首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The phosphoprotein NS of vesicular stomatitis virus which accumulates within the infected cell cytoplasm is phosphorylated at multiple serine and threonine residues (G. M. Clinton and A. S. Huang, Virology 108:510-514, 1981; Hsu et al., J. Virol. 43:104-112, 1982). Using incomplete chemical cleavage at tryptophan residues, we mapped the major phosphorylation sites to the amino-terminal half of the protein. Analysis of phosphate-labeled tryptic peptides suggests that essentially all of the label is within the large trypsin-resistant fragment predicted from the sequence of Gallione et al. (J. Virol. 39:52-529, 1981). A similar result has been obtained for NS protein isolated from the virus particle by C.-H. Hsu and D. W. Kingsbury (J. Biol. Chem., in press). Analysis of phosphodipeptides utilizing the procedures of C. E. Jones and M. O. J. Olson (Int. J. Pept. Protein Res. 16:135-142, 1980) enabled us to detect as many as six distinct phosphate-containing dipeptides. From these studies, together with the known sequence data, we conclude that the major phosphate residues on cytoplasmic NS protein are located in the amino third of the NS molecule and most probably between residues 35 and 106, inclusive. The studies also provide formal chemical proof that NS protein has a structure consistent with a monomer of the sequence of Gallione et al. as modified by J. K. Rose (personal communication). The low electrophoretic mobility of this protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis is not therefore due to dimerization.  相似文献   

2.
3.
The same point mutation in the human cytomegalovirus UL97 open reading frame was found in three independently isolated ganciclovir-resistant mutants of strain AD169. Point mutations in the DNA polymerase genes of these strains have been previously identified (N.S. Lurain, K.D. Thompson, E.W. Holmes, and G.S. Read, J. Virol. 66:7146-7152, 1992). All three strains are, therefore, double mutants. To determine the contribution of the UL97 mutation to the high ganciclovir resistance of these mutants, the mutation from the ganciclovir-resistant strain D6/3/1 was transferred to the wild-type strain AD169 to produce the recombinant R6HS. The ganciclovir resistance of R6HS is 4-fold lower than that of D6/3/1 but 10-fold higher than that of AD169. R6HS, like AD169, is sensitive to the nucleotide analogs (S)-1-[(3-hydroxy-2-phosphonylmethoxy) propyl]adenine and (S)-1-[(3-hydroxy-2-phosphonylmethoxy)propyl]cytosine. Ganciclovir phosphorylation in R6HS-infected cells was at the same reduced level as that found in cells infected with the parental mutant D6/3/1. The same G-to-T transversion at nucleotide 1380 in the UL97 coding sequence is present in both R6HS and D6/3/1. This mutation results in the substitution of isoleucine for methionine at amino acid residue 460. In an alignment of the R6HS UL97 amino acid sequence with the amino acid sequences of a wide range of protein kinase family members, methionine 460 lies within a highly conserved region which may function in nucleotide binding and phosphate transfer.  相似文献   

4.
Phage T4 is among the best-characterized biological systems (S. Kanamaru and F. Arisaka, Seikagaku 74:131-135, 2002; E. S. Miller et al., Microbiol. Mol. Biol. Rev. 67:86-156, 2003; W. B. Wood and H. R. Revel, Bacteriol. Rev. 40:847-868, 1976). To date, several genomes of T4-like bacteriophages are available in public databases but without any APEC bacteriophages (H. Jiang et al., Arch. Virol. 156:1489-1492, 2011; L. Kaliniene, V. Klausa, A. Zajanckauskaite, R. Nivinskas, and L. Truncaite, Arch. Virol. 156:1913-1916, 2011; J. H. Kim et al., Vet. Microbiol. 157:164-171, 2012; W. C. Liao et al., J. Virol. 85:6567-6578, 2011). We isolated a bacteriophage from a duck factory, named HX01, that infects avian pathogenic Escherichia coli (APEC). Sequence and morphological analyses revealed that phage HX01 is a T4-like bacteriophage and belongs to the family Myoviridae. Here, we announce the complete genome sequence of phage HX01 and report the results of our analysis.  相似文献   

5.
6.
Stone M  Jia S  Heo WD  Meyer T  Konan KV 《Journal of virology》2007,81(9):4551-4563
Like most positive-strand RNA viruses, hepatitis C virus (HCV) is believed to replicate its genome on the surface of rearranged membranes. We have shown previously that HCV NS4AB, but not the product NS4B, inhibits endoplasmic reticulum (ER)-to-Golgi protein traffic (K. V. Konan, T. H. Giddings, Jr., M. Ikeda, K. Li, S. M. Lemon, and K. Kirkegaard, J. Virol. 77:7843-7855). However, both NS4AB and NS4B can induce "membranous web" formation, first reported by Egger et al. (D. B Egger, R. Gosert, L. Bianchi, H. E. Blum, D. Moradpour, and K. Bienz, J. Virol. 76:5974-5984), which is also observed in HCV-infected cells (Y. Rouille, F. Helle, D. Delgrange, P. Roingeard, C. Voisset, E. Blanchard, S. Belouzard, J. McKeating, A. H. Patel, G. Maertens, T. Wakita, C. Wychowski, and J. Dubuisson, J. Virol. 80:2832-2841) and cells that bear a subgenomic NS5A-green fluorescent protein (GFP) replicon (D. Moradpour, M. J. Evans, R. Gosert, Z. Yuan, H. E. Blum, S. P. Goff, B. D. Lindenbach, and C. M. Rice, J. Virol. 78:7400-7409). To determine the intracellular origin of the web, we examined NS4B colocalization with endogenous cellular markers in the context of the full-length or subgenomic replicon. We found that, in addition to ER markers, early endosome (EE) proteins, including Rab5, were associated with web-inducing protein NS4B. Furthermore, an immunoisolated fraction containing NS4B was found to contain both ER and EE proteins. Using fluorescence microscopy, we showed that wild-type and constitutively active Rab5 proteins were associated with NS4B. Interestingly, expression of dominant-negative Rab5 resulted in significant loss of GFP fluorescence in NS5A-GFP replicon cells. We also found that a small reduction in Rab5 protein expression decreased HCV RNA synthesis significantly. Furthermore, transfection of labeled Rab5 small interfering RNAs into NS5A-GFP replicon cells resulted in a significant decrease in GFP fluorescence. Finally, Rab5 protein was found to coimmunoprecipitate with HCV NS4B. These studies suggest that EE proteins, including Rab5, may play a role in HCV genome replication or web formation.  相似文献   

7.
Amino acid changes in the envelope glycoproteins of Sindbis virus have been linked to neurovirulence; however, the molecular mechanisms by which these amino acid changes alter neurovirulence are not known. Recombinant-virus studies have mapped an important determinant of neurovirulence in adult mice to a single amino acid change, glutamine to histidine, at position 55 of the E2 glycoprotein (P. C. Tucker, E. G. Strauss, R. J. Kuhn, J. H. Strauss, and D. E. Griffin, J. Virol. 67:4605-4610, 1993). To investigate how histidine confers neurovirulence, we examined the various stages of the virus life cycle in neural (N18) and nonneural (BHK) cells. In BHK cells, recombinant viruses 633 (E255Q) and TE (E255H) replicated similarly. In contrast, in N18 neuroblastoma cells, TE established infection more efficiently, replicated faster, and achieved higher rates of virus release than did 633. Viral structural protein synthesis was similar in 633- and TE-infected BHK cells, while in N18 cells, structural protein synthesis was detected only in TE-infected cells at 6 h and remained higher for at least 16 h postinfection. Viral RNA synthesis was initiated more rapidly and was up to fivefold greater in TE- versus 633-infected N18 cells. Taken together with other data demonstrating minimal effects on virus binding and entry (P. C. Tucker, S. H. Lee, N. Bui, D. Martinie, and D. E. Griffin, J. Virol. 71:6106-6112, 1997), these data suggest that E2 position 55 plays an important role at early stages of infection of neural cells, thereby facilitating neurovirulence.  相似文献   

8.
For most paramyxoviruses, syncytium formation requires the expression of both surface glycoproteins (HN and F) in the same cell, and evidence suggests that fusion involves a specific interaction between the HN and F proteins (X. Hu et al., J. Virol. 66:1528-1534, 1992). The stalk region of the Newcastle disease virus (NDV) HN protein has been implicated in both fusion promotion and virus specificity of that activity. The NDV F protein contains two heptad repeat motifs which have been shown by site-directed mutagenesis to be critical for fusion (R. Buckland et al., J. Gen. Virol. 73:1703-1707, 1992; T. Sergel-Germano et al., J. Virol. 68:7654-7658, 1994; J. Reitter et al., J. Virol. 69:5995-6004, 1995). Heptad repeat motifs mediate protein-protein interactions by enabling the formation of coiled coils. Upon analysis of the stalk region of the NDV HN protein, we identified two heptad repeats. Secondary structure analysis of these repeats suggested the potential for these regions to form alpha helices. To investigate the importance of this sequence motif for fusion promotion, we mutated the hydrophobic a-position amino acids of each heptad repeat to alanine or methionine. In addition, hydrophobic amino acids in other positions were also changed to alanine. Every mutant protein retained levels of attachment activity that was greater than or equal to the wild-type protein activity and bound to conformation-specific monoclonal as well as polyclonal antisera. Neuraminidase activity was variably affected. Every mutation, however, showed a dramatic decrease in fusion promotion activity. The phenotypes of these mutant proteins indicate that individual amino acids within the heptad repeat region of the stalk domain of the HN protein are important for the fusion promotion activity of the protein. These data are consistent with the idea that the HN protein associates with the F protein via specific interactions between the heptad repeat regions of both proteins.  相似文献   

9.
The P3HR-1 subclone of Jijoye differs from Jijoye and from other Epstein-Barr virus (EBV)-infected cell lines in that the virus produced by P3HR-1 cultures lacks the ability to growth-transform normal B lymphocytes (Heston et al., Nature (London) 295:160-163, 1982; Miller et al., J. Virol. 18:1071-1080, 1976; Miller et al., Proc. Natl. Acad. Sci. U.S.A. 71:4006-4010, 1974; Ragona et al., Virology 101:553-557, 1980). The P3HR-1 virus was known to be deleted for a region which encodes RNA in latently infected, growth-transformed cells (Bornkamm et al., J. Virol. 35:603-618, 1980; Heller et al., J. Virol. 38:632-648, 1981; King et al., J. Virol. 36:506-518, 1980; Raab-Traub et al., J. Virol. 27:388-398, 1978; van Santen et al., Proc. Natl. Acad. Sci. U.S.A. 78:1930-1934, 1980). This deletion is now more precisely defined. The P3HR-1 genome contains less than 170 base pairs (and possibly none) of the 3,300-base pair U2 region of EBV DNA and is also lacking IR2 (a 123-base pair repeat which is the right boundary of U2). A surprising finding is that EBV isolates vary in part of the U2 region. Two transforming EB viruses, AG876 and Jijoye, are deleted for part of the U2 region including most or all of a fragment, HinfI-c, which encodes part of one of the three more abundant cytoplasmic polyadenylated RNAs of growth-transformed cells (King et al., J. Virol. 36:506-518, 1980; King et al., J. Virol. 38:649-660, 1981; van Santen et al., Proc. Natl. Acad. Sci. U.S.A. 78:1930-1934).  相似文献   

10.
11.
The latent membrane protein (LMP) of Epstein-Barr virus (EBV) has a short half-life (V. R. Baichwal and B. Sugden, J. Virol, 61:866-875, 1987; K.P. Mann and D. Thorley-Lawson, J. Virol, 61:2100-2108, 1987), is localized in patches in the membrane (D. Liebowitz, D. Wang, and E, Kieff, J. Virol, 58:233-237, 1986), and associates with the cytoskeleton in EBV-immortalized B lymphocytes (D. Liebowitz, R. Kopan, E. Fuchs, J. Sample, and E. Kieff, Mol. Cell. Biol. 7:2299-2308, 1987; K. P. Mann and D. Thorley-Lawson, J. Virol. 61:2100-2108, 1987). Deletion mutants of LMP that are either positive or negative in the induction both of anchorage-independent growth of BALB/c 3T3 cells (V. R. Baichwal and B. Sugden, Oncogene 4:67-74, 1989) and of cytotoxicity in a variety of cells (W. Hammerschmidt, B. Sugden, and V. R. Baichwal, J. Virol. 63:2469-2475, 1989) have been studied to identify the biochemical properties of this protein that correlate with its effects on cell growth. Mutant LMP proteins that are metabolically stable, do not associate with the cytoskeleton, and exhibit a diffuse plasma membrane localization also do not induce anchorage-independent growth in rodent cells or cytotoxicity in B lymphoblastoid cells. In contrast, a mutant of LMP that is functionally identical to the wild-type protein has a half-life, membrane localization, and cytoskeletal association similar or identical to those of LMP. These results are consistent with the hypothesis that LMP's rapid turnover, association with the cytoskeleton, and patching in the membrane are required for it to affect cell growth.  相似文献   

12.
An essential step in assembly of herpes simplex virus (HSV) type 1 capsids involves interaction of the major capsid protein (VP5) with the C terminus of the scaffolding protein (encoded by the UL26.5 gene). The final 12 residues of the HSV scaffolding protein contains an A-X-X-F-V/A-X-Q-M-M-X-X-R motif which is conserved between scaffolding proteins found in other alphaherpesviruses but not in members of the beta- or gamma-herpesviruses. Previous studies have shown that the bovine herpesvirus 1 (alphaherpesvirus) UL26.5 homolog will functionally substitute for the HSV UL26.5 gene (E. J. Haanes et al., J. Virol. 69:7375-7379, 1995). The homolog of the UL26.5 gene in the human cytomegalovirus (HCMV) genome is the UL80.5 gene. In these studies, we tested whether the HCMV UL80.5 gene would substitute for the HSV UL26.5 gene in a baculovirus capsid assembly system that we have previously described (D. R. Thomsen et al., J. Virol. 68:2442-2457, 1994). The results demonstrate that (i) no intact capsids were assembled when the full-length or a truncated (missing the C-terminal 65 amino acids) UL80.5 protein was tested; (ii) when the C-terminal 65 amino acids of the UL80.5 protein were replaced with the C-terminal 25 amino acids of the UL26.5 protein, intact capsids were made and direct interaction of the UL80.5 protein with VP5 was detected; (iii) assembly of intact capsids was demonstrated when the sequence of the last 12 amino acids of the UL80.5 protein was changed from RRIFVA ALNKLE to RRIFVAAMMKLE; (iv) self-interaction of the scaffold proteins is mediated by sequences N terminal to the maturation cleavage site; and (v) the UL26.5 and UL80.5 proteins will not coassemble into scaffold structures. The results suggest that the UL26.5 and UL80.5 proteins form a scaffold by self-interaction via sequences in the N termini of the proteins and emphasize the importance of the C terminus for interaction of scaffold with the proteins that form the capsid shell.  相似文献   

13.
The maturation of the poliovirus capsid occurs as the result of a single unexplained proteolytic event during which 58 to 59 copies of the 60 VP0 capsid protein precursors are cleaved. An autocatalytic mechanism for cleavage of VP0 to VP4 and VP2 was proposed by Arnold et al. (E. Arnold, M. Luo, G. Vriend, M. G. Rossman, A. C. Palmenberg, G. D. Parks, M. J. Nicklin, and E. Wimmer, Proc. Natl. Acad. Sci. USA 84:21-25, 1987) in which serine 10 of VP2 is activated by virion RNA to catalyze VP4-VP2 processing. The hypothesis rests on the observation that a hydrogen bond was observed between serine 10 of VP2 (S2010) and the carboxyl terminus of VP4 in three mature picornaviral atomic structures: rhinovirus 14, mengovirus, and poliovirus type 1 (Mahoney). We constructed mutant viruses with cysteine (S2010C) or alanine (S2010A) replacing serine 10 of VP2; these exhibited normal proteolytic processing of VP0. While our results do not exclude an autocatalytic mechanism for the maturation cleavage, they do eliminate the conserved S2010 residue as the catalytic amino acid.  相似文献   

14.
To determine the P3 region protein-processing sites cleaved by the hepatitis A virus 3C protease, a nested set of constructs containing a portion of 3A (3A* [the asterisk denotes an incomplete protein]), 3B and 3C and various amounts of 3D, fused in frame to Escherichia coli TrpE-coding sequences under control of the tryptophan promoter, was made. Additional plasmids that encoded a portion of 2C (2C*) and the P3 proteins, including complete or incomplete 3D sequences, were constructed. After induction, E. coli containing these recombinant plasmids produced high levels of fusion proteins as insoluble aggregates. 3C-mediated cleavage products were identified by comparison of expression with a matching set of plasmids, containing an engineered mutation in 3C. Cleavage products were detected by immunoblot analyses by using antisera against the TrpE protein, against 3D*, and against 3CD*. Scissile bonds were determined by N-terminal amino acid sequencing of the proteins formed by cleavage. The results showed that when a portion of 2C was present, the primary cleavage by the 3C protease was between 2C and 3A, and the cleavage site was QG, as predicted by J. I. Cohen, J. R. Ticehurst, R. H. Purcell, A. Buckler-White, and B. M. Baroudy, J. Virol. 61:50-59, 1987. Very little further cleavage of the released P3 protein was detected. When the fusion protein contained no 2C and included only 3A*-to-3D sequences, efficient cleavage occurred between 3B and 3C, at the QS pair, also as predicted by Cohen et al. (J. Virol. 61:50-59, 1987). The latter proteins were also cleaved between 3C and 3D, but less efficiently than between 3B and 3C. Extracts of bacteria expressing proteins from 3A* to 3D also cleaved a radiolabelled hepatitis A virus substrate containing VP1*2ABC* sequences in trans.  相似文献   

15.
The Epstein-Barr virus (EBV) latent infection membrane protein 1 (LMP1) has previously been shown to cause EBV-negative B-lymphoma cells to grow in large clumps and to alter expression of surface activation and adhesion molecules (D. Wang, D. Liebowitz, F. Wang, C. Gregory, A. Rickinson, R. Larson, T. Springer, and E. Kieff, J. Virol. 62:1473-4184, 1988; F. Wang, C. Gregory, C. Sample, M. Rowe, D. Liebowitz, R. Murray, A. Rickinson, and E. Kieff, J. Virol. 64:2309-2318, 1990). In order to identify functional elements in the amino-terminal cytoplasmic domain and the first four transmembrane domains which were previously shown to be essential for LMP1 activity, three smaller deletion mutants were constructed and tested for their activity in B-lymphoma cells. The results of the present study indicate that the amino-terminal cytoplasmic domain, the first transmembrane domain, and the third and fourth transmembrane domains each contribute to LMP1's effects on B lymphocytes.  相似文献   

16.
The gene for glycoprotein gB2 of herpes simplex virus type 2 strain 333 was cloned, sequenced, and expressed in mammalian cells. The gB2 protein had an overall nucleotide and amino acid sequence homology of 86% with the cognate gB1 protein. However, of the 125 amino acid substitutions or deletions, only 12.5% were conservative replacements. These differences were clustered within an NH2-terminal region, a central region, and a COOH-terminal region, resulting in domains of near identity broken by small regions of marked divergence. Regions of greatest homology included a 90-amino-acid stretch starting at residue 484 and 39 amino acids spanning residues 835 to 873, which cover a rate-of-entry locus mapped to Ala-552 and a syn locus mapped to Arg-857, respectively, in gB1 by Bzik et al. (D. J. Bzik, B. A. Fox, N. A. DeLuca, and S. Person, Virology 133:301-314, 1984). Pellett et al. (P. E. Pellett, K. G. Kousoulas, L. Pereira, and B. Roizman, J. Virol. 53:243-253, 1985) mapped the mutations in three monoclonal antibody-resistant gB1 mutants between amino acids 273 and 443. These epitopes are included in a region of 98 residues identical between gB1 and gB2. The identity of this protein was verified by placing a truncated gene lacking the 303 carboxyl-terminal amino acids of gB2 into mammalian COS and CHO cells. Expression was demonstrated by immunofluorescence and radioimmunoprecipitation. This protein will be purified from the stable CHO cell lines and compared with gB1 for immunogenicity and protective efficacy in animal challenge models.  相似文献   

17.
One of the features of the life cycle of retroviruses is insertion of the proviral DNA into host chromosomes. A protein encoded by the 3' end of the pol gene of the virus genome has been shown to possess endonuclease activity (D. P. Grandgenett, A. C. Vora, and R. D. Schiff, Virology 89:119-132, 1978), which is necessary for DNA integration. Sera from the majority of human immunodeficiency virus (HIV)-infected individuals react with endonuclease protein p31 in serological tests (J. S. Allan, J. E. Coligan, T.-H. Lee, F. Barin, P. J. Kanki, S. M'Boup, M. F. McLane, J. E. Groopman, and M. Essex, Blood 69:331-333, 1987; E. F. Lillehoj, F. H. R. Salazar, R. J. Mervis, M. G. Raum, H. W. Chan, N. Ahmad, and S. Venkatesan, J. Virol. 62:3053-3058, 1988; K. S. Steimer, K. W. Higgins, M. A. Powers, J. C. Stephans, A. Gyenes, G. George-Nascimento, P. A. Liciw, P. J. Barr, R. A. Hallewell, and R. Sanchez-Pescador, J. Virol. 58:9-16, 1986). It is not known, however, which part of the protein represents the target(s) for antibody response. To study this, we synthesized peptides and used them in an enzyme-linked immunosorbent assay system to map the reactivity of human immunodeficiency virus type 1 (HIV-1) antibody-positive sera to the different regions of the HIV endonuclease. A uniquely antigenic, HIV-1- and HIV-2-cross-reacting site was identified in the central part of this protein from Phe-663 to Trp-670.  相似文献   

18.
The plasma membrane calcium/calmodulin-dependent calcium ATPase (PMCA) (Shull, G.E., and J. Greeb. 1988. J. Biol. Chem. 263:8646-8657; Verma, A.K., A.G. Filoteo, D.R. Stanford, E.D. Wieben, J.T. Penniston, E.E. Strehler, R. Fischer, R. Heim, G. Vogel, S. Mathews, et al. 1988. J. Biol. Chem. 263:14152-14159; Carafoli, E. 1997. Basic Res. Cardiol. 92:59-61) has been proposed to be a regulator of calcium homeostasis and signal transduction networks of the cell. However, little is known about its precise mechanisms of action. Knock-out of (mainly neuronal) isoform 2 of the enzyme resulted in hearing loss and balance deficits due to severe inner ear defects, affecting formation and maintenance of otoconia (Kozel, P.J., R.A. Friedman, L.C. Erway, E.N. Yamoah, L.H. Liu, T. Riddle, J.J. Duffy, T. Doetschman, M.L. Miller, E.L. Cardell, and G.E. Shull. 1998. J. Biol. Chem. 273:18693-18696). Here we demonstrate that PMCA 4b is a negative regulator of nitric oxide synthase I (NOS-I, nNOS) in HEK293 embryonic kidney and neuro-2a neuroblastoma cell models. Binding of PMCA 4b to NOS-I was mediated by interaction of the COOH-terminal amino acids of PMCA 4b and the PDZ domain of NOS-I (PDZ: PSD 95/Dlg/ZO-1 protein domain). Increasing expression of wild-type PMCA 4b (but not PMCA mutants unable to bind PDZ domains or devoid of Ca2+-transporting activity) dramatically downregulated NO synthesis from wild-type NOS-I. A NOS-I mutant lacking the PDZ domain was not regulated by PMCA, demonstrating the specific nature of the PMCA-NOS-I interaction. Elucidation of PMCA as an interaction partner and major regulator of NOS-I provides evidence for a new dimension of integration between calcium and NO signaling pathways.  相似文献   

19.
ts701 is a temperature-sensitive mutant of herpes simplex virus type 1 strain KOS induced by hydroxylamine mutagenesis (C.T. Chu, D. S. Parris, R. A. F. Dixon, F. E. Farber, and P. A. Schaffer, Virology 98:168-181, 1979). In the present study, the mutation rendering ts701 temperature sensitive was mapped to coordinates 0.609 through 0.614 in the UL region of the genome. At the nonpermissive temperature, ts701 (i) failed to induce the synthesis of viral DNA, (ii) exhibited a dramatically reduced ability to drive replication of a plasmid containing the herpes simplex virus origin of viral DNA synthesis, oriS, (iii) generated no viral polypeptides of the late (gamma 2) kinetic class, and (iv) produced virions with electron-translucent cores. Northern (RNA) blot hybridization demonstrated that two mRNAs--one of the beta kinetic class and one of the gamma kinetic class--hybridized to a 1.3-kilobase viral DNA fragment that rescued the mutation in ts701. Based on the phenotype and mapping of ts701, it is likely that its mutation lies in the gene specifying the 65,000-Mr DNA-binding protein (65KDBP) recently described by Marsden et al. (H.S. Marsden, M.E.M. Campbell, L. Haarr, M. C. Frame, D. S. Parris, M. Murphy, R. G. Hope, M. T. Muller, and C. M. Preston, J. Virol. 61:2428-2437, 1987).  相似文献   

20.
Gerber K  Wimmer E  Paul AV 《Journal of virology》2001,75(22):10979-10990
We have previously shown that the RNA polymerase 3D(pol) of human rhinovirus 2 (HRV2) catalyzes the covalent linkage of UMP to the terminal protein (VPg) using poly(A) as a template (K. Gerber, E. Wimmer, and A. V. Paul, J. Virol. 75:10969-10978, 2001). The products of this in vitro reaction are VPgpU, VPgpUpU, and VPg-poly(U), the 5' end of minus-strand RNA. In the present study we used an assay system developed for poliovirus 3D(pol) (A. V. Paul, E. Rieder, D. W. Kim, J. H. van Boom, and E. Wimmer, J. Virol. 74: 10359-10370, 2000) to search for a viral sequence or structure in HRV2 RNA that would provide specificity to this reaction. We now show that a small hairpin in HRV2 RNA [cre(2A)], located in the coding sequence of 2A(pro), serves as the primary template for HRV2 3D(pol) in the uridylylation of HRV2 VPg, yielding VPgpU and VPgpUpU. The in vitro reaction is strongly stimulated by the addition of purified HRV2 3CD(pro). Our analyses suggest that HRV2 3D(pol) uses a "slide-back" mechanism during synthesis of the VPg-linked precursors. The corresponding cis- replicating RNA elements in the 2C(ATPase) coding region of poliovirus type 1 Mahoney (I. Goodfellow, Y. Chaudhry, A. Richardson, J. Meredith, J. W. Almond, W. Barclay, and D. J. Evans, J. Virol. 74:4590-4600, 2000) and VP1 of HRV14 (K. L. McKnight and S. M. Lemon, RNA 4:1569-1584, 1998) can be functionally exchanged in the assay with cre(2A) of HRV2. Mutations of either the first or the second A in the conserved A(1)A(2)A(3)CA sequence in the loop of HRV2 cre(2A) abolished both viral growth and the RNA's ability to serve as a template in the in vitro VPg uridylylation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号