共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The phospholipids in rat brain microsomes were labeled with tritium by intracerebral administration of radioactive fatty acids and converted to diacylglycerol with phospholipase C. The latter lipid was hydrolyzed in situ at pH 4.8, to monoacylglycerol and fatty acid by the endogenous microsomal lipase. This paper provides an experimental approach to determine whether the lipid was degraded by enzyme molecules residing in its own membrane (intramembrane interaction) or an adjacent membrane (intermembrane interaction). Direct interaction between separate membranes containing enzyme or substrate showed the existence of the inter-membrane route while dilution experiments provided evidence for the presence of the intramembrane interaction as well. A probable difference in the mechanisms of these two interactions is suggested by different shapes of the curves that describe the reaction rate as a function of the endogenous substrate. The curve resulting from the intermembrane interaction was hyperbolic while that representing the intramembrane route was of a parabola-like shape. Competition experiments suggested that when given a choice between the two, the enzyme utilized preferentially the substrate molecules in its own membrane. 相似文献
4.
Hydrolysis of phospholipids and glycerides by rat-liver preparations 总被引:15,自引:0,他引:15
5.
6.
Grace Y. Sun 《Journal of neurochemistry》1970,17(3):445-446
The neutral glycerides of brain are quite active metabolically, the diacylglycerols being intermediates in the biosynthesis of phosphatidyl choline and phosphatidyl ethanolamine (Rowe. 1969; Sun and Horrocks, 1969a, and unpublished data). Only trace amounts of the neutral glycerides are normally present in the brain but they can become elevated in pathological conditions (Smith and Whtte, 1968). Except for the triglycerides of rat brain (Rowe, 1969), the neutral glycerides of brain have not been characterized because of the complications in their separation from the large amounts of sterols. This communication reports the composition of acyl groups of the mono-, di- and triglycerides of mouse brain. 相似文献
7.
8.
E C Dinovo B Gruber E P Noble 《Biochemical and biophysical research communications》1976,68(3):975-981
Brain microsomes isolated from rats chronically imbibing 10% ethanol contained 12–16% more 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) fast-reacting sulfhydryl (SH) groups than microsomes from control animals. (3H)N-ethylmaleimide was also shown to react with more SH groups in the microsomes of ethanol imbibing rats than the controls. No changes were found in the total SH groups or in the disc gel electrophoresis protein banding profiles between the two fractions. However, the acute exposure of microsomes from ethanol-naive animals to ethanol resulted in a dose-dependent decrease in DTNB-reactive SH groups. These findings were interpreted as arising from time-dependdent conformational changes in the membrane due to the presence of ethanol or compensatory response to such changes. 相似文献
9.
F B Palmer 《Biochimie et biologie cellulaire》1986,64(2):117-125
Lysophosphatidylinositol 4,5-bisphosphate has been reported to form ion-conducting channels in artificial membranes. If formed in vivo, mechanisms for its removal from cellular membranes would be required. Thus, possible pathways were explored in rat brain and liver microsomes. Since neither lysophosphatidylinositol 4-phosphate nor lysophosphatidylinositol 4,5-bisphosphate were acylated in experiments with [3H]arachidonic acid or [14C]oleoyl CoA, polyphosphoinositides do not participate directly in a deacylation-reacylation cycle as proposed for the postsynthesis enrichment of phosphatidylinositol with arachidonic acid. Similar enrichment in polyphosphoinositides can occur only via the rapid phosphorylation-dephosphorylation cycle linking all three phosphoinositides. Lysophosphatidyl[2-3H]inositol 4,5-bisphosphate and lysophosphatidyl[2-3H]inositol 4-phosphate were rapidly dephosphorylated to 1-acyl-sn-glycero(3)phospho(1)-D-myo-inositol by microsomes from both tissues. Appearance of only trace quantities of radioactive lysophosphatidylinositol monophosphate during the catabolism of lysophosphatidyl[2-3H]inositol 4,5-bisphosphate indicated that the second dephosphorylation step, which was cation independent, was at least as fast as the first step which required Mg2+. In the presence of ATP, CoA, and arachidonic acid, the lysophosphatidylinositol was converted to phosphatidylinositol. This acylation reaction was rate limiting in brain microsomes. Dephosphorylation of lysophosphatidylinositol 4,5-bisphosphate was rate limiting in liver microsomes. Neither the lysopolyphosphoinositides nor the lysophosphatidylinositol produced from them in the reactions were degraded by acyl hydrolases or phosphodiesterases in microsomes from either tissue. Therefore, any lysopolyphosphoinositide formed in vivo would probably be removed by dephosphorylation and recycled to phosphatidylinositol. 相似文献
10.
Hydrolysis of neutral substrates by acetylcholinesterase 总被引:7,自引:0,他引:7
R M Krupka 《Biochemistry》1966,5(6):1983-1988
11.
Sphingosylphosphocholine (SPC), the N-deacylated form of sphingomyelin (SM), is a naturally occurring lipid mediator. However, little is known about the metabolism of SPC. We here report an in vitro assay system for SPC-phospholipase C (PLC). Using this assay system, we demonstrated that nSMase1 and nSMase2, human neutral sphingomyelinases (SMases), are capable of hydrolyzing SPC efficiently under detergent-free conditions. Bacterial and plasmodial neutral SMases also showed SPC-PLC activity. The substrate specificity of neutral SMases that hydrolyze SM, SPC, and monoradyl glycerophosphocholine, but not diradyl glycerophosphocholine, suggested that a hydrogen-bond donor at the C-2 or sn-2 position in the substrate is required for recognition by the enzymes. 相似文献
12.
The phospholipid-N-methyltransferase activity of rat brain microsomes had an optimum pH of 11.0 in the absence or presence of phosphatidylethanolamine (PE) but pH 10.0 in the presence of phosphatidylmonomethylethanolamine (PMME) or phosphatidyldimethylethanolamine (PDME). An apparent Km for S-adenosyl methonine from 0.10 to 0.12 mM was observed with exogenous methylated phospholipids PMME or PDME. Methylated neutral lipid was the major lipid produced in the absence of the exogenous acceptors. Two exogenous phospholipids, PMME and PDME, significantly stimulated microsomal phospholipid-N-methyltransferase activity and the predicted methylated phospholipids were the major products. PE additions did not cause any stimulation of methylated lipid formation. Preincubation of particles at temperatures from 40 to 100 degrees C resulted in a loss in the microsomal phospholipid-N-methyltransferase activity that was stimulated by PMME and PDME. 相似文献
13.
《Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism》1984,792(1):65-71
The substrate specificity of two cationic lipases with high phospholipase A1 activity purified from guinea pig pancreas has been tested towards various neutral glycerides. Triolein hydrolysis proceeded in the absence of di- and monoolein accumulation. Optimal conditions for di- and monoolein hydrolysis included an alkaline pH (9–10), a substrate concentration of 10 mM, and the presence of sodium deoxycholate (12 and 24 mM, respectively). Pancreatic colipase (bovine) had no effect on the activity of the two lipases. The comparison between the rates of hydrolysis of various substrates revealed the following order of decreasing enzyme activity: diolein > 1(3)-monoolein > tributyrin = triacetin ⩾ triolein = 2-monoolein. No hydrolysis of p-nitrophenylacetate and cholesteryloleate could be detected. Using 1-[3H]palmitoyl-2-[14C]linoleoyl-sn-glycerol, both enzymes displayed a strong preference for the 1-position, leading to the accumulation of 2-[14C]linoleoyl-sn-glycerol. Identical activities were found for the two lipases. It is concluded that the two cationic lipases from guinea pig pancreas represent a unique group of lipolytic enzymes different from other previously described enzymes, including classical pancreatic lipase, gastric and lingual enzymes, mold lipases and carboxylesterhydrolase. 相似文献
14.
Production of glycerides from glycerol and fatty acid by immobilized lipases in non-aqueous media 总被引:3,自引:0,他引:3
Immobilized Mucor miehei lipase catalyzes synthesis reactions between glycerol and oleic acid. No organic solvent is necessary to solubilize the substrates, which allows for the use of a reaction medium solely composed of the necessary substrates. Water produced in the reaction evaporates due to the high temperature used for the process. A conversion of 86% of oleic acid into triolein is obtained when using the substrates in stoichiometric amounts. Varying the ratio of glycerol over oleic acid allows for the preferential synthesis of one of the glycerides. Some batch reactors have been set up using different means of removing the water: spontaneous evaporation, molecular sieves, vacuum, and dry air bubbling. 相似文献
15.
The effects of various treatments, which affect membrane structure, on microsomal thiamine diphosphatase and thiamine triphosphatase activities of rat brain, were examined. The treatment of micorosomes at alkaline pH caused a 2-fold activation of the thiamine diphosphatase, this being related to a change in membrane structure which was evidenced by a decrease of the turbidity of the microsomal suspension. Repeated freezing and thawing after hypo-osmotic treatment also increased the activity of microsomal thiamine diphosphatase. In addition, the thiamine diphosphatase activity was enhanced by treatment of the microsomes with phospholipase C or acetone. This lipid depletion resulted in a marked reduction in the apparent Km value of the thiamine diphosphatase with a corresponding loss in heat stability of the enzyme. We found further that brain thiamine diphosphatase was solubilized by Triton X-100. This decreased the phospholipid content in the preparation, but did not affect the apparent Km value and heat stability of the enzyme. In contrast with thiamine diphosphatase, thiamine triphosphatase was inactivated by treatment at alkaline pH or with acetone. However, treatment with phospholipase C did not affect the activity of thiamine triphosphatase. 相似文献
16.
The effect of ascorbic acid on microsomal thiamine diphosphatase activity in rat brain was examined. Ascorbic acid at 0.02--0.1 mM increased the thiamine diphosphatase activity by 20--600% and produced a significant amount of lipid peroxide, which was measured with thiobarbiturate under the same conditions as the enzyme. A lag period of about 10 min was observed in the process of stimulation of enzyme activity by ascorbic acid. The stimulation of enzyme activity and the lipid peroxidation induced by ascorbic acid were blocked by metal-binding compounds (EDTA, alpha,alpha'-dipyridyl, o-phenanthroline) and an antioxidant (N,N'-diphenyl p-phenylenediamine). GSH significantly enhanced the stimulation of enzyme activity and formation of lipid peroxide by 0.02--0.05 mM ascorbic acid. The effect of GSH was due in part to maintenance of the concentration of ascorbic acid in the medium, since GSH could convert dehydroascorbic acid, an oxidized form of ascorbic acid, to ascorbic acid. 相似文献
17.
Biosynthesis of phosphatidylserine in rat brain microsomes 总被引:2,自引:0,他引:2
1. Rat brian microsomes incorporated L-serine into phosphatidylserine in the presence of 2mM ATP. This reaction was stimulated 2-fold by the addition of phosphatidic acid (0.2 mM) and 5-fold by the addition of nickel (0.5 mM). 2. This phosphatidylserine synthesis was inhibited completely by p-hydroxymercuribenzoate (0.1 mM) and N-ethylmaleimide (1 mM), whereas the Ca2+-dependent phosphatidylserine synthesis was unaffected by these sulfhydryl reagents. 3. The specific activity of the ATP-Ni2+-dependent phosphatidylserine was increased more than 2-fold during active myelination, whereas the Ca2+-dependent system remained unchanged. 4. Preliminary data indicate that pyrophosphatidic acid (p,p'-bis(1,2-diacyl-sn-glycero-3-)pyrophosphate) is the immediate precursor of phosphatidylserine synthesis. 相似文献
18.
19.
20.
Lanfranco Corazzi Giuseppe Fratto Roberto Pistolesi Giuseppe Arienti 《The Journal of membrane biology》1989,112(2):123-129
Summary Liposomes are prepared from rat brain microsomal lipid and loaded with either Tb3+ or dipicolinic acid (DPA) to test fusion with the Tb-DPA assay. They are also loaded with octadecyl Rhodamine B chloride (R18) to test fusion with the R18 assay. The addition of either Ca2+ or Mg2+ to loaded liposomes develops fluorescence with both assays. The fluorescence elicited by Mg2+ is similar to that elicited by Ca2+ if assessed with R18, but much higher if determined by Tb-DPA. The Ca2+-dependent fluorescence of the Tb-DPA complex is not suppressed by the addition of EDTA, and therefore it is internal to vesicles. The contrary is true for the Mg2+-dependent fluorescence. Rat brain microsomes can be disrupted by adding octylgucoside and reconstituted by removing it by dialysis. We use this procedure to load microsomes with DPA. This allows the use of the Tb-DPA assay for testing the fusion of rat brain microsomes. Reconstituted microsomes fuse with liposomes. This fusion has characteristics similar to those of liposome-liposome fusion. However, no microsome-microsome fusion could be detected with either method. The two methods give different results, owing to the chemical properties of the assays. Indeed Tb-DPA implies the retention of vesicle content, whereas this is not required by the R18 assay. 相似文献