首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dimethyl sulfoxide (Me(2)SO) reductase of Escherichia coli is a terminal electron transport chain enzyme that is expressed under anaerobic growth conditions and is required for anaerobic growth with Me(2)SO as the terminal electron acceptor. The trimeric enzyme is composed of a membrane extrinsic catalytic dimer (DmsAB) and a membrane intrinsic anchor (DmsC). The amino terminus of DmsA has a leader sequence with a twin arginine motif that targets DmsAB to the membrane via a novel Sec-independent mechanism termed MTT for membrane targeting and translocation. We demonstrate that the Met-1 present upstream of the twin arginine motif serves as the correct translational start site. The leader is essential for the expression of DmsA, stability of the DmsAB dimer, and membrane targeting of the reductase holoenzyme. Mutation of arginine 17 to aspartate abolished membrane targeting. The reductase was labile in the leader sequence mutants. These mutants failed to support growth on glycerol-Me(2)SO minimal medium. Replacing the DmsA leader with the TorA leader of trimethylamine N-oxide reductase produced a membrane-bound DmsABC with greatly reduced enzyme activity and inefficient anaerobic respiration indicating that the twin arginine leaders may play specific roles in the assembly of redox enzymes.  相似文献   

2.
Dimethyl sulfoxide (DMSO) reductase of Escherichia coli is a membrane-bound, terminal anaerobic electron transfer enzyme composed of three nonidentical subunits. The DmsAB subunits are hydrophilic and are localized on the cytoplasmic side of the plasma membrane. DmsC is the membrane-intrinsic polypeptide, proposed to anchor the extrinsic subunits. We have constructed a number of strains lacking portions of the chromosomal dmsABC operon. These mutant strains failed to grow anaerobically on glycerol minimal medium with DMSO as the sole terminal oxidant but exhibited normal growth with nitrate, fumarate, and trimethylamine N-oxide, indicating that DMSO reductase is solely responsible for growth on DMSO. In vivo complementation of the mutant with plasmids carrying various dms genes, singly or in combination, revealed that the expression of all three subunits is essential to restore anaerobic growth. Expression of the DmsAB subunits without DmsC results in accumulation of the catalytically active dimer in the cytoplasm. The dimer is thermolabile and catalyzes the reduction of various substrates in the presence of artificial electron donors. Dimethylnaphthoquinol (an analog of the physiological electron donor menaquinone) was oxidized only by the holoenzyme. These results suggest that the membrane-intrinsic subunit is necessary for anchoring, stability, and electron transport. The C-terminal region of DmsB appears to interact with the anchor peptide and facilitates the membrane assembly of the catalytic dimer.  相似文献   

3.
Dimethyl sulfoxide reductase is a trimeric, membrane-bound, iron-sulfur molybdoenzyme induced in Escherichia coli under anaerobic growth conditions. The enzyme catalyzes the reduction of dimethyl sulfoxide, trimethylamine N-oxide, and a variety of S- and N-oxide compounds. The topology of dimethyl sulfoxide reductase subunits was probed by a combination of techniques. Immunoblot analysis of the periplasmic proteins from the osmotic shock and chloroform wash fluids indicated that the subunits were not free in the periplasm. The reductase was susceptible to proteases in everted membrane vesicles, but the enzyme in outer membrane-permeabilized cells became protease sensitive only after detergent solubilization of the E. coli plasma membrane. Lactoperoxidase catalyzed the iodination of each of the three subunits in an everted membrane vesicle preparation. Antibodies to dimethyl sulfoxide reductase and fumarate reductase specifically agglutinated the everted membrane vesicles. No TnphoA fusions could be found in the dmsA or -B genes, indicating that these subunits were not translocated to the periplasm. Immunogold electron microscopy of everted membrane vesicles and thin sections by using antibodies to the DmsABC, DmsA, DmsB subunits resulted in specific labeling of the cytoplasmic surface of the inner membrane. These results show that the DmsA (catalytic subunit) and DmsB (electron transfer subunit) are membrane-extrinsic subunits facing the cytoplasmic side of the plasma membrane.  相似文献   

4.
Leader peptidase, an integral membrane protein of Escherichia coli, is made without a cleavable leader sequence. It has 323 amino acid residues and spans the plasma membrane with a small amino-terminal domain exposed to the cytoplasm and a large, carboxyl-terminal domain exposed to the periplasm. We have investigated which regions of leader peptidase are necessary for its assembly across the membrane. Deletions were made in the carboxyl-terminal domain of leader peptidase, removing residues 141-222, 142-323, or 222-323. Protease accessibility was used to determine whether the polar, carboxyl-terminal domains of these truncated leader peptidases were translocated across the membrane. The removal of either residues 222-323 (the extreme carboxyl terminus) or residues 141-222 does not prevent leader peptidase membrane assembly. However, leader peptidase lacking both regions, i.e. amino acid residues 142-323, cannot translocate the remaining portion of its carboxyl terminus across the membrane. Our data suggest that the polar, periplasmic domain of leader peptidase contains information which is needed for membrane assembly.  相似文献   

5.
Paul B. Wolfe  William Wickner 《Cell》1984,36(4):1067-1072
Leader peptidase typifies a group of proteins of the plasma membrane of E. coli which span the membrane and are synthesized without a cleaved amino-terminal leader (signal) sequence. The membrane assembly properties of these proteins have not been previously reported. We find that the membrane electrochemical potential is necessary for the insertion of a large domain of leader peptidase across the membrane. In the absence of potential, the peptidase accumulates inside the cell in tight association with the. plasma membrane. Upon restoration of the potential, accumulated peptidase inserts across the membrane, indicating that this insertion is not mechanistically coupled to polypeptide chain growth. The normal, trans-bilayer peptidase and that which accumulates in the absence of potential have different conformations, as shown by the relative resistance of the trans-bilayer enzyme to digestion by trypsin or chymotrypsin in cell lysates. Membrane insertion is accompanied by this conformational change. This assembly reaction has several features predicted by the hypothesis of membrane-triggered folding.  相似文献   

6.
The transport and targeting of a number of periplasmic proteins is carried out by the Sec-independent Mtt (also referred to as Tat) protein translocase. Proteins using this translocase have a distinct twin-arginine-containing leader. We hypothesized that specific leader-binding proteins exist to escort proteins to the translocase complex. A fusion was constructed with the twin-arginine leader from dimethyl sulphoxide (DMSO) reductase, subunit DmsA, to the N-terminus of glutathione-S-transferase. This leader fusion was bound to a glutathione affinity column through which an Escherichia coli anaerobic cell-free extract was passed. Proteins that bound to the leader were then separated and identified by N-terminal sequencing, which identified DnaK and a protein originating from the uncharacterized reading frame ynfI. This gene has been designated dmsD based on the findings presented in this paper. DmsD was purified as a His6 fusion and was shown to interact with preprotein forms of DmsA and TorA (trimethyl amine N-oxide reductase). A strain carrying a dmsD knock-out mutation showed a loss of anaerobic growth on glycerol-DMSO medium and reduced growth on glycerol-fumarate medium. This work suggests that DmsD is a twin-arginine leader-binding protein.  相似文献   

7.
We present a method for the purification of the 45 residue long leader peptide of Escherichia coli dimethyl sulfoxide reductase subunit A (DmsA(L)), a substrate of the twin arginine translocase, by co-expressing the leader peptide with its specific chaperone protein, DmsD. The peptide can be isolated from the soluble DmsA(L)/DmsD complex or conveniently from the lysate pellet fraction. The recombinant leader peptide is functionally intact as the peptide/chaperone complex can be reconstituted from purified DmsA(L) and DmsD. A construct with DmsA(L) fused to the N-terminus of DmsD (DmsA(L)-DmsD fusion) was created to further explore the properties of the leader peptide-chaperone interactions. Analytical size-exclusion chromatography in-line with multi-angle light scattering reveals that the DmsA(L)-DmsD fusion construct forms a dimer wherein each protomer binds the neighboring leader peptide. A model of this homodimeric interaction is presented.  相似文献   

8.
Leader peptidase   总被引:10,自引:1,他引:9  
The Escherichia coli leader peptidase has been vital for unravelling problems in membrane assembly and protein export. The role of this essential peptidase is to remove amino-terminal leader peptides from exported proteins after they have crossed the plasma membrane. Strikingly, almost all periplasmic proteins, many outer membrane proteins, and a few inner membrane proteins are made with cleavable leader peptides that are removed by this peptidase. This enzyme of 323 amino acid residues spans the membrane twice, with its large carboxyl-terminal domain protruding into the periplasm. Recent discoveries show that its membrane orientation is controlled by positively charged residues that border (on the cytosolic side) the transmembrane segments. Cleavable pre-proteins must have small residues at -1 and a small or aliphatic residue at -3 (with respect to the cleavage site). Leader peptidase does not require a histidine or cysteine amino acid for catalysis. Interestingly, serine 90 and aspartic acid 153 are essential for catalysis and are also conserved in a mitochondrial leader peptidase, which is 30.7% homologous with the bacterial enzyme over a 101-residue stretch.  相似文献   

9.
Escherichia coli dimethylsulfoxide (DMSO) reductase is a trimeric enzyme with a catalytic dimer (DmsAB) and an integral membrane anchor (DmsC). Using site-directed mutagenesis, we examined six residues in the periplasmic loop between helices two and three, potentially involved in menaquinol binding in DmsC. Mutants were characterised for growth, enzyme expression and activity, and 2-n-heptyl-4-hydroxoquinoline N-oxide (HOQNO) inhibitor binding. Mutations of leucine 66, glycine 67, arginine 71, phenylalanine 73 and serine 75 had no effect on menaquinol binding. Only a glutamate residue (E87) located in helix three was important for menaquinol binding. E87 was replaced with lysine, glutamine and aspartate. All three mutants were assembled into the membrane. Neither the lysine nor the glutamine mutant enzymes were able to support anaerobic growth on glycerol/DMSO minimal media or oxidise lapachol. The glutamine mutant bound the inhibitor with lower affinity compared to wild-type, whereas in the lysine mutant, binding was almost abolished. The aspartate mutant behaved as a wild-type enzyme. The data shows that E87 is important for menaquinol binding and oxidation and is likely to act as a proton acceptor in the menaquinol binding site.  相似文献   

10.
The twin-arginine translocase (Tat) system is used for the targeting and translocation of folded proteins across the cell membrane of most bacteria. Substrates of this system contain a conserved "twin-arginine" (RR) motif within their signal/leader peptide sequence. Many Tat substrates have their own system-specific chaperone called redox enzyme maturation proteins (REMPs). Here, we study the binding of DmsD, the REMP for dimethyl sulfoxide reductase in Escherichia coli, toward the RR-containing leader peptide of the catalytic subunit DmsA. We have used a multipronged approach targeted at the amino acid sequence of DmsD to define residues and regions important for recognition of the DmsA leader sequence. Residues identified through bioinformatics and THEMATICS analysis were mutated using site-directed mutagenesis. These DmsD residue variants were purified and screened with an in vitro dot-blot far-Western assay to analyze the binding to the DmsA leader sequence. Degenerative polymerase chain reaction was also used to produce a bank of random DmsD amino acid mutants, which were then screened by an in vivo bacterial two-hybrid assay. Using this hybrid method, each DmsD variant was classified into one of three groups based on their degree of interaction with the DmsA leader (none, weak, and moderate). The data from both the in vitro and in vivo analyses were then applied to a model structure of DmsD based on the crystal structure of the Salmonella typhimurium homologue. Our results illustrate the positions of important DmsD residues involved in binding the DmsA leader peptide and identify a "hot pocket" of residues important for leader binding on the structure of DmsD.  相似文献   

11.
Leader peptidase is an integral protein of the Escherichia coli cytoplasmic membrane whose topology is known. We have taken advantage of this knowledge and available mutants of this enzyme to develop a genetic test for a cell-free protein translocation reaction. We report that leader peptidase inserted into inverted plasma membrane vesicles in its correct transmembrane orientation. We have examined the in vitro membrane assembly characteristics of a variety of leader peptidase mutants and found that domains required for insertion in vivo are also necessary for insertion in vitro. These data demonstrate the physiological validity of the in vitro insertion reaction and strengthen the use of this in vitro protein translocation reaction for the dissection of this complex sorting pathway.  相似文献   

12.
The coat protein of coliphage M13 is an integral protein of the host-cell cytoplasmic membrane prior to its assembly into virions. It is initially synthesized as procoat, a soluble precursor with a 23 amino acid leader sequence at its amino terminus. 35S-labeled procoat accumulates during an in vitro translation reaction that contains 35S-methionine and RNA from M13-infected cells. Radiochemically pure procoat has been isolated from in vitro translation reactions by extraction into an organic solvent and gel filtration through Sephadex LH-60. Radiochemically pure procoat can be used as substrate in rapid and quantitative assays for leader peptidase and for leader peptide hydrolase, an enzyme that degrades the leader peptide after its release from procoat. Procoat solubility, digestion by leader peptidase and processing by membranes are affected by the presence of Mg2+ ion. Isolated procoat is soluble in water at low ionic strength and mildly alkaline pH as well as in detergent solutions. It is cleaved to coat protein by purified E. coli leader peptidase and by inverted E. coli inner-membrane vesicles. These properties of the purified procoat mirror those of the procoat in crude extracts. This suggests that there are no other soluble components that are necessary for the assembly of procoat into the membrane and its conversion to coat; specifically, it provides powerful evidence that protein synthesis is not involved.  相似文献   

13.
Leader peptidase, typical of inner membrane proteins of Escherichia coli, does not have an amino-terminal leader sequence. This protein contains an internal signal peptide, residues 51-83, which is essential for assembly and remains as a membrane anchor domain. We have employed site-directed mutagenesis techniques to either delete residues within this domain or substitute a charged amino acid for one of these residues to determine the important properties of the internal signal. The deletion analysis showed that a very small apolar domain, residues 70-76, is essential for assembly, whereas residues that flank it are dispensable for its function. However, point mutations with charged amino acid residues within the polar sequence (residues 77-82) slow or abolish leader peptidase membrane assembly. Thus, a polar region, Arg-Ser-Phe-Ile-Tyr-Glu, is important for the signal peptide function of leader peptidase, unlike other signals identified thus far.  相似文献   

14.
The Escherichia coli Tat system mediates Sec-independent export of protein precursors bearing twin arginine signal peptides. Formate dehydrogenase-N is a three-subunit membrane-bound enzyme, in which localization of the FdnG subunit to the membrane is Tat dependent. FdnG was found in the periplasmic fraction of a mutant lacking the membrane anchor subunit FdnI, confirming that FdnG is located at the periplasmic face of the cytoplasmic membrane. However, the phenotypes of gene fusions between fdnG and the subcellular reporter genes phoA (encoding alkaline phosphatase) or lacZ (encoding beta-galactosidase) were the opposite of those expected for analogous fusions targeted to the Sec translocase. PhoA fusion experiments have previously been used to argue that the peripheral membrane DmsAB subunits of the Tat-dependent enzyme dimethyl sulphoxide reductase are located at the cytoplasmic face of the inner membrane. Biochemical data are presented that instead show DmsAB to be at the periplasmic side of the membrane. The behaviour of reporter proteins targeted to the Tat system was analysed in more detail. These data suggest that the Tat and Sec pathways differ in their ability to transport heterologous passenger proteins. They also suggest that caution should be observed when using subcellular reporter fusions to determine the topological organization of Tat-dependent membrane protein complexes.  相似文献   

15.
Centrosomes direct the organization of microtubules in animal cells. However, in the absence of centrosomes, cytoplasm has the potential to organize microtubules and assemble complex structures such as anastral spindles. During cell replication or following fertilization, centrioles that are incapable of organizing microtubules into astral arrays are introduced into this complex cytoplasmic environment. These centrioles become associated with pericentriolar material responsible for centrosome-dependent microtubule nucleation, and thus the centrosome matures to ultimately become a dominant microtubule organizing center that serves as a central organizer of cell cytoplasm. We describe the identification of a novel structure within the pericentriolar material of centrosomes called the centromatrix. The centromatrix is a salt-insoluble filamentous scaffold to which subunit structures that are necessary for microtubule nucleation and abundant in the cytoplasm bind. We propose that the centromatrix serves to concentrate and focus these subunits to form the microtubule organizing center. Since binding of these subunits to the centromatrix does not require nucleotides, we propose a model for centrosome assembly which predicts that the assembly of the centromatrix is a rate-limiting step in centrosome assembly and maturation.  相似文献   

16.
Leader peptidase is an enzyme of the Escherichia coli cytoplasmic membrane which removes amino-terminal leader sequences from many secreted and membrane proteins. Three potential membrane-spanning segments exist in the first 98 amino acids of leader peptidase. We have characterized the topology of leader peptidase based on its sensitivity to protease digestion. Proteinase K and trypsin treatment of right-side-out inner membrane vesicles and spheroplasts yields protected fragments of approximately 80 and 105 amino acid residues, respectively. We have shown that both fragments are derived from the amino terminus of the protein and that the smaller protected peptide can be derived from the larger. Removal of the third potential membrane-spanning segment (residues 82-98) does not affect the size of the proteinase K-protected fragment but does reduce the size of the trypsin-protected peptide. Because the proteinase K-protected fragment is about 9000 daltons, is derived from the amino terminus of leader peptidase, and its size is not affected when amino acids 82-98 are removed from the protein, it must extend from the amino terminus to approximately residue 80. Likewise, the trypsin-protected fragment must extend from the amino terminus to about residue 105. These data suggest a model for the orientation of leader peptidase in which the second hydrophobic stretch (residues 62-76) spans the cytoplasmic membrane and the third hydrophobic stretch resides in the periplasmic space.  相似文献   

17.
Leader peptidase of Escherichia coli, a protein of 323 residues, has three hydrophobic domains. The first, residues 1-22, is the most apolar and is followed by a polar region (23-61) which faces the cytoplasm. The second hydrophobic domain (residues 62-76) spans the membrane. The third hydrophobic domain, which has a minimal apolar character, and the polar, carboxyl-terminal two-thirds of the protein are exposed to the periplasm. Deletion of either the amino terminus (residues 4-50) or the third hydrophobic region (residues 83-98) has almost no effect on the rate of leader peptidase membrane assembly, while the second hydrophobic domain is essential for insertion (Dalbey, R., and Wickner, W. (1987) Science 235, 783-787). To further define the roles of these domains, we have replaced the normal, cleaved leader sequence of pro-OmpA and M13 procoat with regions containing either the first or second apolar domain of leader peptidase. The second apolar domain supports the translocation of OmpA or coat protein across the plasma membrane, establishing its identity as an internal, uncleaved signal sequence. In addition to this sequence, we now find that leader peptidase needs either the amino-terminal domain or the third hydrophobic domain to permit its rapid membrane assembly. These results show that, although a signal sequence is necessary for rapid membrane assembly of leader peptidase, it is not sufficient.  相似文献   

18.
《The Biochemical journal》1975,148(2):329-333
The synthesis of nitrate reductase and its incorporation into the cytoplasmic membrane of Escherichia coli strain A1004a (5-aminolaevulinic acid auxotroph) does not require synthesis of cytochrome b. The synthesis of the apoprotein(s) of the cytochrome b of the respiratory pathway from NADH to nitrate appears to be inhibited by the absence of haem. No member of the respiratory pathway from NADH to oxygen is capable of reducing nitrate reductase directly. The site on nitrate reductase that oxidizes FMNH2 is located on the cytoplasmic aspect of the cytoplasmic membrane.  相似文献   

19.
OmpA is a major protein of the outer membrane of Escherichia coli. It is made as a larger precursor, pro-OmpA, which requires a membrane potential for processing. We now show that pro-OmpA accumulates in the cytoplasm of cells treated with carbonyl cyanide m-chlorophenylhydrazone, an uncouple which lowers the membrane potential. Upon restoration of the potential, this pro-OmpA is secreted, processed, and assembled into the outer membrane. Pro-OmpA made in vitro is also recovered with the postribosomal supernatant. It is efficiently processed to OmpA by liposomes which have bacterial leader peptidase that is exclusively internally oriented. These experiments show that: (i) the insertion of pro-OmpA into the plasma membrane is not coupled to its synthesis; (ii) insertion is promoted by the transmembrane electrochemical potential; (iii) pro-OmpA can cross a bilayer spontaneously; and (iv) pro-OmpA is processed by the same leader peptidase which converts M13 procoat to coat.  相似文献   

20.
H Burstein  D Bizub    A M Skalka 《Journal of virology》1991,65(11):6165-6172
Assembly and maturation of retroviral particles requires the aggregation and controlled proteolytic cleavage of polyprotein core precursors by a precursor-encoded protease (PR). Active, mature retroviral PR is a dimer, and the accumulation of precursors at sites of assembly may facilitate subunit interaction and subsequent activation of this enzyme. In addition, it has been suggested that cellular cytoplasmic components act as inhibitors of PR activity, so that processing is delayed until the nascent virions leave this compartment and separate from the surface of host cells. To investigate the mechanisms that control PR activity during virus assembly, we studied the in vivo processing of retroviral gag precursors that contain tandemly linked PR subunits in which dimerization is concentration independent. Sequences encoding four different linked protease dimers were independently joined to the end of the Rous sarcoma virus (RSV) gag gene in a simian virus 40-based plasmid vector which expresses a myristoylated gag precursor upon transfection of COS-1 cells. Three of these plasmids produced gag precursors that were incorporated into viruslike particles and proteolytically cleaved by the dimers to mature core proteins that were indistinguishable from the processed products of wild-type gag. The amount of viral gag protein that was assembled and packaged in these transfections was inversely related to the relative proteolytic activities of the linked PR dimers. The fourth gag precursor, which contained the most active linked PR dimer, underwent rapid intracellular processing and did not form viruslike particles. In the absence of the plasma membrane targeting signal, processing of all four linked PR dimer-containing gag precursors was completed entirely within the cell. From these results, we conclude that the delay in polyprotein core precursor processing that occurs during normal virion assembly does not depend on a cytoplasmic inhibitor of PR activity. We suggest that dimer formation is not only necessary but may be sufficient for the initiation of PR-directed maturation of gag and gag-pol precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号