首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the biosynthesis of the cyclic decapeptide antibiotic gramicidin S, the constituent amino acids are activated by a two-step mechanism involving aminoacyl adenylate and thio ester formation which are both reversible processes. The dissociation constants (KD) for the gramicidin S synthetase-substrate amino acid-thio ester complexes are 100-1000-fold lower compared to the KM data of the preceding aminoacyl adenylate reactions. The affinity for these substrates is appreciably higher at the thio template sites than at the aminoacyl adenylate reaction centers. Therefore, the activation equilibria are quantitatively shifted toward thio ester formation. A set of thermodynamic parameters for the activation processes was determined from the temperature dependence of the KM and KD data. Reaction enthalpies were obtained from a van't Hoff analysis of these constants. delta G degree for the substrate activation reactions of the heavy enzyme of gramicidin S synthetase (GS 2) is predominantly controlled by entropy contributions. In contrast, the overall activation and concomitant racemization of phenylalanine by phenylalanine racemase (GS 1) are exothermic processes which are distinguished by a small negative reaction entropy.  相似文献   

2.
The PheA domain of gramicidin synthetase A, a non-ribosomal peptide synthetase, selectively binds phenylalanine along with ATP and Mg2+ and catalyzes the formation of an aminoacyl adenylate. In this study, we have used a novel protein redesign algorithm, K*, to predict mutations in PheA that should exhibit improved binding for tyrosine. Interestingly, the introduction of two predicted mutations to PheA did not significantly improve KD, as measured by equilibrium fluorescence quenching. However, the mutations improved the specificity of the enzyme for tyrosine (as measured by kcat/KM), primarily driven by a 56-fold improvement in KM, although the improvement did not make tyrosine the preferred substrate over phenylalanine. Using stopped-flow fluorometry, we examined binding of different amino acid substrates to the wild-type and mutant enzymes in the pre-steady state in order to understand the improvement in KM. Through these investigations, it became evident that substrate binding to the wild-type enzyme is more complex than previously described. These experiments show that the wild-type enzyme binds phenylalanine in a kinetically selective manner; no other amino acids tested appeared to bind the enzyme in the early time frame examined (500 ms). Furthermore, experiments with PheA, phenylalanine, and ATP reveal a two-step binding process, suggesting that the PheA-ATP-phenylalanine complex may undergo a conformational change toward a catalytically relevant intermediate on the pathway to adenylation; experiments with PheA, phenylalanine, and other nucleotides exhibit only a one-step binding process. The improvement in KM for the mutant enzyme toward tyrosine, as predicted by K*, may indicate that redesigning the side-chain binding pocket allows the substrate backbone to adopt productive conformations for catalysis but that further improvements may be afforded by modeling an enzyme:ATP:substrate complex, which is capable of undergoing conformational change.  相似文献   

3.
An investigation was made of the intermolecular forces which determine substrate recognition and binding as well as of the topography and localized environment of the different binding sites of the substrate amino acids of gramicidin S-synthetase (GSS) using substrate derivatives as molecular probes. It is demonstrated that among the aminoacyl adenylate binding sites of the heavy component of GSS the activation site of L-ornithine is distinguished by a relatively high substrate variability. The active centres of GSS are less restrictive for the activation of substrate analogues modified at the carboxyl group than for derivatives substituted at the alpha-amino group.  相似文献   

4.
Kynurenine pyruvate aminotransferase was purified from rat kidney. The purified enzyme had an isoelectric point of pH 5.2 and a pH optimum of 9.3. The enzyme was active with pyruvate as amino acceptor but not with 2-oxoglutarate, and utilized various aromatic amino acids as amino donors. L-Amino acids were effective in the following order of activity: histidine greather than phenylalanine greater than kynurenine greater than tyrosine greater than tryptophan greater than 5-hydroxytryptophan. The apparent Km values were about 0.63 mM, 1.4 mM and 0.09 mM for histidine, kynurenine and phenylalanine, respectively. Km values for pyruvate were 5.5 mM with histidine as amino donor, 1.3 mM with kynurenine and 8.5 mM with phenylalanine. Kynurenine pyruvate aminotransferase activity of the enzyme was inhibited by the addition of histidine or phenylalanine. The molecular weights determined by gel filtration and sucrose density gradient centrifugation were approximately 76000 and 79000, respectively. On the basis of purification ratio, substrate specificity, inhibition by common substrates, subcellular distribution, isoelectric focusing and polyacrylamide-gel electrophoresis, it is suggested that kynurenine pyruvate aminotransferase is identical with histidine pyruvate aminotransferase and also with phenylalanine pyruvate aminotransferase. The physiological significance of the enzyme is discussed.  相似文献   

5.
Aminoacyl tRNA synthetases (aaRSs) catalyze the first step in protein biosynthesis, establishing a connection between codons and amino acids. To maintain accuracy, aaRSs have evolved a second active site that eliminates noncognate amino acids. Isoleucyl tRNA synthetase edits valine by two tRNA(Ile)-dependent pathways: hydrolysis of valyl adenylate (Val-AMP, pretransfer editing) and hydrolysis of mischarged Val-tRNA(Ile) (posttransfer editing). Not understood is how a single editing site processes two distinct substrates--an adenylate and an aminoacyl tRNA ester. We report here distinct mutations within the center for editing that alter adenylate but not aminoacyl ester hydrolysis, and vice versa. These results are consistent with a molecular model that shows that the single editing active site contains two valyl binding pockets, one specific for each substrate.  相似文献   

6.
Systematic studies with purified alanine racemase and a number of substrate analogs permit the generalization that effective competitive inhibition is limited to 2- and 3-carbon compounds. A free α-amino group was not necessary for relatively tight binding; compounds lacking an amino group, or with an α-amino group acylated even by a bulky substituent, were bound as tightly as alanine. Substitution at the α-carbon of alanine (i.e., replacement of the α-H) eliminated binding, while substitution at the β-carbon generally reduced binding. Of several inhibitory compounds tested for substrate activity by H exchange with 3H2O, only glycine appeared active. Covalent binding to the enzyme by halo analogs was not demonstrated.  相似文献   

7.
Summary Broad substrate specificity amino acid racemase (EC 5.1.1.10) was purified from a crude extract of Pseudomonas putida SCRC-744 to near homogeneity. The enzyme has an isoelectric point of 7.6 and a molecular weight of 62,000–65,000. The enzyme showed a broad substrate specificity toward amino acids, utilizing d-glutamine as the best substrate. d-Phenylalanine acted as a substrate to 1% the velocity for d-glutamine. Maximal reaction velocities were observed at 50°–60°C and around pH 8. The apparent Km values for d-glutamine and d-phenylalanine were 7.8 mM and 25.7 mM, respectively. Both enantiomers of phenylalanine were efficiently racemized by acetone-dried cells of P. putida SCRC-744.  相似文献   

8.
The rate of transfer of amino acid from enzyme-bound aminoacyl adenylate to tRNA has been compared with the rate of esterification of free amino acid. The approach of L?vgren et al. (L?vgren, T. N. E., Heinonen, J., and Loftfield, R. B. (1975) J. Biol. Chem. 250, 3854-3860) was used, with 14C in the aminoacyl adenylate and 3H in the free amino acid and with both the lysine and isoleucine systems of Escherichia coli. In both systems kinetic analyses show more rapid transfer from the preformed enzyme complex when interference by the back reaction with inorganic pyrophosphate was eliminated. Parallel experiments, in which the amount of enzyme complex was measured, confirmed that aminoacyl adenylate is an intermediate in both systems. No evidence was found for an alternative mechanism.  相似文献   

9.
F Fasiolo  P Remy  E Holler 《Biochemistry》1981,20(13):3851-3856
Native and modified phenylalanine transfer ribonucleic acid (tRNAPhe) can modulate phenylalanine-dependent adenosine triphosphate--inorganic [32P]pyrophosphate (ATP--[32P]PPi) exchange activity via inhibition of adenylate synthesis. Inhibition is visualized if concentrations of L-phenylalanine, ATP, and pyrophosphate are subsaturating. In the proposed mechanism, tRNAPhe is a noncompetitive inhibitor at conditions where only one of the two active sites per molecule of enzyme is occupied by L-phenylalanine, ATP, and pyrophosphate. At saturating concentrations of these reactants, both active sites are occupied and, according to the model, inhibition is eliminated. Occupation by these reactants is assumed to follow homotropic negative cooperativity. The type of effects depends on modification of tRNAPhe. Native tRNAPhe, tRNA2'-dAPhe, and tRNAoxi-redPhe are inhibitors, tRNAPhepCpC has no effect, and tRNAoxPhe is an activator. Kinetics of activation by tRNAoxPhe are slow, following the time course of Schiff base formation and subsequent reduction by added cyanoborohydride. Besides showing that a putative enzyme amino group is nonessential for substrate binding and adenylate synthesis, this result may suggest that an enzyme amino group could interact with the 3'-terminal adenyl group of cognate tRNA. In the case of asymmetrical occupation of the enzyme active sites by all of the small reactants ATP, L-phenylalanine, and pyrophosphate, the interaction with the amino group might trigger the observed noncompetitive inhibition of the pyrophosphate exchange by tRNAPhe.  相似文献   

10.
Aromatic-amino-acid-glyoxylate aminotransferase was highly purified from the mitochondrial fraction of livers from monkey and glucagon-injected rats. The two enzyme preparations showed physical and enzymic properties different from a kynurenine aminotransferase previously described. The two enzymes had nearly identical molecular weights (approximate 80 000), isoelectric points (pH 8.0) and pH optima (pH 8.0 - 8.5). However, a difference in substrate specificity was observed between the two enzymes. Both enzymes utilized glyoxylate, pyruvate, hydroxypyruvate and 2-oxo-4-methyl-thiobutyrate as effective amino acceptors. 2-Oxoglutarate was active for rat enzyme but not for monkey enzyme. With glyoxylate, amino donors were effective in the following order of activity; phenylalanine greater than histidine greater than tyrosine greater than tryptophan greater than 5-hydroxytrypotphan greater than kynurenine for the rat enzyme, and phenylalanine greater than kynurenine greater than histidine greater than tryptophan greater than 5-hydroxy-tryptophan for the monkey enzyme.  相似文献   

11.
Proline racemase (ProR) is a member of the pyridoxal 5’-phosphate-independent racemase family, and is involved in the Stickland reaction (fermentation) in certain clostridia as well as the mechanisms underlying the escape of parasites from host immunity in eukaryotic Trypanosoma. Hydroxyproline epimerase (HypE), which is in the same protein family as ProR, catalyzes the first step of the trans-4-hydroxy-L-proline metabolism of bacteria. Their substrate specificities were previously considered to be very strict, in spite of similarities in their structures and catalytic mechanisms, and no racemase/epimerase from the ProR superfamily has been found in archaea. We here characterized the ProR-like protein (OCC_00372) from the hyperthermophilic archaeon, Thermococcus litoralis (TlProR). This protein could reversibly catalyze not only the racemization of proline, but also the epimerization of 4-hydroxyproline and 3-hydroxyproline with similar kinetic constants. Among the four (putative) ligand binding sites, one amino acid substitution was detected between TlProR (tryptophan at the position of 241) and natural ProR (phenylalanine). The W241F mutant showed a significant preference for proline over hydroxyproline, suggesting that this (hydrophobic and bulky) tryptophan residue played an importance role in the recognition of hydroxyproline (more hydrophilic and bulky than proline), and substrate specificity for hydroxyproline was evolutionarily acquired separately between natural HypE and ProR. A phylogenetic analysis indicated that such unique broad substrate specificity was derived from an ancestral enzyme of this superfamily.  相似文献   

12.
We have demonstrated that gramicidin S synthetase 1 (GS 1), phenylalanine racemase [EC 5.1.1.11], of Bacillus brevis catalyzes the exchange between a proton in the medium and alpha-hydrogen of phenylalanine in the course of the racemase reaction by using tritiated water or L-phenyl[2,3-3H]alanine. GS 1 from some gramicidin S non-producing mutants of B. brevis lacking phenylalanine racemase activity did not catalyze the tritium exchange reaction. The proton exchange between phenylalanine bound as thioester on the GS 1-phenylalanine complex and water in the medium was detected, but 5,5'-dithiobis(2-nitrobenzoic acid)-modified complex lacked both the proton exchange and phenylalanine racemase activity. It is suggested that a base group, probably a sulfhydryl group, on the enzyme functions as proton donor and acceptor during the phenylalanine racemase reaction.  相似文献   

13.
Morollo AA  Petsko GA  Ringe D 《Biochemistry》1999,38(11):3293-3301
The structure of alanine racemase from Bacillus stearothermophilus with the inhibitor propionate bound in the active site was determined by X-ray crystallography to a resolution of 1.9 A. The enzyme is a homodimer in solution and crystallizes with a dimer in the asymmetric unit. Both active sites contain a pyridoxal 5'-phosphate (PLP) molecule in aldimine linkage to Lys39 as a protonated Schiff base, and the pH-independence of UV-visible absorption spectra suggests that the protonated PLP-Lys39 Schiff base is the reactive form of the enzyme. The carboxylate group of propionate bound in the active site makes numerous interactions with active-site residues, defining the substrate binding site of the enzyme. The propionate-bound structure therefore approximates features of the Michaelis complex formed between alanine racemase and its amino acid substrate. The structure also provides evidence for the existence of a carbamate formed on the side-chain amino group of Lys129, stabilized by interactions with one of the residues interacting with the carboxylate group of propionate, Arg136. We propose that this novel interaction influences both substrate binding and catalysis by precisely positioning Arg136 and modulating its charge.  相似文献   

14.
Aminoacyl-tRNA synthetases establish the rules of the genetic code by catalyzing attachment of amino acids to specific transfer RNAs (tRNAs) that bear the anticodon triplets of the code. Each of the 20 amino acids has its own distinct aminoacyl-tRNA synthetase. Here we use energy-transfer-dependent fluorescence from the nucleotide probe N-methylanthraniloyl dATP (mdATP) to investigate the active site of a specific aminoacyl-tRNA synthetase. Interaction of the enzyme with the cognate amino acid and formation of the aminoacyl adenylate intermediate were detected. In addition to providing a convenient tool to characterize enzymatic parameters, the probe allowed investigation of the role of conserved residues within the active site. Specifically, a residue that is critical for binding could be distinguished from one that is important for the transition state of adenylate formation. Amino acid binding and adenylate synthesis by two other aminoacyl-tRNA synthetases was also investigated with mdATP. Thus, a key step in the synthesis of aminoacyl-tRNA can in general be dissected with this probe.  相似文献   

15.
Substrate-induced conformational change of porcine muscle adenylate kinase (EC 2.7.4.3) is evidenced by a change in circular dichroism spectra in the near ultraviolet. In the absence of tryptophan in porcine muscle adenylate kinase, the spectral change may be assigned to a perturbation of tyrosine chromophore(s). The spectral change was specific for adenine nucleotide binding and was greater with ATP than with AMP. In the x-ray model, Tyr153 and Tyr154 are located at a hinge region of two domains which form a deep active site cleft and are therefore susceptible to conformational change on substrate binding. Adenylate kinase was treated with equimolar tetranitromethane. The yellow-colored product, separated from unmodified enzyme by substrate gradient elution on a phosphocellulose column, had about 1 mol of nitrotyrosine per mol of the enzyme by amino acid analysis and showed a slightly higher Km value than native enzyme for ADP (Km = 0.50 mM compared with 0.25 mM for native adenylate kinase). Spectrophotometric titration of nitroadenylate kinase gave pKa 8.4 for the dissociation constant of the nitrotyrosyl hydroxyl group. On binding ATP the pKa value increased to 9.0 while AMP binding caused very little change. By peptide mapping of the carboxypeptidase digestion product, 0.70 mol of nitro group per mol of adenylate kinase was detected on Tyr153 and a small amount of nitro group was also found on Tyr95. From these results it is proposed that Tyr153 is directly or indirectly involved in the binding of ATP.  相似文献   

16.
The localization of the binding sites of the different ligands on the constitutive subunits of yeast phenylalanyl-tRNA synthetase was undertaken using a large variety of affinity and photoaffinity labelling techniques. The RNAPhe was cross-linked to the enzyme by non-specific ultraviolet irradiation at 248 nm, specific irradiation in the wye base absorption band (315 nm), irradiation at 335 nm, in the absorption band of 4-thiouridine (S4U) residues introduced in the tRNA molecule, or by Schiff's base formation between periodate-oxidized tRNAPhe (tRNAPheox) and the protein. ATP was specifically incorporated in its binding site upon photosensitized irradiation. The amino acid could be linked to the enzyme upon ultraviolet irradiation, either in the free state, engaged in the adenylate or bound to the tRNA. The tRNA, the ATP molecule and the amino acid linked to the tRNA were found to interact exclusively with the beta subunit (Mr 63000). The phenylalanine residue, either free or joined to the adenylate, could be cross-linked with equal efficiency to eigher type of subunit, suggesting that the amino acid binding site is located in a contact area between the two subunits. The Schiff's base formation between tRNAPheox and the enzyme shows the existence of a lysyl group close to the binding site for the 3'-terminal adenosine of tRNA. This result was confirmed by the study of the inhibition of yeast phenylalanyl-tRNA synthetase with pyridoxal phosphate and the 2',3'-dialdehyde derivative of ATP, oATP.  相似文献   

17.
In biology, chiral recognition usually implies the ability of a protein, such as an enzyme or a drug receptor, to distinguish between the two enantiomeric forms of a chiral substrate or drug. Both diastereoisomerism and specific contacts between enzyme/receptor and substrate/drug are necessary. The minimum requirement is for four contact points including four nonplanar atoms (or groups of atoms) in both probe and target. The molecular models described by Easson and Stedman and by Ogston require three binding sites in a plane. A modified model with three binding sites in three dimensions is described. Under certain circumstances this model allows binding of both enantiomeric forms of a substrate or a drug. Enantiomer superposition of two enantiomers at an active site occurs in some specific cases (e.g., phenylalanine ammonia-lyase, isocitrate dehydrogenase) and is likely in others. The nature of enantiomer binding to racemase enzymes is discussed.  相似文献   

18.
The catalytic competence of gramicidin S synthetase 2 (GS2) was determined by following the kinetics of PP(i) generation using active site titration measurements with [gamma-(32)P]ATP. The initial 'burst' of product formation can be correlated to the generation of the aminoacyl adenylate:enzyme complexes at the four amino acid activation domains and the subsequent aminoacylation of carrier domains, followed by a slow linear turnover of substrate due to breakdown of the intermediate. Simultaneous activation of all four amino acid substrates at a saturating concentration displayed a consumption of 8.3 ATP/GS2. In the presence of single amino acids, a binding stoichiometry higher than the anticipated two ATP per active site was obtained, implying misactivation at non-cognate domains. Breakdown of acyladenylate intermediates reflects a possible corrective mechanism by which the enzyme controls the fidelity of product formation.  相似文献   

19.
Thirty-one different actinomycete strains were used in a genetic screening using PCR and Southern hybridization methods to detect N-acetylamino acid racemases (AAR) in order to obtain enzymes with different properties. Cloning and sequencing of a 2.5 kb EcoRI DNA fragment from Amycolatopsis orientalis subsp. lurida revealed the coding gene of an N-acetylamino acid racemase, which had identities to the aar gene of Amycolatopsis sp. TS-1-60 [Tokuyama and Hatano (1995) Appl Microbiol Biotechnol 42:884-889] of 86% at the level of DNA, and 90% at the level of amino acids. The heterologous overexpression in Escherichia coli resulted in a specific activity of about 0.2 U/mg of this racemase. A two-step purification with heat treatment followed by anion-exchange chromatography led to almost homogeneous enzyme. The optimum pH of the enzyme was 8.0 and it was stable at 50 degrees C for 30 min. The relative molecular mass of the native enzyme and the subunit was calculated to be 300 kDa and 40 kDa by gel filtration and SDS-PAGE, respectively. The isoelectric point (pI) of the AAR was 4.4. It catalyzed the racemization of optically active N-acetylamino acids such as N-acetyl-L- or -D-methionine and N-acetyl-L-phenylalanine. Further characterization of the racemase demonstrated a requirement for divalent metal ions (Co2+, Mn2+, Mg2+) for activity and inhibition by EDTA and p-hydroxymercuribenzoic acid. AAR is sensitive to substrate inhibition at concentrations exceeding 200 mM.  相似文献   

20.
Actinomycin synthetase I was purified to homogeneiety from actinomycin-producing Streptomyces chrysomallus. The purified enzyme is a single polypeptide chain of M(r) 45,000. It catalyzes the formation of the adenylate of 4-methyl-3-hydroxyanthranilic acid (4-MHA) from the free acid and ATP in an equilibrium reaction. 4-MHA is the precursor of the chromophoric part of actinomycin. By using the 4-MHA analogue, 4-methyl-3-hydroxybenzoic acid, as a model substrate it could be established that the equilibrium constant Keq is independent on enzyme concentration, which suggests that no stoichiometric acyladenylate-enzyme complex is formed in contrast to observations made with aminoacyl adenylates formed by aminoacyl-tRNA synthetases or multifunctional peptide synthetases. Actinomycin synthetase I does not charge itself with substrate carboxylic acid via a covalent thioester bond as is usual for amino acid activation in non-ribosomal peptide synthesis. In addition, the enzyme does not act as an acyl-coenzyme A ligase as revealed by its inability to release AMP in the presence of 4-MHA or other structurally related aromatic carboxylic acids, coenzyme A and ATP. Additional analysis of the activation reaction showed that it is exothermic, whereas the free enthalpy change delta G0 is positive due to a negative entropy change indicating a strong influence of restriction of random motion on the course of the reaction. Determinations of Km and kcat of various substrate carboxylic acids revealed the highest kcat/Km ratio for the natural substrate 4-MHA. From these properties, actinomycin synthetase I represents the prototype of novel chromophore activating enzymes involved in non-ribosomal synthesis of chromopeptide lactones in streptomycetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号