首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Tyrosine phosphorylation in the cytoplasmic domains of FcepsilonRI by the Src family kinase Lyn initiates a signaling cascade leading to mast cell activation. In this study, we show that a recently identified transmembrane protein, Csk-binding protein (Cbp), also known as phospoprotein associated with glycosphingolipid-enriched microdomains (PAG), negatively regulates FcepsilonRI signaling. In rat basophilic leukemia (RBL)-2H3 cells, the levels of tyrosine phosphorylation of Cbp/PAG and its association with Csk, a negative regulator for Lyn, significantly elevate immediately after aggregation of FcepsilonRI. An overexpression of Cbp/PAG in RBL-2H3 cells inhibits FcepsilonRI-mediated cell activation. This is accompanied with decreased levels of tyrosine phosphorylation of FcepsilonRI, association of FcepsilonRI with Lyn, and FcepsilonRI-associated tyrosine kinase activity. These findings combined with the fact that Cbp/PAG, Lyn, and aggregated FcepsilonRI are localized to lipid rafts, suggest that upon FcepsilonRI aggregation Cbp/PAG down-regulates the receptor-associated Lyn activity through relocating Csk to rafts, thereby efficiently mediating feedback inhibition of FcepsilonRI signaling.  相似文献   

2.
Mast cells express the high affinity IgE receptor FcepsilonRI, which upon aggregation by multivalent antigens elicits signals that cause rapid changes within the mast cell and in the surrounding tissue. We previously showed that FcepsilonRI aggregation caused a rapid increase in phosphorylation of both Fer and Fps/Fes kinases in bone marrow-derived mast cells. In this study, we report that FcepsilonRI aggregation leads to increased Fer/Fps kinase activities and that Fer phosphorylation downstream of FcepsilonRI is independent of Syk, Fyn, and Gab2 but requires Lyn. Activated Fer/Fps readily phosphorylate the C terminus of platelet-endothelial cell adhesion molecule 1 (Pecam-1) on immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and a non-ITIM residue (Tyr(700)) in vitro and in transfected cells. Mast cells devoid of Fer/Fps kinase activities display a reduction in FcepsilonRI aggregation-induced tyrosine phosphorylation of Pecam-1, with no defects in recruitment of Shp1/Shp2 phosphatases observed. Lyn-deficient mast cells display a dramatic reduction in Pecam-1 phosphorylation at Tyr(685) and a complete loss of Shp2 recruitment, suggesting a role as an initiator kinase for Pecam-1. Consistent with previous studies of Pecam-1-deficient mast cells, we observe an exaggerated degranulation response in mast cells lacking Fer/Fps kinases at low antigen dosages. Thus, Lyn and Fer/Fps kinases cooperate to phosphorylate Pecam-1 and activate Shp1/Shp2 phosphatases that function in part to limit mast cell activation.  相似文献   

3.
Initial biochemical signaling originating from high-affinity immunoglobulin E receptor (FcepsilonRI) has been ascribed to Src family kinases. To understand the mechanisms by which individual kinases drive the signaling, we conducted reconstitution experiments: FcepsilonRI signaling in RBL2H3 cells was first suppressed by a membrane-anchored, gain-of-function C-terminal Src kinase and then reconstructed with Src family kinases whose C-terminal negative regulatory sequence was replaced with a c-myc epitope. Those constructs derived from Lyn and Fyn, which are associated with detergent-resistant membranes (DRMs), physically interacted with resting FcepsilonRI and reconstructed clustering-induced signaling that leads to calcium mobilization and ERK1 and -2 activation. c-Src-derived construct, which was excluded from DRMs, failed to interact with FcepsilonRI and to restore the signaling, whereas creation of palmitoylatable Cys3 enabled it to interact with DRMs and with FcepsilonRI and to restore the signaling. Deletion of Src homology 3 (SH3) domain from the Lyn-derived construct did not alter its ability to transduce the series of signaling. Deletion of SH2 domain did not affect its association with DRMs and with FcepsilonRI nor clustering-induced tyrosine phosphorylation of FcepsilonRI beta and gamma subunits, but it almost abrogated the next step of tyrosine phosphorylation of Syk and its recruitment to FcepsilonRI. These findings suggest that Lyn and Fyn could, but c-Src could not, drive FcepsilonRI signaling and that N-terminal palmitoylation and SH2 domain are required in sequence for the initial interaction with FcepsilonRI and for the signal progression to the molecular assembly.  相似文献   

4.
Aggregation of the high affinity receptor for IgE (FceRI) on mast cells results in the rapid phosphorylation of tyrosines on the beta and gamma chains of the receptor by the Src family kinase Lyn, which initiates the signaling cascades leading to secretion of inflammatory mediators. The detergent-resistant membranes (DRMs) have been implicated in FcepsilonRI signaling because aggregated receptors emigrate to DRMs that are enriched in certain signaling components. We evaluated the role of DRMs in FcepsilonRI signaling by disruption of DRMs using a cholesterol-binding agent, methyl-beta-cyclodextrin (MBCD). While treatment of rat basophilic leukemia cells with MBCD inhibits degranulation and Ca(2+) mobilization upon aggregation of FcepsilonRI, MBCD hardly affects the aggregation-induced tyrosine phosphorylation of FcepsilonRI as well as other signaling molecules such as phospholipase C-gamma1 (PLC-gamma1). MBCD delocalizes phosphatidylinositol 4,5-bisphosphate from DRMs, which may prevent MBCD-treated cells from producing inositol 1,4,5-trisphosphate by means of activated PLC-gamma1. These data suggest an indispensable role for DRMs in the Ca(2+) response rather than tyrosine phosphorylation, and support a model of receptor phosphorylation in which aggregated FcepsilonRI is tyrosine phosphorylated outside DRMs by constitutively associated Src family kinase Lyn via a transphosphorylation mechanism.  相似文献   

5.
The first step in immunoreceptor signaling is represented by ligand-dependent receptor aggregation, followed by receptor phosphorylation mediated by tyrosine kinases of the Src family. Recently, sphingolipid- and cholesterol-rich plasma membrane microdomains, called lipid rafts, have been identified and proposed to function as platforms where signal transduction molecules may interact with the aggregated immunoreceptors. Here we show that aggregation of the receptors with high affinity for immunoglobulin E (FcepsilonRI) in mast cells is accompanied by a co-redistribution of the Src family kinase Lyn. The co-redistribution requires Lyn dual fatty acylation, Src homology 2 (SH2) and/or SH3 domains, and Lyn kinase activity, in cis or in trans. Palmitoylation site-mutated Lyn, which is anchored to the plasma membrane but exhibits reduced sublocalization into lipid rafts, initiates the tyrosine phosphorylation of FcepsilonRI subunits, Syk protein tyrosine kinase, and the linker for activation of T cells, along with an increase in the concentration of intracellular Ca(2+). However, Lyn mutated in both the palmitoylation and myristoylation sites does not anchor to the plasma membrane and is incapable of initiating FcepsilonRI phosphorylation and early signaling events. These data, together with our finding that a constitutively tyrosine-phosphorylated FcepsilonRI does not exhibit an increased association with lipid rafts, suggest that FcepsilonRI phosphorylation and early activation events can be initiated outside of lipid rafts.  相似文献   

6.
Signaling through the high affinity IgE receptor is initiated by noncovalently associated Lyn kinase, resulting in the secretion of inflammatory mediators from mast cells. A fraction of the total cellular Lyn is associated via its N-terminal unique domain with the cytoplasmic domain of the Fc epsilonRI beta subunit before receptor aggregation. In the current study, we stably transfected the unique domain of Lyn into rat basophilic leukemia-2H3 mast cells and examined the consequences on Fc epsilonRI-induced signal transduction and mediator secretion to further define the role of the unique domain of Lyn in mast cell secretion. Tyrosine phosphorylation of Fc epsilonRI beta and gamma subunits was partially inhibited in the Lyn unique domain transfectants after Ag stimulation. Ag stimulation of Lyn unique domain transfectants was accompanied by enhanced phosphorylation of MEK and ERK-2, which are required for leukotriene C4 (LTC4) release, and production of LTC4 was increased 3- to 5-fold, compared with cells transfected with vector alone. Conversely, tyrosine phosphorylation of the adaptor protein Gab2, which is essential for mast cell degranulation, was inhibited after Ag stimulation of Lyn unique domain transfectants, and Ag-induced release of histamine was inhibited up to 48%. In rat basophilic leukemia-2H3 cells, Lyn thus plays a dual role by positively regulating Fc epsilonRI phosphorylation and degranulation while negatively regulating LTC4 production. This study provides further evidence that the constitutive interaction between the unique domain of Lyn and the Fc epsilonRI beta subunit is a crucial step in the initiation of Fc epsilonRI signaling and that Lyn is limiting for Fc epsilonRI-induced secretion of inflammatory mediators.  相似文献   

7.
Clustering the tetrameric (alphabetagamma(2)) IgE receptor, FcepsilonRI, on basophils and mast cells activates the Src-family tyrosine kinase, Lyn, which phosphorylates FcepsilonRI beta and gamma subunit tyrosines, creating binding sites for the recruitment and activation of Syk. We reported previously that FcepsilonRI dimers formed by a particular anti-FcepsilonRI alpha mAb (H10) initiate signaling through Lyn activation and FcepsilonRI subunit phosphorylation, but cause only modest activation of Syk and little Ca(2+) mobilization and secretion. Curtailed signaling was linked to the formation of unusual, detergent-resistant complexes between Lyn and phosphorylated receptor subunits. Here, we show that H10-FcepsilonRI multimers, induced by adding F(ab')(2) of goat anti-mouse IgG to H10-treated cells, support strong Ca(2+) mobilization and secretion. Accompanying the recovery of signaling, H10-FcepsilonRI multimers do not form stable complexes with Lyn and do support the phosphorylation of Syk and phospholipase Cgamma2. Immunogold electron microscopy showed that H10-FcepsilonRI dimers colocalize preferentially with Lyn and are rarely within the osmiophilic "signaling domains" that accumulate FcepsilonRI and Syk in Ag-treated cells. In contrast, H10-FcepsilonRI multimers frequently colocalize with Syk within osmiophilic patches. In sucrose gradient centrifugation analyses of detergent-extracted cells, H10-treated cells show a more complete redistribution of FcepsilonRI beta from heavy (detergent-soluble) to light (Lyn-enriched, detergent-resistant) fractions than cells activated with FcepsilonRI multimers. We hypothesize that restraints imposed by the particular orientation of H10-FcepsilonRI dimers traps them in signal-initiating Lyn microdomains, and that converting the dimers to multimers permits receptors to dissociate from Lyn and redistribute to separate membrane domains that support Syk-dependent signal propagation.  相似文献   

8.
The glycoprotein VI (GPVI)-Fc receptor (FcR) gamma-chain complex, a key activatory receptor for collagen on platelet surface membranes, is constitutively associated with the Src family kinases Fyn and Lyn. Molecular cloning of GPVI has revealed the presence of a proline-rich domain in the sequence of GPVI cytoplasmic tail which has the consensus for interaction with the Src homology 3 (SH3) domains of Fyn and Lyn. A series of in vitro experiments demonstrated the ability of the SH3 domains of both Src kinases to bind the proline-rich domain of GPVI. Furthermore, depletion of the proline-rich domain in GPVI (Pro(-)-GPVI) prevented binding of Fyn and Lyn and markedly reduced phosphorylation of FcR gamma-chain in transiently transfected COS-7 cells, but did not affect the association of the gamma-chain with GPVI. Jurkat cells stably transfected with wild type GPVI show robust increases in tyrosine phosphorylation and intracellular Ca2+ in response to the snake venom convulxin that targets GPVI. Importantly, convulxin is not able to activate cells transfected with Pro(-)-GPVI, even though the association with the immunoreceptor tyrosine-based activation motif-containing chains is maintained. These findings demonstrate that the proline-rich domain of GPVI mediates the association with Fyn/Lyn via their SH3 domain and that this interaction initiates activation signals through GPVI.  相似文献   

9.
To examine the exquisite regulation of IgE-FcepsilonRI tyrosine phosphorylation by Lyn kinase that is stimulated by antigen-mediated cross-linking, we utilized co-expression of FcepsilonRI and Lyn in Chinese hamster ovary cells, which results in high basal levels of Lyn kinase activity and spontaneous phosphorylation of FcepsilonRI. We found that co-expression of a lipid raft-excluded transmembrane tyrosine phosphatase, PTPalpha, suppresses Lyn kinase activity and markedly reduces the level of spontaneous phosphorylation of FcepsilonRI, while facilitating its antigen-stimulated phosphorylation. Other tyrosine phosphatases, including SHP-1, CD45, and a lipid raft-preferring chimeric version of PTPalpha fail to reconstitute antigen-dependent FcepsilonRI phosphorylation. We concluded that both substrate specificity and submembrane location are critical to phosphatase-mediated regulation of Lyn kinase activity that supports activation of FcepsilonRI.  相似文献   

10.
The binding of integrins to extracellular matrix triggers signals that promote cell spreading. We previously demonstrated that expression of the integrin β1 cytoplasmic domain in the context of a chimeric transmembrane receptor with the Tac subunit of the interleukin-2 receptor (Tac-β1) inhibits cell spreading. To study the mechanism whereby Tac-β1 inhibits cell spreading, we examined the effect of Tac-β1 on early signaling events following integrin engagement namely FAK and Src signaling. We infected primary fibroblasts with adenoviruses expressing Tac or Tac-β1 and found that Tac-β1 prevented FAK activation by inhibiting the phosphorylation of FAK at Tyr-397. In contrast, Src activation was maintained, as phosphorylation of Src at Tyr-419 and Tyr-530 were not responsive to expression of Tac-β1. Importantly, adhesion-induced tyrosine phosphorylation of the Src substrates p130Cas and paxillin was inhibited, indicating that Src signaling was blocked by Tac-β1. These Src-dependent signaling events were found to require FAK signaling. Our results suggest that Tac-β1 inhibits cell spreading, at least in part, by preventing the phosphorylation of FAK at Tyr-397 and the assembly of signaling complexes necessary for phosphorylation of p130Cas and other downstream effectors.  相似文献   

11.
Flk2/Flt3 is a recently identified receptor tyrosine kinase expressed in brain, placenta, testis, and primitive hematopoietic cells. The mitogenic signalling potential and biochemical properties of Flk2/Flt3 have been analyzed by using a chimeric receptor composed of the extracellular domain of the human colony-stimulating factor 1 receptor and the transmembrane and cytoplasmic domains of murine Flk2/Flt3. We demonstrate that colony-stimulating factor 1 stimulation of the Flk2/Flt3 kinase in transfected NIH 3T3 fibroblasts leads to a transformed phenotype and generates a full proliferative response in the absence of other growth factors. In transfected interleukin 3 (IL-3)-dependent Ba/F3 lymphoid cells, activation of the chimeric receptor can abrogate IL-3 requirement and sustain long-term proliferation. We show that phospholipase C-gamma 1, Ras GTPase-activating protein, the p85 subunit of phosphatidylinositol 3'-kinase, Shc, Grb2, Vav, Fyn, and Src are components of the Flk2/Flt3 signal transduction pathway. In addition, we demonstrate that phospholipase C-gamma 1, the p85 subunit of phosphatidylinositol 3'-kinase, Shc, Grb2, and Src family tyrosine kinases, but not Ras GTPase-activating protein, Vav, or Nck, physically associate with the Flk2/Flt3 cytoplasmic domain. Cell-type-specific differences in tyrosine phosphorylation of p85 and Shc are observed. A comparative analysis of the Flk2/Flt3 signal cascade with those of the endogenous platelet-derived growth factor and IL-3 receptors indicates that Flk2/Flt3 displays specific substrate preferences. Furthermore, tyrosine phosphorylation of p85 and Shc is similarly affected by totally different growth factors in the same cellular background.  相似文献   

12.
Aggregation of the high affinity receptor for IgE (FcepsilonRI) induces activation of mast cells. In this study we show that upon low intensity stimulation of FcepsilonRI with monomeric IgE, IgE plus anti-IgE, or IgE plus low Ag, Lyn (a Src family kinase) positively regulates degranulation, cytokine production, and survival, whereas Lyn works as a negative regulator of high intensity stimulation with IgE plus high Ag. Low intensity stimulation suppressed Lyn kinase activity and its association with FcepsilonRI beta subunit, whereas high intensity stimulation enhanced Lyn activity and its association with FcepsilonRI beta. The latter induced much higher levels of FcepsilonRI beta phosphorylation and Syk activity than the former. Downstream positive signaling molecules, such as Akt and p38, were positively and negatively regulated by Lyn upon low and high intensity stimulations, respectively. In contrast, the negative regulators, SHIP and Src homology 2 domain-containing protein tyrosine phosphatase-1, interacted with FcepsilonRI beta, and their phosphorylation was controlled by Lyn. Therefore, we conclude that Lyn-mediated positive vs negative regulation depends on the intensity of the stimuli. Studies of mutant FcepsilonRI beta showed that FcepsilonRI beta subunit-ITAM (ITAM motif) regulates degranulation and cytokine production positively and negatively depending on the intensity of FcepsilonRI stimulation. Furthermore, Lyn-mediated negative regulation was shown to be exerted via the FcepsilonRI beta-ITAM.  相似文献   

13.
Engagement of the IgE receptor (FcepsilonRI) on mast cells leads to the release of preformed and newly formed mediators as well as of cytokines. The signaling pathways responsible for these responses involve tyrosine phosphorylation of multiple proteins. We previously reported the phosphorylation on tyrosine of phospholipid scramblase 1 (PLSCR1) after FcepsilonRI aggregation. Here, PLSCR1 expression was knocked down in the RBL-2H3 mast cell line using short hairpin RNA. Knocking down PLSCR1 expression resulted in significantly impaired degranulation responses after FcepsilonRI aggregation and release of vascular endothelial growth factor, whereas release of MCP-1 was minimally affected. The release of neither leukotriene C4 nor prostaglandin D2 was altered by knocking down of PLSCR1. Analysis of FcepsilonRI-dependent signaling pathways revealed that whereas tyrosine phosphorylation of ERK and Akt was unaffected, tyrosine phosphorylation of LAT was significantly reduced in PLSCR1 knocked down cells. Tyrosine phosphorylation of phospholipase Cgamma1 and consequently the mobilization of calcium were also significantly reduced in these cells. In nonactivated mast cells, PLSCR1 was found in part in lipid rafts where it was further recruited after cell activation and was constitutively associated with Lyn and Syk but not with LAT or Fyn. Altogether, these data identify PLSCR1 as a novel amplifier of FcepsilonRI signaling that acts selectively on the Lyn-initiated LAT/phospholipase Cgamma1/calcium axis, resulting in potentiation of a selected set of mast cell responses.  相似文献   

14.
The plasma membrane contains ordered lipid domains, commonly called lipid rafts, enriched in cholesterol, sphingolipids, and certain signaling proteins. Lipid rafts play a structural role in signal initiation by the high affinity receptor for IgE. Cross-linking of IgE-receptor complexes by antigen causes their coalescence with lipid rafts, where they are phosphorylated by the Src family tyrosine kinase, Lyn. To understand how lipid rafts participate in functional coupling between Lyn and FcepsilonRI, we investigated whether the lipid raft environment influences the specific activity of Lyn. We used differential detergent solubility and sucrose gradient fractionation to isolate Lyn from raft and nonraft regions of the plasma membrane in the presence or absence of tyrosine phosphatase inhibitors. We show that Lyn recovered from lipid rafts has a substantially higher specific activity than Lyn from nonraft environments. Furthermore, this higher specific activity correlates with increased tyrosine phosphorylation at the active site loop of the kinase domain. Based on these results, we propose that lipid rafts exclude a phosphatase that negatively regulates Lyn kinase activity by constitutive dephosphorylation of the kinase domain tyrosine residue of Lyn. In this model, cross-linking of FcepsilonRI promotes its proximity to active Lyn in a lipid raft environment.  相似文献   

15.
Upon cross-linking by antigen, the high affinity receptor for immunoglobulin E (IgE), FcepsilonRI, is phosphorylated by the Src family tyrosine kinase Lyn to initiate mast cell signaling, leading to degranulation. Using fluorescence correlation spectroscopy (FCS), we observe stimulation-dependent associations between fluorescently labeled IgE-FcepsilonRI and Lyn-EGFP on individual cells. We also simultaneously measure temporal variations in the lateral diffusion of these proteins. Antigen-stimulated interactions between these proteins detected subsequent to the initiation of receptor phosphorylation exhibit time-dependent changes, suggesting multiple associations between FcepsilonRI and Lyn-EGFP. During this period, we also observe a persistent decrease in Lyn-EGFP lateral diffusion that is dependent on Src family kinase activity. These stimulated interactions are not observed between FcepsilonRI and a chimeric EGFP that contains only the membrane-targeting sequence from Lyn. Our results reveal real-time interactions between Lyn and cross-linked FcepsilonRI implicated in downstream signaling events. They demonstrate the capacity of FCS cross-correlation analysis to investigate the mechanism of signaling-dependent protein-protein interactions in intact, living cells.  相似文献   

16.
Abstract: In previous studies, we demonstrated that the neuropeptide, N -acetylaspartylglutamate (NAAG), meets the traditional criteria for a neurotransmitter and selectively activates metabotropic glutamate receptor mGluR2 or mGluR3 in cultured cerebellar granule cells and glia. Sequence homology and pharmacological data suggest that these two receptors are highly related structurally and functionally. To define more rigorously the receptor specificity of NAAG, cloned rat cDNAs for mGluR1–6 were transiently or stably transfected into Chinese hamster ovary cells and human embryonic kidney cells and assayed for their second messenger responses to the two endogenous neurotransmitters, glutamate and NAAG, as well as to metabotropic receptor agonists, trans -1-aminocyclopentane-1,3-dicarboxylate ( trans -ACPD) and l -2-amino-4-phosphonobutyrate ( l -AP4). Despite the high degree of relatedness of mGluR2 and mGluR3, NAAG selectively activated the mGluR3 receptor. NAAG activated neither mGluR2 nor mGluR1, mGluR4, mGluR5, or mGluR6. The mGluR agonist, trans -ACPD, activated each of the transfected receptors, whereas l -AP4 activated mGluR4 and mGluR6, consistent with the published selectivity of these agonists. Hybrid cDNA constructs of the extracellular domains of mGluR2 and mGluR3 were independently fused with the transmembrane and cytoplasmic domain of mGluR1a. This latter receptor domain is coupled to phosphoinositol turnover, and its activation increases intracellular calcium. The cells transfected with these chimeric receptors responded to activation by glutamate and trans -ACPD with increases in intracellular calcium. NAAG activated the chimeric receptor that contained the extracellular domain of mGluR3 and did not activate the mGluR2 chimera.  相似文献   

17.
A chimeric receptor composed of the extracellular domain of the human T-cell antigen CD2 (T11) joined to the membrane-spanning segment and the intracellular tyrosine kinase domain of the human colony-stimulating factor 1 receptor (CSF-1R) was expressed in murine NIH 3T3 fibroblasts. Stimulation of these cells with monoclonal antibodies to CD2 induced phosphorylation of the chimeric glycoprotein on tyrosine, receptor downmodulation, and mitogenesis. In contrast, neither human CSF-1R nor the chimeric receptor was able to function in interleukin-2-dependent murine T cells. In fibroblasts, then, CSF-1 per se is not required for activation of the receptor kinase or for a biological response, whereas in T cells, CSF-1R may be unable to engage the downstream signal transduction machinery.  相似文献   

18.
Tyrosine phosphorylation of the high affinity immunoglobulin (Ig)E receptor (FcepsilonRI) by the Src family kinase Lyn is the first known biochemical step that occurs during activation of mast cells and basophils after cross-linking of FcepsilonRI by antigen. The hypothesis that specialized regions in the plasma membrane, enriched in sphingolipids and cholesterol, facilitate the coupling of Lyn and FcepsilonRI was tested by investigating functional and structural effects of cholesterol depletion on Lyn/FcepsilonRI interactions. We find that cholesterol depletion with methyl-beta-cyclodextrin substantially reduces stimulated tyrosine phosphorylation of FcepsilonRI and other proteins while enhancing more downstream events that lead to stimulated exocytosis. In parallel to its inhibition of tyrosine phosphorylation, cholesterol depletion disrupts the interactions of aggregated FcepsilonRI and Lyn on intact cells and also disrupts those interactions with detergent-resistant membranes that are isolated by sucrose gradient ultracentrifugation of lysed cells. Importantly, cholesterol repletion restores receptor phosphorylation together with the structural interactions. These results provide strong evidence that membrane structure, maintained by cholesterol, plays a critical role in the initiation of FcepsilonRI signaling.  相似文献   

19.
《The Journal of cell biology》1994,126(5):1287-1298
The ability of single subunit chimeric receptors containing various integrin beta intracellular domains to mimic and/or inhibit endogenous integrin function was examined. Chimeric receptors consisting of the extracellular and transmembrane domains of the small subunit of the human interleukin-2 receptor connected to either the beta 1, beta 3, beta 3B, or beta 5 intracellular domain were transiently expressed in normal human fibroblasts. When expressed at relatively low levels, the beta 3 and beta 5 chimeras mimicked endogenous ligand-occupied integrins and, like the beta 1 chimera (LaFlamme, S. E., S. K. Akiyama, and K. M. Yamada. 1992. J. Cell Biol. 117:437), concentrated with endogenous integrins in focal adhesions and sites of fibronectin fibril formation. In contrast, the chimeric receptor containing the beta 3B intracellular domain (a beta 3 intracellular domain modified by alternative splicing) was expressed diffusely on the cell surface, indicating that alternative splicing can regulate integrin receptor distribution by an intracellular mechanism. Furthermore, when expressed at higher levels, the beta 1 and beta 3 chimeric receptors functioned as dominant negative mutants and inhibited endogenous integrin function in localization to fibronectin fibrils, fibronectin matrix assembly, cell spreading, and cell migration. The beta 5 chimera was a less effective inhibitor, and the beta 3B chimera and the reporter lacking an intracellular domain did not inhibit endogenous integrin function. Comparison of the relative levels of expression of the transfected beta 1 chimera and the endogenous beta 1 subunit indicated that in 10 to 15 h assays, the beta 1 chimera can inhibit cell spreading when expressed at levels approximately equal to the endogenous beta 1 subunit. Levels of chimeric receptor expression that inhibited cell spreading also inhibited cell migration, whereas lower levels were able to inhibit alpha 5 beta 1 localization to fibrils and matrix assembly. Our results indicate that single subunit chimeric integrins can mimic and/or inhibit endogenous integrin receptor function, presumably by interacting with cytoplasmic components critical for endogenous integrin function. Our results also demonstrate that beta intracellular domains, expressed in this context, display specificity in their abilities to mimic and inhibit endogenous integrin function. Furthermore, the approach that we have used permits the analysis of intracellular domain function in the processes of cell spreading, migration and extracellular matrix assembly independent of effects due to the rest of integrin dimers. This approach should prove valuable in the further analysis of integrin intracellular domain function in these and other integrin-mediated processes requiring the interaction of integrins with cytoplasmic components.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号