be negative for some species, which then only persist in the face of interspecific competition through average fitness advantages. This work shows how a low dimensional physical environment can nevertheless stabilize multispecies coexistence when the species have different nonlinear responses to common conditions, as supported by our experimental data.  相似文献   

2.
The importance of neutral dynamics is contentiously debated in the ecological literature. This debate focuses on neutral theory's assumption of fitness equivalency among individuals, which conflicts with stabilizing fitness that promotes coexistence through niche differentiation. I take advantage of competition-colonization trade-offs between species of aquatic micro-organisms (protozoans and rotifers) to show that equalizing and stabilizing mechanisms can operate simultaneously. Competition trials between species with similar colonization abilities were less likely to result in competitive exclusion than for species further apart. While the stabilizing mechanism (colonization differences) facilitates coexistence at large spatial scales, species with similar colonization abilities also exhibited local coexistence probably due to fitness similarities allowing weak stabilizing mechanisms to operate. These results suggest that neutral- and niche-based mechanisms of coexistence can simultaneously operate at differing temporal and spatial scales, and such a spatially explicit view of coexistence may be one way to reconcile niche and neutral dynamics.  相似文献   

3.
A niche for neutrality   总被引:2,自引:0,他引:2  
Ecologists now recognize that controversy over the relative importance of niches and neutrality cannot be resolved by analyzing species abundance patterns. Here, we use classical coexistence theory to reframe the debate in terms of stabilizing mechanisms (niches) and fitness equivalence (neutrality). The neutral model is a special case where stabilizing mechanisms are absent and species have equivalent fitness. Instead of asking whether niches or neutral processes structure communities, we advocate determining the degree to which observed diversity reflects strong stabilizing mechanisms overcoming large fitness differences or weak stabilization operating on species of similar fitness. To answer this question, we propose combining data on per capita growth rates with models to: (i) quantify the strength of stabilizing processes; (ii) quantify fitness inequality and compare it with stabilization; and (iii) manipulate frequency dependence in growth to test the consequences of stabilization and fitness equivalence for coexistence.  相似文献   

4.
Despite the general acknowledgment of the role of niche and stochastic process in community dynamics, the role of species relative abundances according to both perspectives may have different effects regarding coexistence patterns. In this study, we explore a minimum probabilistic stochastic model to determine the relationship of populations relative and total abundances with species chances to outcompete each other and their persistence in time (i.e., unstable coexistence). Our model is focused on the effects drift (i.e., random sampling of recruitment) under different scenarios of selection (i.e., fitness differences between species). Our results show that taking into account the stochasticity in demographic properties and conservation of individuals in closed communities (zero-sum assumption), initial population abundance can strongly influence species chances to outcompete each other, despite fitness inequalities between populations, and also, influence the period of coexistence of these species in a particular time interval. Systems carrying capacity can have an important role in species coexistence by exacerbating fitness inequalities and affecting the size of the period of coexistence. Overall, the simple stochastic formulation used in this study demonstrated that populations initial abundances could act as an equalizing mechanism, reducing fitness inequalities, which can favor species coexistence and even make less fitted species to be more likely to outcompete better-fitted species, and thus to dominate ecological communities in the absence of niche mechanisms. Although our model is restricted to a pair of interacting species, and overall conclusions are already predicted by the Neutral Theory of Biodiversity, our main objective was to derive a model that can explicitly show the functional relationship between population densities and community mono-dominance odds. Overall, our study provides a straightforward understanding of how a stochastic process (i.e., drift) may affect the expected outcome based on species selection (i.e., fitness inequalities among species) and the resulting outcome regarding unstable coexistence among species.  相似文献   

5.
Recent hypotheses argue that phylogenetic relatedness should predict both the niche differences that stabilise coexistence and the average fitness differences that drive competitive dominance. These still largely untested predictions complicate Darwin's hypothesis that more closely related species less easily coexist, and challenge the use of community phylogenetic patterns to infer competition. We field parameterised models of competitor dynamics with pairs of 18 California annual plant species, and then related species' niche and fitness differences to their phylogenetic distance. Stabilising niche differences were unrelated to phylogenetic distance, while species' average fitness showed phylogenetic structure. This meant that more distant relatives had greater competitive asymmetry, which should favour the coexistence of close relatives. Nonetheless, coexistence proved unrelated to phylogeny, due in part to increasing variance in fitness differences with phylogenetic distance, a previously overlooked property of such relationships. Together, these findings question the expectation that distant relatives should more readily coexist.  相似文献   

6.
Natural environments, like soils or the mammalian gut, frequently contain microbial consortia competing within a niche, wherein many species contain genetically encoded mechanisms of interspecies competition. Recent computational work suggests that physical structures in the environment can stabilize local competition between species that would otherwise be subject to competitive exclusion under isotropic conditions. Here we employ Lotka-Volterra models to show that interfacial competition localizes to physical structures, stabilizing competitive ecological networks of many species, even with significant differences in the strength of competitive interactions between species. Within a limited range of parameter space, we show that for stable communities the length-scale of physical structure inversely correlates with the width of the distribution of competitive fitness, such that physical environments with finer structure can sustain a broader spectrum of interspecific competition. These results highlight the potentially stabilizing effects of physical structure on microbial communities and lay groundwork for engineering structures that stabilize and/or select for diverse communities of ecological, medical, or industrial utility.  相似文献   

7.
Understanding the mechanisms of species coexistence is a key task for ecology. Recent theory predicts that both competition and predation (which causes apparent competition among prey) can either promote or limit species coexistence. Both mechanisms cause negative interactions between individuals, and each mechanism promotes stable coexistence if it causes negative interactions to be stronger between conspecifics than between heterospecifics. However, the relative importance of competition and predation for coexistence in natural communities is poorly known. Here, we study how competition and apparent competition via pre‐dispersal seed predators affect the long‐term fecundity of Protea shrubs in the fire‐prone Fynbos biome (South Africa). These shrubs store all viable seeds produced since the last fire in fire‐proof cones. Competitive effects on cone number and pre‐dispersal seed predation reduce their fecundity and can thus limit recruitment after the next fire. In 27 communities comprising 49 990 shrubs of 22 Protea species, we measured cone number and per‐cone seed predation rate of 2154 and 1755 focal individuals, respectively. Neighbourhood analyses related these measures to individual‐based community maps. We found that conspecific neighbours had stronger competitive effects on cone number than heterospecific neighbours. In contrast, apparent competition via seed predators was comparable between conspecifics and heterospecifics. This indicates that competition stabilizes coexistence of Protea species, whereas pre‐dispersal seed predation does not. Larger neighbours had stronger competitive effects and neighbours with large seed crops exerted stronger apparent competition. For 97% of the focal plants, competition reduced fecundity more than apparent competition. Our results show that even in communities of closely related and ecologically similar species, intraspecific competition can be stronger than interspecific competition. On the other hand, apparent competition through seed predators need not have such a stabilizing effect. These findings illustrate the potential of ‘community demography’, the demographic study of multiple interacting species, for understanding plant coexistence.  相似文献   

8.
A theoretical dichotomy in community ecology distinguishes between mechanisms that stabilize species coexistence and those that cause neutral drift. Stable coexistence is predicted to occur in communities where competing species have niche-partitioning mechanisms that reduce interspecific competition. Neutral communities are predicted to be structured by stochastic processes that are not influenced by species identity, but that may be influenced by priority effects and dispersal limitation. Recent developments have suggested that neutral interactions may be more common at local scales, while niche structuring may be more common at larger scales. We tested for mechanisms that could promote either stable coexistence or neutral drift in a bromeliad-dwelling mosquito community by evaluating A) if a hypothesized within-bromeliad niche partitioning mechanism occurs in the community, B) if this mechanism correlates with local species co-occurrence patterns, and C) if patterns of coexistence at the larger (metacommunity) scale were consistent with those at the local scale. We found that mosquitoes in this community do partition space within containers, and that species with the strongest potential for competition co-occurred least. Species with overlapping spatial niches minimized co-occurrence by specialising in bromeliads of differing sizes, effectively changing the scale at which they coexist. In contrast, we found no evidence to support neutral dynamics in mosquito communities at either scale. In this community, a niche-based mechanism that is predicted to stabilize species coexistence explains co-occurrence patterns within and among bromeliads.  相似文献   

9.
Interactions between plants and soil microbes can strongly influence plant diversity and community dynamics. Soil microbes may promote plant diversity by driving negative frequency‐dependent plant population dynamics, or may favor species exclusion by providing one species an average fitness advantage over others. However, past empirical research has focused overwhelmingly on the consequences of frequency‐dependent feedbacks for plant species coexistence and has generally neglected the consequences of microbially mediated average fitness differences. Here we use theory to develop metrics that quantify microbially mediated plant fitness differences, and show that accounting for these effects can profoundly change our understanding of how microbes influence plant diversity. We show that soil microbes can generate fitness differences that favour plant species exclusion when they disproportionately harm (or favour) one plant species over another, but these fitness differences may also favor coexistence if they trade off with competition for other resources or generate intransitive dominance hierarchies among plants. We also show how the metrics we present can quantify microbially mediated fitness differences in empirical studies, and explore how microbial control over coexistence varies along productivity gradients. In all, our analysis provides a more complete theoretical foundation for understanding how plant–microbe interactions influence plant diversity.  相似文献   

10.
We use a two-species model of plant competition to explore the effect of intraspecific variation on community dynamics. The competitive ability ("performance") of each individual is assigned by an independent random draw from a species-specific probability distribution. If the density of individuals competing for open space is high (e.g., because fecundity is high), species with high maximum (or large variance in) performance are favored, while if density is low, species with high typical (e.g., mean) performance are favored. If there is an interspecific mean-variance performance trade-off, stable coexistence can occur across a limited range of intermediate densities, but the stabilizing effect of this trade-off appears to be weak. In the absence of this trade-off, one species is superior. In this case, intraspecific variation can blur interspecific differences (i.e., shift the dynamics toward what would be expected in the neutral case), but the strength of this effect diminishes as competitor density increases. If density is sufficiently high, the inferior species is driven to extinction just as rapidly as in the case where there is no overlap in performance between species. Intraspecific variation can facilitate coexistence, but this may be relatively unimportant in maintaining diversity in most real communities.  相似文献   

11.
Understanding long‐term coexistence of numerous competing species is a longstanding challenge in ecology. Progress requires determining which processes and species differences are most important for coexistence when multiple processes operate and species differ in many ways. Modern coexistence theory (MCT), formalised by Chesson, holds out the promise of doing that, but empirical applications remain scarce. We argue that MCT's mathematical complexity and subtlety have obscured the simplicity and power of its underlying ideas and hindered applications. We present a general computational approach that extends our previous solution for the storage effect to all of standard MCT's spatial and temporal coexistence mechanisms, and also process‐defined mechanisms amenable to direct study such as resource partitioning, indirect competition, and life history trade‐offs. The main components are a method to partition population growth rates into contributions from different mechanisms and their interactions, and numerical calculations in which some mechanisms are removed and others retained. We illustrate how our approach handles features that have not been analysed in the standard framework through several case studies: competing diatom species under fluctuating temperature, plant–soil feedbacks in grasslands, facilitation in a beach grass community, and niche differences with independent effects on recruitment, survival and growth in sagebrush steppe.  相似文献   

12.
It is widely accepted that niche differentiation plays a key role in coexistence on relatively small scales. With regard to a large community scale, the recently propounded neutral theory suggests that species abundances are more influenced by history and chance than they are by interspecies competition. This inference is mainly based on the probability that competitive exclusion is largely slowed by recruitment limitation, which may be common in species rich communities. In this respect, a theoretical study conducted by Hurtt and Pacala (1995) for a niche differentiated community has been frequently cited to support neutral coexistence. In this paper, we focused on the effect of symmetric recruitment limitation on delaying species competitive exclusion caused by both symmetric and asymmetric competition in a large homogeneous habitat. By removing niche differentiation in space, we found that recruitment limitation could delay competitive exclusion to some extent, but the effect was rather limited compared to that predicted by Hurtt and Pacala's model for a niche differentiated community. Our results imply that niche differentiation may be important for species coexistence even on large scales and this has already been confirmed in some species rich communities.  相似文献   

13.
Recent comparisons of plant species densities in tropical forest make it possible to evaluate factors that govern species richness. Contrary to earlier predictions, plant species densities are not greater on soils of relatively low fertility. In fact, the opposite trend is often observed, although the relationship between species densities and soil fertility is highly variable. However, tropical forest plant species densities consistently increase with rainfall. Species coexistence in wetter tropical forests may be facilitated by the absence of competition for moisture combined with year-round pest pressure and low understory light levels, which reduce growth rates and the potential for competition for other resources.  相似文献   

14.
The mechanisms that drive species coexistence and community dynamics have long puzzled ecologists. Here, we explain species coexistence, size structure and diversity patterns in a phytoplankton community using a combination of four fundamental factors: organism traits, size-based constraints, hydrology and species competition. Using a 'microscopic' Lotka-Volterra competition (MLVC) model (i.e. with explicit recipes to compute its parameters), we provide a mechanistic explanation of species coexistence along a niche axis (i.e. organismic volume). We based our model on empirically measured quantities, minimal ecological assumptions and stochastic processes. In nature, we found aggregated patterns of species biovolume (i.e. clumps) along the volume axis and a peak in species richness. Both patterns were reproduced by the MLVC model. Observed clumps corresponded to niche zones (volumes) where species fitness was highest, or where fitness was equal among competing species. The latter implies the action of equalizing processes, which would suggest emergent neutrality as a plausible mechanism to explain community patterns.  相似文献   

15.
The question of species coexistence has been central to ecology since its founding. Ever-present environmental variation may be one answer to that question. Previous models have demonstrated that species can exploit this variation to coexist with competitors by having different environmental responses (the storage effect). When traits governing species’ environmental response can evolve, however, coexistence is not assured. In this study, we use a continuous time, two-season model to determine the evolutionary outcome of competing species evolving in their seasonal performance trait. We extend the competitive exclusion principle to show that the storage effect can allow no more than N species to coexist on N discrete seasons with no relative nonlinearity. We find a broad region of parameter space where coexistence is evolutionarily stable. The size of this region depends on the period of fluctuations relative to the individual lifespan. Relatively long period fluctuations yield a large coexistence region, but as the period decreases, the region narrows and disappears asymptotically. Finally, we cast our adaptive dynamics technique in terms of Chesson’s concept of equalizing and stabilizing mechanisms to demonstrate that the breakdown in coexistence at short periods is due to loss of the stabilizing covariance between the environment and competition.  相似文献   

16.
General theory of competitive coexistence in spatially-varying environments   总被引:14,自引:0,他引:14  
A general model of competitive and apparent competitive interactions in a spatially-variable environment is developed and analyzed to extend findings on coexistence in a temporally-variable environment to the spatial case and to elucidate new principles. In particular, coexistence mechanisms are divided into variation-dependent and variation-independent mechanisms with variation-dependent mechanisms including spatial generalizations of relative nonlinearity and the storage effect. Although directly analogous to the corresponding temporal mechanisms, these spatial mechanisms involve different life history traits which suggest that the spatial storage effect should arise more commonly than the temporal storage effect and spatial relative nonlinearity should arise less commonly than temporal relative nonlinearity. Additional mechanisms occur in the spatial case due to spatial covariance between the finite rate of increase of a local population and its local abundance, which has no clear temporal analogue. A limited analysis of these additional mechanisms shows that they have similar properties to the storage effect and relative nonlinearity and potentially may be considered as enlargements of the earlier mechanisms. The rate of increase of a species perturbed to low density is used to quantify coexistence. A general quadratic approximation, which is exact in some important cases, divides this rate of increase into contributions from the various mechanisms above and admits no other mechanisms, suggesting that opportunities for coexistence in a spatially-variable environment are fully characterized by these mechanisms within this general model. Three spatially-implicit models are analyzed as illustrations of the general findings and of techniques using small variance approximations. The contributions to coexistence of the various mechanisms are expressed in terms of simple interpretable formulae. These spatially-implicit models include a model of an annual plant community, a spatial multispecies version of the lottery model, and a multispecies model of an insect community competing for spatially-patchy and ephemeral food.  相似文献   

17.
Evidence concerning mechanisms hypothesized to explain species coexistence in hyper-diverse communities is reviewed for tropical forest plants. Three hypotheses receive strong support. Niche differences are evident from non-random spatial distributions along micro-topographic gradients and from a survivorship-growth tradeoff during regeneration. Host-specific pests reduce recruitment near reproductive adults (the Janzen-Connell effect), and, negative density dependence occurs over larger spatial scales among the more abundant species and may regulate their populations. A fourth hypothesis, that suppressed understory plants rarely come into competition with one another, has not been considered before and has profound implications for species coexistence. These hypotheses are mutually compatible. Infrequent competition among suppressed understory plants, niche differences, and Janzen-Connell effects may facilitate the coexistence of the many rare plant species found in tropical forests while negative density dependence regulates the few most successful and abundant species.  相似文献   

18.
Abstract Previous experiments on post-fire establishment of two obligate seeders and two resprouting species suggested that initial establishment processes differ between wet- and dry-heath habitats. Disturbance, interspecific competition between seedlings and between seedlings and adults, and access for potential predators were manipulated in the field after a fire to identify mechanisms to explain between- and witm'n-habitat species coexistence. When soil surfaces are disturbed or seeds are buried, dry-heath species can establish in the wet heath. Under natural conditions, however, wet heath is rarely disturbed by animal foragers and lack of safe sites may preclude establishment of dry-heath species. In contrast, dry heath is often disturbed by ground foragers such as bandicoots and safe sites are plentiful for establishment of all heath species. Nevertheless, while wet-heath species can establish in dry heath, their seedlings are apparently unable to survive there due to the drier conditions. No evidence for competition among species was detected in either type of habitat during the first 3 years of the experiment, even at elevated seedling densities. Lack of early competition and unsaturated seed-banks may promote coexistence of species. Seedling predation from vertebrates was low and did not appear to influence patterns of coexistence within or between habitats. In terms of community theory we suggest that several interacting mechanisms are responsible for community structure in heaths after a fire. Chance and microsite disturbance are important during dispersal, while resources are critical during establishment and early survival of seedling populations. In these heath systems where fires burn extensive areas, seed-banks may be more important in temporal storage of species than patch or spatial storage as a mechanism for maintaining coexistence and plant diversity.  相似文献   

19.
When competing species depress one another's fitness in the habitats that they occupy, their competitive effects will emerge in each species' pattern of density-dependent habitat choice. Thus, a regression analysis of joint densities, corrected by the habitat effect, should reveal the magnitude of interspecific competition. We tested this idea by 1) demonstrating the connection between removal experiments and regression estimates of competition with those obtained from isodars (regressions that implicitly incorporate evolutionarily stable strategies of habitat selection) and 2) evaluating whether interspecific competition inferred from isodars corresponded with the inferences emerging from regression and field experiments. Previous removal experiments on two herbivorous rodents occupying coastal wet heathlands in eastern Australia documented that competition between Rattus lutreolus and Pseudomys gracilicaudatus is asymmetrically biased in favor of the much larger Rattus . The asymmetry in competition was also revealed by regression estimates of competition. Isodar analyses illustrate a habitat-dependent mechanism for the asymmetry. Rattus compete effectively with Pseudomys in both 'wetter' and 'drier' patches of heath whereas Pseudomys appear to exert a competitive effect in only the drier sites. The magnitude of competition measured by a removal experiment in an area with more-or-less equal amounts of both habitats will be biased in favor of Rattus . More generally, one can use the isodar estimates to draw isolegs and isoclines of competitive coexistence. Isoclines for the two Australian rodents imply dynamic equilibria of stable competitive coexistence that vary with plant succession in fire-dominated heathland ecosystems.  相似文献   

20.
Environmental variability can structure species coexistence by enhancing niche partitioning. Modern coexistence theory highlights two fluctuation‐dependent temporal coexistence mechanisms —the storage effect and relative nonlinearity – but empirical tests are rare. Here, we experimentally test if environmental fluctuations enhance coexistence in a California annual grassland. We manipulate rainfall timing and relative densities of the grass Avena barbata and forb Erodium botrys, parameterise a demographic model, and partition coexistence mechanisms. Rainfall variability was integral to grass–forb coexistence. Variability enhanced growth rates of both species, and early‐season drought was essential for Erodium persistence. While theoretical developments have focused on the storage effect, it was not critical for coexistence. In comparison, relative nonlinearity strongly stabilised coexistence, where Erodium experienced disproportionately high growth under early‐season drought due to competitive release from Avena. Our results underscore the importance of environmental variability and suggest that relative nonlinearity is a critical if underappreciated coexistence mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号