首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flagellar genes fliO, fliP, fliQ, and fliR of Salmonella typhimurium are contiguous within the fliLMNOPQR operon. They are needed for flagellation but do not encode any known structural or regulatory components. They may be involved in flagellar protein export, which proceeds by a type III export pathway. The genes have been cloned and sequenced. The sequences predict proteins with molecular masses of 13,068, 26,755, 9,592, and 28,933 Da, respectively. All four gene products were identified experimentally; consistent with their high hydrophobic residue content, they segregated with the membrane fraction. From N-terminal amino acid sequence analysis, we conclude that fliO starts immediately after fliN rather than at a previously proposed site downstream. FliP existed in two forms, a 25-kDa form and a 23-kDa form. N-terminal amino acid analysis of the 23-kDa form demonstrated that it had undergone cleavage of a signal peptide--a rare process for prokaryotic cytoplasmic membrane proteins. Site-directed mutation at the cleavage site resulted in impaired processing, which reduced, but did not eliminate, complementation of a fliP mutant in swarm plate assays. A cloned fragment encoding the mature form of the protein could also complement the fliP mutant but did so even more poorly. Finally, when the first transmembrane span of MotA (a cytoplasmic membrane protein that does not undergo signal peptide cleavage) was fused to the mature form of FliP, the fusion protein complemented very weakly. Higher levels of synthesis of the mutant proteins greatly improved function. We conclude that, for insertion of FliP into the membrane, cleavage is important kinetically but not absolutely required.  相似文献   

2.
M Homma  Y Komeda  T Iino    R M Macnab 《Journal of bacteriology》1987,169(4):1493-1498
flaFIX, the structural gene for the periplasmic P ring of the flagellar basal body of Salmonella typhimurium, was cloned. Two gene products with apparent molecular weights of 38,000 and 40,000 were identified by minicell analysis. Data from pulse-chase and membrane fractionation experiments and data on the inhibitory effect of the proton ionophore carbonyl cyanide m-chlorophenylhydrazone all indicated that the 40-kilodalton protein was a precursor form which, after export across the cytoplasmic membrane accompanied by cleavage of a signal peptide, gave rise to the mature protein in the periplasm. The N-terminal amino acid sequence of the FlaFIX protein, predicted from the DNA sequence, conformed well to known signal peptide sequences. The results indicate that the P-ring protein of the basal body (unlike flagellin and possible some other external flagellar components) crosses the cytoplasmic membrane in a conventional signal peptide-dependent manner.  相似文献   

3.
4.
MotY, a component of the sodium-type flagellar motor.   总被引:19,自引:14,他引:5       下载免费PDF全文
Energy to power the rotation of bacterial flagella can be derived from the proton or sodium transmembrane potential. Until now, genes encoding a bacterial sodium-type flagellar motor have not been defined. A gene, motY, encoding one component of the sodium-type flagellar motor of Vibrio parahaemolyticus was cloned by complementation of a Mot- mutant strain. Sequencing revealed an open reading frame of 879 nucleotides in which a transposon conferring a motility defect mapped. Overexpression of motY in Escherichia coli allowed identification of a product 33 kDa in apparent size on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This size correlated well with the predicted molecular mass of 33,385 Da. Unlike mot genes identified in other bacteria, localized transposon mutagenesis suggested that the locus was not an extended region containing multiple genes required for swimming motility. Sequencing upstream and downstream of motY confirmed that the gene maps alone and placed it within a locus homologous to the E. coli rnt locus. Although data bank searches failed to reveal significant similarity to known motility components, the carboxyl terminus of MotY showed extensive homology to a number of outer membrane proteins known to interact with peptidoglycan, including OmpA and peptidoglycan-associated lipoproteins. To a limited extent, this domain could also be identified in the Bacillus subtilis MotB protein. This finding suggests that MotY plays the role of a stator in the sodium flagellar motor, stabilizing the force-generating unit through direct interaction with the cell wall.  相似文献   

5.
The fliL operon of Escherichia coli contains seven genes that are involved in the biosynthesis and functioning of the flagellar organelle. DNA sequences for the first three genes of this operon have been reported previously. A 2.2-kb PstI restriction fragment was shown to complement known mutant alleles of the fliO, fliP, fliQ, and fliR genes, the four remaining genes of the fliL operon. Four open reading frames were identified by DNA sequence analysis and correlated to their corresponding genes by complementation analysis. These genes were found to encode very hydrophobic polypeptides with molecular masses of 11.1, 26.9, 9.6, and 28.5 kDa for FliO, FliP, FliQ, and FliR, respectively. Analysis of recombinant plasmids in a T7 promoter-polymerase expression system enabled us to identify three of the four gene products. On the basis of DNA sequence analysis and in vivo protein expression, it appears that the fliP gene product is synthesized as a precursor protein with an N-terminal signal peptide of 21 amino acids. The FliP protein was homologous to proteins encoded by a DNA sequence upstream of the flaA gene of Rhizobium meliloti, to a gene involved in pathogenicity in Xanthomonas campestris pv. glycines, and to the spa24 gene of the Shigella flexneri. The latter two genes encode proteins that appear to be involved in protein translocation, suggesting that the FliP protein may have a similar function.  相似文献   

6.
When grown on xanthan as a carbon source, the bacterium Bacillus sp. strain GL1 produces extracellular xanthan lyase (75 kDa), catalyzing the first step of xanthan depolymerization (H. Nankai, W. Hashimoto, H. Miki, S. Kawai, and K. Murata, Appl. Environ. Microbiol. 65:2520-2526, 1999). A gene for the lyase was cloned, and its nucleotide sequence was determined. The gene contained an open reading frame consisting of 2,793 bp coding for a polypeptide with a molecular weight of 99,308. The polypeptide had a signal peptide (2 kDa) consisting of 25 amino acid residues preceding the N-terminal amino acid sequence of the enzyme and exhibited significant homology with hyaluronidase of Streptomyces griseus (identity score, 37.7%). Escherichia coli transformed with the gene without the signal peptide sequence showed a xanthan lyase activity and produced intracellularly a large amount of the enzyme (400 mg/liter of culture) with a molecular mass of 97 kDa. During storage at 4 degrees C, the purified enzyme (97 kDa) from E. coli was converted to a low-molecular-mass (75-kDa) enzyme with properties closely similar to those of the enzyme (75 kDa) from Bacillus sp. strain GL1, specifically in optimum pH and temperature for activity, substrate specificity, and mode of action. Logarithmically growing cells of Bacillus sp. strain GL1 on the medium with xanthan were also found to secrete not only xanthan lyase (75 kDa) but also a 97-kDa protein with the same N-terminal amino acid sequence as that of xanthan lyase (75 kDa). These results suggest that, in Bacillus sp. strain GL1, xanthan lyase is first synthesized as a preproform (99 kDa), secreted as a precursor (97 kDa) by a signal peptide-dependent mechanism, and then processed into a mature form (75 kDa) through excision of a C-terminal protein fragment with a molecular mass of 22 kDa.  相似文献   

7.
The low density, detergent-insoluble membrane fraction (LD-DIM), where gangliosides are likely to be highly enriched, was prepared from sperm of two sea urchin species, Hemicentrotus pulcherrimus and Strongylocentrotus purpuratus. Immunoblotting showed the presence in the LD-DIM of two receptors for egg ligands, a glycosylphosphatidylinositol (GPI)-anchored protein, and four proteins which may be involved in signal transduction. Co-immunoprecipitation revealed that at least three proteins, the speract receptor, the 63kDa GPI-anchored protein and the alpha subunit of a heterotrimeric Gs protein, are localized in the LD-DIM. This suggests that the LD-DIM fraction may be a membrane microdomain for speract-speract receptor interaction, as well as the subsequent signal transduction pathway involved in induction of sperm respiration, motility and possibly the acrosome reaction.  相似文献   

8.
Rotation of the sodium-driven polar flagella of Vibrio alginolyticus requires four motor proteins: PomA, PomB, MotX and MotY. MotX and MotY, which are unique components of the sodium-driven motor of Vibrio, have been believed to be localized in the inner (cytoplasmic) membrane via their N-terminal hydrophobic segments. Here we show that MotX and MotY colocalize to the outer membrane. Both proteins, when expressed together, were detected in the outer membrane fraction separated by sucrose density gradient centrifugation. As mature MotX and MotY proteins do not have N-terminal hydrophobic segments, the N-termini of the primary translation products must have signal sequences that are removed upon translocation across the inner membrane. Moreover, MotX and MotY require each other for efficient localization to the outer membrane. Based on these lines of evidence, we propose that MotX and MotY form a complex in the outer membrane. This is the first case that describes motor proteins function in the outer membrane for flagellar rotation.  相似文献   

9.
The FlgH protein of Salmonella typhimurium, from which the outer membrane L ring of the flagellar basal body is constructed, has a consensus motif (LTG C) for lipoylation and signal peptide cleavage. We have confirmed the previous finding (M. Homma, K. Ohnishi, T. Iino, and R. M. Macnab, J. Bacteriol. 169:3617-3624, 1987) that it is synthesized in precursor form and processed to a mature form with an apparent molecular mass of ca. 25 kDa. flgH alleles with an in-frame deletion or a 3' truncation still permitted processing. The deletion permitted partial restoration of motility in complementation tests, whereas the truncation did not. Globomycin, an antibiotic which inhibits signal peptide cleavage of prolipoproteins, caused accumulation of precursor forms of FlgH. When cells transformed with a plasmid containing the flgH gene were grown in the presence of [3H]palmitate, a 25-kDa protein doublet was found to be radiolabeled; its identity as FlgH was confirmed by shifts in mobility when the internally deleted and truncated alleles of the gene were used. Hook-basal body complexes from cells grown in the presence of [3H]palmitate demonstrated that FlgH incorporated into flagellar structure was also labeled. An in-frame fusion between the leader sequence of the periplasmic protein PeIB and the mature FlgH sequence, with the putative N-terminal cysteine replaced by glycine, resulted in production of a fusion protein that was processed to its mature form. With a low-copy-number plasmid, the ability of this pelB-flgH fusion to complement a flgH mutant was poor, but with a high-copy-number plasmid, it was comparable to that of the wild type. Although lacking the N-terminal cysteine and therefore being incapable of lipoylation via a thioether linkage, the mutant protein still incorporated [3H]palmitate at low levels, perhaps through acylation of the N-terminal alpha-amino group. We conclude that FlgH is a lipoprotein and that under normal physiological conditions the lipoyl modification is necessary for FlgH to function properly as the L-ring protein of the flagellar basal body. We suggest that the N terminus of FlgH is responsible for anchoring the basal body in the outer membrane and that the C terminus may be responsible for binding to the P ring to form the L,P-ring complex.  相似文献   

10.
Flagella are sensory organelles that interact with the environment through signal transduction and gene expression networks. We used microarray profiling to examine gene regulation associated with flagellar length change in the green alga Chlamydomonas reinhardtii. Microarrays were probed with fluorescently labeled cDNAs synthesized from RNA extracted from cells before and during flagellar assembly or disassembly. Evaluation of the gene expression profiles identified >100 clones showing at least a twofold change in expression during flagellar length changes. Products of these genes are associated not only with flagellar structure and motility but also with other cellular responses, including signal transduction and metabolism. Expression of specific genes from each category was further characterized at higher resolution by using quantitative real-time PCR (qRT-PCR). Analysis and comparison of the gene expression profiles coupled to flagellar assembly and disassembly revealed that each process involves a new and uncharacterized whole-cell response to flagellar length changes. This analysis lays the groundwork for a more comprehensive understanding of the cellular and molecular networks regulating flagellar length changes.  相似文献   

11.
12.
When grown on xanthan as a carbon source, the bacterium Bacillus sp. strain GL1 produces extracellular xanthan lyase (75 kDa), catalyzing the first step of xanthan depolymerization (H. Nankai, W. Hashimoto, H. Miki, S. Kawai, and K. Murata, Appl. Environ. Microbiol. 65:2520–2526, 1999). A gene for the lyase was cloned, and its nucleotide sequence was determined. The gene contained an open reading frame consisting of 2,793 bp coding for a polypeptide with a molecular weight of 99,308. The polypeptide had a signal peptide (2 kDa) consisting of 25 amino acid residues preceding the N-terminal amino acid sequence of the enzyme and exhibited significant homology with hyaluronidase of Streptomyces griseus (identity score, 37.7%). Escherichia coli transformed with the gene without the signal peptide sequence showed a xanthan lyase activity and produced intracellularly a large amount of the enzyme (400 mg/liter of culture) with a molecular mass of 97 kDa. During storage at 4°C, the purified enzyme (97 kDa) from E. coli was converted to a low-molecular-mass (75-kDa) enzyme with properties closely similar to those of the enzyme (75 kDa) from Bacillus sp. strain GL1, specifically in optimum pH and temperature for activity, substrate specificity, and mode of action. Logarithmically growing cells of Bacillus sp. strain GL1 on the medium with xanthan were also found to secrete not only xanthan lyase (75 kDa) but also a 97-kDa protein with the same N-terminal amino acid sequence as that of xanthan lyase (75 kDa). These results suggest that, in Bacillus sp. strain GL1, xanthan lyase is first synthesized as a preproform (99 kDa), secreted as a precursor (97 kDa) by a signal peptide-dependent mechanism, and then processed into a mature form (75 kDa) through excision of a C-terminal protein fragment with a molecular mass of 22 kDa.  相似文献   

13.
Flagella of Helicobacter pylori were isolated from intact organisms by shearing and differential centrifugation. Treatment of the flagella with the detergent Triton X-100 removed the flagellar sheath, which was confirmed by electron microscopy, and the remaining naked flagella were shown by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) to consist primarily of a single 54 kilodalton (kDa) polypeptide. This was confirmed by immunogold labelling and electron microscopy of detergent treated whole organisms, using a mouse antiserum specific for the 54 kDa polypeptide. Polypeptides solubilised from crude flagellar preparations by detergent treatment were found to have molecular weights of 26, 30, 58, 62, 66 and 80 kDa. These polypeptides are possible components of the flagellar sheath and they may represent outer membrane proteins, based on the assumption that the flagellar sheath is related in composition to the outer membrane of the organism. Analysis and definition of these components of the surface structures of the organism are important in understanding the interaction between the organism and its host in pathogenesis.  相似文献   

14.
The 220 kDa Bordetella pertussis filamentous haemagglutinin (FHA) is the major extracellular protein of this organism. It is exported using a signal peptide-dependent pathway, and its secretion depends on one specific outer membrane accessory protein, FhaC. In this work, we have investigated the influence of conformation on the FhaC-mediated secretion of FHA using an 80 kDa N-terminal FHA derivative, Fha44. In contrast to many signal peptide-dependent secretory proteins, no soluble periplasmic intermediate of Fha44 could be isolated. In addition, cell-associated Fha44 synthesized in the absence of FhaC did not remain competent for extracellular secretion upon delayed expression of FhaC, indicating that the translocation steps across the cytoplasmic and the outer membrane might be coupled. A chimeric protein, in which the globular B subunit of the cholera toxin, CtxB, was fused at the C-terminus of Fha44, was not secreted in B. pertussis or in Escherichia coli expressing FhaC. The hybrid protein was only secreted when both disulphide bond-forming cysteines of CtxB were replaced by serines or when it was produced in DsbA?E. coli. The Fha44 portion of the secretion-incompetent hybrid protein was partly exposed on the cell surface. These results argue that the Fha44–CtxB hybrid protein transited through the periplasmic space, where disulphide bond formation is specifically catalysed, and that secretion across the outer membrane was initiated. The folded CtxB portion prevented extracellular release of the hybrid, in contrast to the more flexible CtxB domain devoid of cysteines. We propose a secretion model whereby Fha44 transits through the periplasmic space on its way to the cell surface and initiates its translocation through the outer membrane before being released from the cytoplasmic membrane. Coupling of Fha44 translocation across both membranes would delay the acquisition of its folded structure until the protein emerges from the outer membrane. Such a model would be consistent with the extensive intracellular proteolysis of FHA derivatives in B. pertussis.  相似文献   

15.
Proteins involved in chemotaxis methylation reactions have been identified in Caulobacter crescentus and their activities, times of synthesis and cellular positions have been determined. The methyl-accepting chemotaxis proteins, the methyl-transferase and the methylesterase were all shown to be active in the flagella-bearing swarmer cell, but all three activities were lost after the swarmer cells shed their flagellum and differentiated into a stalked cell. The membrane methyl-accepting chemotaxis proteins were shown to be synthesized before cell division, coincident with the synthesis of the components of the flagellum, and to be specifically localized in the membrane of the incipient swarmer cell portion of the predivisional cell. The cytoplasmic methylesterase was also found to be differentially synthesized coincident with the period of flagellar biogenesis. Furthermore, methyltransferase activity, present in the predivisional cell, was detected only in the swarmer cell upon cell division. These results demonstrate that the chemotaxis methylation machinery is positionally biased toward one portion of the predivisional cell, and that the time of expression of a set of fla and che genes is correlated with the positioning of their gene products within the cell.  相似文献   

16.
Most of the structural components of the flagellum of Salmonella typhimurium are exported through a flagellum-specific pathway, which is a member of the family of type III secretory pathways. The export apparatus for this process is poorly understood. A previous study has shown that two proteins, about 23 and 26 kDa in size and of unknown genetic origin, are incorporated into the flagellar basal body at a very early stage of flagellar assembly. In the present study, we demonstrate that these basal body proteins are FliP (in its mature form after signal peptide cleavage) and FliR respectively. Both of these proteins have homologues in other type III secretion systems. By placing a FLAG epitope tag on FliR and the MS-ring protein FliF and immunoblotting isolated hook basal body complexes with anti-FLAG monoclonal antibody, we estimate (using the FLAG-tagged FliF as an internal reference) that the stoichiometry of FliR is fewer than three copies per basal body. An independent estimate of stoichiometry was made using data from an earlier quantitative radiolabelling analysis, yielding values of around four or five subunits per basal body for FliP and around one subunit per basal body for FliR. Immunoelectron microscopy using anti-FLAG antibody and gold–protein A suggests that FliR is located near the MS ring. We propose that the flagellar export apparatus contains FliP and FliR and that this apparatus is embedded in a patch of membrane in the central pore of the MS ring.  相似文献   

17.
Four immunologically related proteins that belong to the annexin family were identified in cold acclimated wheat (Triticum aestivum). Two soluble forms with molecular masses of 34 and 36 kDa were found to bind phospholipid membranes in a calcium-dependent manner. These two forms are similar to the previously reported doublet in several plant species. The other two forms, with molecular masses of 39 and 22.5 kDa, were found associated with the microsomal fraction. Biochemical analysis showed that both forms are intrinsic membrane proteins and their association with the membrane is calcium independent. This is, to our knowledge, the first report of the presence of these annexin forms in plants. Membrane purification by two phase partitioning demonstrated that the p39 form is localized to the plasma membrane. Immunoblot analysis showed that the protein level of both p39 and p22.5 increases gradually reaching a maximum level after one day of low temperature exposure. The protein accumulation was similar in both hardy and less hardy cultivars, suggesting that the accumulation is not correlated with freezing tolerance. The results are discussed with respect to the possible role of these new intrinsic membrane annexins in low temperature signal transduction pathway.  相似文献   

18.
The Serratia marcescens serine protease gene encoding a 1,045-amino-acid precursor protein of 112 kDa directs excretion of the mature protease of ca. 58 kDa through the outer membrane of Escherichia coli. A typical signal peptide of 27 amino acids and a large COOH-terminal domain of the precursor are both functionally essential for the excretion of the mature protease into the medium. Sequence analysis of the fragment peptides of the mature protease as well as site-directed mutagenesis indicated that the COOH-terminus of the mature enzyme was Asp645. By using the polyclonal antibody against the 112-kDa precursor protein, not only the intact precursor but also two proteins, C-1 (40 kDa) and C-2 (38 kDa), corresponding to the processed COOH-terminal domains were detected in the insoluble fraction of E. coli cells. Further fractionation by sucrose density gradient centrifugation showed that C-1 and C-2 were localized in the outer membrane. The NH2-terminal residues of C-1 and C-2 were determined to be Ala702 and Phe717, respectively. All these data suggest that the precursor is cleaved at three positions, between Asp645-Ser646, Glu701-Ala702, and Gly716-Phe717, probably by the self-processing activity in the normal excretion pathway through the outer membrane.  相似文献   

19.
A series of fusions of flagellar genes to the lacZ gene was generated by insertion of Mu dII301 (Apr lac) bacteriophage into the genome of Escherichia coli. The beta-galactosidase activity in each resulting mutant was measured, and the location of the activity in the membrane, periplasmic, or cytoplasmic fraction of the cell was determined. There were three classes of mutants: those which had beta-galactosidase activity mainly in the membrane fraction, those which had it distributed in the soluble and membrane fractions, and those which had it in the cytoplasmic fraction only. The last, soluble-fraction-only, class was predominant in fla-lac gene fusions. In particular, the following mutants were shown to have beta-galactosidase activity in the membrane fractions: on the inner membrane, mutants with flaB fusions, and on the inner and outer membranes, mutants with flaA4850, flaM, and flaU4849 fusions. These results suggest that fla-lacZ gene fusions produce proteins which are able to detect the signals of the leader sequence and the membrane-anchoring region of the flagellar system.  相似文献   

20.
A single gene, VMA1, encodes the 69-kDa subunit of the vacuolar membrane H(+)-ATPase in the yeast Saccharomyces cerevisiae. We have proposed that the subunit is synthesized as a precursor of 120 kDa (1,071 amino acids) and then converted to the 69-kDa form by an unusual processing reaction, which removes the internal domain of 454 amino acids (residues 284-737) and joins the N- and C-terminal domains. Cysteine to serine mutations at residues 284 and 738, the residues that bracket the internal domain, were introduced into the VMA1 gene by site-directed mutagenesis, and the mutant genes were expressed in a null vma1 mutant. Cells harboring either of the mutant vma1 genes accumulate nonfunctional fragments of the subunit. The mutation of Cys-284 inhibited the cleavage of the N-terminal junction site. Cys-738-->Ser mutation appeared to block the processing at both junction sites although the mutant gene yielded a small fraction of the functional 69-kDa subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号