首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mo B  Bewley JD 《Planta》2002,215(1):141-152
Beta-mannosidase, a high-salt-soluble enzyme, increases in activity in seeds of tomato prior to the completion of germination. This increase occurs in both the lateral and micropylar endosperm and becomes more evident during post-germinative seedling growth. The beta-mannosidase activity profile is similar to that of endo beta-mannanase although it is the first to increase in the lateral endosperm. Tomato seed beta-mannosidase was purified to homogeneity and its cDNA (LeMside1) obtained by 3'-RACE PCR using oligonucleotide sequences based on four peptide sequences obtained from the purified enzyme. The derived amino acid sequence of the tomato beta-mannosidase shows the enzyme is a member of the Glycosyl Hydrolases Family 1 (GHF1) but has a very low sequence identity with that of beta-mannosidases from non-plant sources; no other plant sequence for the enzyme is known. There appears to be only one gene encoding beta-mannosidase in tomato, the sequence of which has been determined (LeMSide2). Its expression occurs first in the micropylar endosperm, and then declines after germination. This is followed by an increase in its expression in the lateral endosperm, which precedes that of the gene for endo beta-mannanase. Expression of the beta-mannosidase gene increases appreciably in the growing seedling embryo. With this report, the cloning of all three of the enzymes involved in galactomannan mobilization (endo beta-mannanase, alpha-galactosidase and beta-mannosidase) in tomato seeds has now been achieved.  相似文献   

2.
3.
Activity of redox-enzymes of AA system and of catalase was measured in two near-isogenic tomato lines, respectively resistant and susceptible to Tobacco Mosaic Virus infection. AFR reductase, DHA reductase and catalase showed quite similar activities in both lines, whereas AA peroxidase activity in resistant plants was 75% higher than in susceptible ones, with Km values about 4-fold lower. These data suggest that hydrogen peroxide scavenging operated by AA peroxidase could play an important role in the development of biological defence mechanisms against pathogens.  相似文献   

4.
Seedlings of Lycopersicon esculentum Mill. var. Amalia were grown in a growth chamber under a photoperiod of 16 h light at 25 degrees C and 8 h dark at 20 degrees C. Five different treatments were applied to 30-day-old plants: Control treatment (plants maintained in the normal growth conditions throughout the experimental time), heat acclimation (plants exposed to 35 degrees C for 4 h in dark for 3 days), dark treatment (plants exposed to 25 degrees C for 4 h in dark for 3 days), heat acclimation plus heat shock (plants that previously received the heat acclimation treatment were exposed to 45 degrees C air temperature for 3 h in the light) and dark treatment plus heat shock (plants that previously received the dark treatment were exposed to 45 degrees C air temperature for 3 h in the light). Only the heat acclimation treatment increased the thermotolerance of the photosynthesis apparatus when the heat shock (45 degrees C) was imposed. In these plants, the CO(2) assimilation rate was not affected by heat shock and there was a slight and non-significant reduction in maximum carboxylation velocity of Rubisco (V(cmax)) and maximum electron transport rate contributing to Rubisco regeneration (J(max)). However, the plants exposed to dark treatment plus heat shock showed a significant reduction in the CO(2) assimilation rate and also in the values of V(cmax) and J(max). Chlorophyll fluorescence measurements showed increased thermotolerance in heat-acclimated plants. The values of maximum chlorophyll fluorescence (F(m)) were not modified by heat shock in these plants, while in the dark-treated plants that received the heat shock, the F(m) values were reduced, which provoked a significant reduction in the efficiency of photosystem II. A slight rise in the total superoxide dismutase (SOD) activity was found in the plants that had been subjected to both heat acclimation and heat shock, and this SOD activity was significantly higher than that found in the plants subjected to dark treatment plus heat shock. The activity of Fe-SOD isoenzymes was most enhanced in heat-acclimated plants but was unaltered in the plants that received the dark treatment. Total CuZn-SOD activity was reduced in all treatments. Darkness had an inhibitory effect on the Mn-SOD isoenzyme activity, which was compensated by the effect of a rise in air temperature to 35 degrees C. These results show that the heat tolerance of tomatoplants may be increased by the previous imposition of a moderately high temperature and could be related with the thermal stability in the photochemical reactions and a readjustment of V(cmax) and J(max). Some isoenzymes, such as the Fe-SODs, may also play a role in the development of heat-shock tolerance through heat acclimation. In fact, the pattern found for these isoenzymes in heat-acclimated Amalia plants was similar to that previously described in other heat-tolerant tomato genotypes.  相似文献   

5.
Under field conditions,pat-2, the gene which conditions parthenocarpy in tomatoes, is recessive. A simple method has been devised for distinguishing the heterozygote from the two homozygotes using tissue culture. Ovaries of plants segregating for thepat-2 gene were excised and cultured on a medium containing 100 ppm gibberellic acid. After three weeks in culture, three distinct ovary sizes could be seen. It was shown, using F 3 progeny tests, that the largest ovaries corresponded to those plants homozygous for thepat-2 gene, the smallest ovaries corresponded to those plants homozygous for the wild type allele, and the intermediate sized ovaries were the heterozygotes. The ability to identify the heterozygote would greatly simplify a backcross breeding program aimed at incorporating thepat-2 gene into commercial cultivars by eliminating the need for an F 3 progeny test to determine the genotype of a plant.Abbreviations GA 3 gibberellic acid - IAA indole acetic acid - ppm parts per million  相似文献   

6.
Summary Five nitrate reductase-deficient mutants of tomato were isolated from an M2 population after ethyl-methanesulphonate (EMS) seed treatment by means of selection for chlorate resistance. All mutations were monogenic and recessive and complementation analysis revealed that they were non-allelic. Biochemical and molecular characterization of these mutants showed that four of them are cofactor mutants while one is an apoenzyme mutant.  相似文献   

7.
8.
Glasshouse experiments were conducted to elicit biochemical substantiation for the observed difference in resistance to nematode infection in roots colonized by mycorrhiza, and susceptibility of the fresh flush of roots of the same plant that escaped mycorrhizal colonization. Tomato roots were assayed for their biochemical profiles with respect to total proteins, total phenols, indole acetic acid, activities of polyphenol oxidase, phenylalanine ammonia lyase and indole acetic acid oxidase. The roots of the same plant (one set) received Glomus fasciculatum and G. fasciculatum plus juveniles of Meloidogyne incognita separately; and half the roots of second set of plants received G. fasciculatum while the other half of roots did not receive any treatment. Roots colonized by G. fasciculatum recorded maximum contents of proteins and phenols followed by that of the roots that received G. fasciculatum plus M. incognita. However, IAA content was lowest in the roots that received mycorrhiza or mycorrhiza plus juveniles of root-knot nematode and correspondingly. Roots that received juveniles of root-knot nematode recorded maximum IAA content and per cent increase over healthy check and mycorrhiza-inoculated roots. The comparative assay on the activities of PPO, PAL and IAA oxidase enzymes in treated and healthy roots of tomato, indicated that PAL and IAA oxidase activities were maximum in G. fasciculatum colonized roots followed by the roots that received mycorrhiza plus juveniles of root-knot nematode, while the activity of PPO was minimum in these roots. The roots that received juveniles of root-knot nematode recorded minimum PAL and IAA oxidase activities and maximum PPO activity. Since the roots of same plant that received mycorrhiza and that did not receive mycorrhiza; and the plant that received nematode alone and mycorrhiza plus nematode recorded differential biochemical contents of proteins, total phenols and IAA, and differential activities of enzymes under study, it was evident that the biochemical defense response to mycorrhizal colonization against root-knot nematodes was localized and not systemic. This explained for the response of plant that differed in root galling due to nematode infection in presence of mycorrhizal colonization. The new or fresh roots which missed mycorrhizal colonization, got infected by nematodes and developed root galls.  相似文献   

9.
10.
11.
Two secreted acid phosphatases (SAP1 and SAP2) were markedly up-regulated during Pi-starvation of tomato suspension cells. SAP1 and SAP2 were resolved during cation-exchange FPLC of culture media proteins from 8-day-old Pi-starved cells, and purified to homogeneity and final p-nitrophenylphosphate hydrolyzing specific activities of 246 and 940 micro mol Pi produced.min-1 mg.protein-1, respectively. SDS/PAGE, periodic acid-Schiff staining and analytical gel filtration demonstrated that SAP1 and SAP2, respectively, exist as 84 and 57 kDa glycosylated monomers. SAP1 and SAP2 are purple acid phosphatases (PAPs) as they displayed an absorption maximum at 518 and 538 nm, respectively, and were not inhibited by l-tartrate. The respective sequence of a SAP1 and SAP2 tryptic peptide was very similar to a portion of the deduced sequence of several putative Arabidopsis thaliana PAPs. CNBr peptide mapping indicated that SAP1 and SAP2 are structurally distinct. Both isozymes displayed a pH optimum of approximately pH 5.3 and were heat stable. Although they exhibited wide substrate specificities, the Vmax of SAP2 with various phosphate-esters was significantly greater than that of SAP1. SAP1 and SAP2 were activated by up to 80% by 5 mm Mg2+, and demonstrated potent competitive inhibition by molybdate, but mixed and competitive inhibition by Pi, respectively. Interestingly, both SAPs exhibited significant peroxidase activity, which was optimal at approximately pH 8.4 and insensitive to Mg2+ or molybdate. This suggests that SAP1 and SAP2 may be multifunctional proteins that operate: (a) PAPs that scavenge Pi from extracellular phosphate-esters during Pi deprivation, or (b) alkaline peroxidases that participate in the production of extracellular reactive oxygen species during the oxidative burst associated with the defense response of plants to pathogen infection.  相似文献   

12.
A procedure is described which allows the purification of fructokinase (EC 2.7.1.4) from young tomato fruit. The procedure yielded a 400-fold purification and two isoenzymes designated fructokinase I and II (FKI and FKII) were separated by anion-exchange chromatography. Using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) the molecular mass was estimated to be 35 kDa. Gel filtration on Sepharose-12 indicated that for both fructokinases the functional form is a dimer. Two dimensional isoelectric focusing/SDS-PAGE combined with immunoblotting showed that FKI has two components with isoelectric points (pIs) of 6.42 and 6.55, while four components with pIs from 6.07 to 6.55 were detected for FKII. A mixture of both fructokinases showed that the components of FKI match the more alkaline components of FKII. The activity of both fructokinases increased with increasing pH to around 8.0 and equal activity was observed from 8.0 to 9.5. Both fructokinases were specific for fructose with K m values for fructose of 0.131 and 0.201 mM for FKI and FKII, respectively. At high concentrations (> 0.5 mM), fructose was also a strong inhibitor with inhibition constants (K i) of 1.82 and 1.39 mM for FKI and FKII, respectively. The preferred phosphate donor for both isoforms was ATP, and K m values of 0.11 and 0.15 mM were observed for FKI and FKII. At low concentrations (0.05–0.2 mM), fructose exhibited noncompetitive inhibition with respect to ATP for both fructokinases. This inhibition pattern changed to uncompetitive when higher fructose concentrations (0.5–10 mM) were used. These data indicated that substrate addition is ordered, with ATP adding first. Inhibition by ADP was also affected by the fructose concentrations. At 0.5 mM fructose, FKI showed non-competitive inhibition by ADP with respect to ATP and this inhibition changed to uncompetitive when 3 mM fructose was used. The isoform FKII showed a competitive inhibition pattern for ADP at 0.5 mM fructose which also changed to uncompetitive when 3 mM fructose was used. The features of the regulation of both fructokinases suggest that this enzyme might have a relevant role in carbon metabolism during tomato fruit development.  相似文献   

13.
A cyanide-insensitive superoxide dismutase was purified from tomato leaves (Lycopersicon esculentum, Mill., var. Venture) to apparent homogeneity. The enzyme had twofold higher specific activity (about 4000 standard units) than ferric superoxide dismutases purified from Brassica campestris [Salin, M. L. and Bridges, S. M. (1980) Arch. Biochem. Biophys. 201, 369-374] and Nuphar luteum [Salin, M.L. and Bridges, S. M. (1982) Plant Physiol. 69, 161-165]. The protein had a relative molecular mass of about 42000 and was composed of two equal subunits noncovalently joined. It was negatively charged (pI = 4.6) and contained about 1.45 mol Fe/mol dimer and negligible amounts of Mn, Cu and Zn. Absorption spectrum and sensitivity to NaN3, H2O2 and temperature are also reminiscent of other ferric superoxide dismutases. Comparison of amino acid composition indicated, however, a closer relationship to the Mn-containing enzymes rather than to other Fe-containing superoxide dismutases. Two possible ways of Fe-containing superoxide dismutase acquisition by vascular plants were suggested.  相似文献   

14.
15.
In tomato, infections by tomato mosaic virus are controlled by durable Tm-22 resistance. In order to gain insight into the processes underlying disease resistance and its durability, we cloned and analysed the Tm-22 resistance gene and the susceptible allele, tm-2. The Tm-22 gene was isolated by transposon tagging using a screen in which plants with a destroyed Tm-22 gene survive. The Tm-22 locus consists of a single gene that encodes an 861 amino acid polypeptide, which belongs to the CC-NBS-LRR class of resistance proteins. The putative tm-2 allele was cloned from susceptible tomato lines via PCR with primers based on the Tm-22 sequence. Interestingly, the tm-2 gene has an open reading frame that is comparable to the Tm-22 allele. Between the tm-2 and the Tm-22 polypeptide 38 amino acid differences are present of which 26 are located in the second half of the LRR-domain. Susceptible tomato plants, which were transformed with the Tm-22 gene, displayed resistance against ToMV infection. In addition, virus specificity, displayed by the Tm-22 resistance was conserved in these transgenic lines. To explain the durability of this resistance, it is proposed that the Tm-22-encoded resistance is aimed at the Achilles' heel of the virus.  相似文献   

16.
The levels of chitinase activity induced with elicitors in tomato cells have been detected. It was shown that enzymatic activity depended on degree of polymerization and concentration of biotic elicitors.  相似文献   

17.
18.
Specificity of induced resistance in the tomato, Lycopersicon esculentum   总被引:2,自引:0,他引:2  
Specificity in the induced responses of tomato foliage to arthropod herbivores was investigated. We distinguished between two aspects of specificity: specificity of effect (the range of organisms affected by a given induced response), and specificity of elicitation (ability of the plant to generate distinct chemical responses to different damage types). Specificity of effect was investigated by examining the effect of restricted feeding by Helicoverpa zea on the resistance of tomato plants to an aphid species (Macrosiphum euphorbiae), a mite species (Tetranychus urticae), a noctuid species (Spodoptera exigua), and to a phytopathogen, Pseudomonas syringae pv. tomato. Prior H. zea feeding was found to increase the resistance of tomato plants to all four organisms. Specificity in elicitation was investigated by examining the effect of aphid feeding on the activities of four defense-related proteins and on the suitability of foliage for S. exigua. Aphid feeding was found to induce peroxidase and lipoxygenase activities but not polyphenol oxidase and proteinase inhibitor activities; this response is distinct from the response to H. zea feeding, which induces polyphenol oxidase and proteinase inhibitors but not peroxidase. Leaflets which had been fed upon by aphids were better sources of food for S. exigua than were leaflets which had not been fed upon by aphids. Studies of both these aspects of specificity are needed to understand the way in which plants coordinate and integrate induced responses against insects with other physiological processes. Received: 20 December 1996 / Accepted: 2 July 1997  相似文献   

19.
Two gibberellin-like substances were found in the acidic fractionof shoot extracts of the tomato (Lycopersicon esculentum Mill.,cultivar Potentate). These were resolved by paper chromotographywith iso-propanol/ammonia/water (10:1:1) as the developing solventbut not with n-butanol/1.5 N ammonia (3:1). Both substanceswere active in the dwarf maize bioassay on mutants d-1, d-2,d-3, and d-5, and appeared to be more active on d-5 than d-1.Neither was active in the Meteor Pea assay. Neutral and basicfractions were inactive. The relative amounts of these two substances varied accordingto the age of the tissues from which they were extracted andthis feature is discussed in relation to future studies on thephysiology of gibberellin-like substances in vivo.  相似文献   

20.
A cDNA (LeAPP2) was cloned from tomato coding for a 654 amino acid protein of 72.7 kDa. The deduced amino acid sequence was >40% identical with that of mammalian aminopeptidase P, a metalloexopeptidase. All amino acids reported to be important for binding of the active site metals and catalytic activity, respectively, were conserved between LeAPP2 and its mammalian homologues. LeAPP2 was expressed in Escherichia coli in N-terminal fusion with glutathione S-transferase and was purified from bacterial extracts. LeAPP2 was verified as an aminopeptidase P, hydrolyzing the amino-terminal Xaa-Pro bonds of bradykinin and substance P. LeAPP2 also exhibited endoproteolytic activity cleaving, albeit at a reduced rate, the internal -Phe-Gly bond of substance P. Apparent K(m) (15.2 +/- 2.4 microm) and K(m)/k(cat) (0.94 +/- 0.11 mm(-1) x s(-1)) values were obtained for H-Lys(Abz)-Pro-Pro-pNA as the substrate. LeAPP2 activity was maximally stimulated by addition of 4 mm MnCl(2) and to some extent also by Mg(2+), Ca(2+), and Co(2+), whereas other divalent metal ions (Cu(2+), Zn(2+)) were inhibitory. Chelating agents and thiol-modifying reagents inhibited the enzyme. The data are consistent with LeAPP2 being a Mn(II)-dependent metalloprotease. This is the first characterization of a plant aminopeptidase P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号