首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Basalar and tibial extensor muscle fibers of Achalarus lyciades were examined with light and electron microscopes. Basalar muscle fibers are 100–150 µ in diameter. T-system membranes and sarcoplasmic reticulum make triadic contacts midway between Z lines and the middle of each sarcomere. The sarcoplasmic reticulum is characterized by a transverse element situated among myofilaments halfway between Z lines in every sarcomere. The morphology of Z lines, hexagonal packing of thin and thick myofilaments, and thin/thick myofilament ratios are similar to those of fast-acting insect muscles. Tibial extensor muscle fibers are 50–100 µ in diameter. Except for a lack of the transverse element, the T system and sarcoplasmic reticulum are similar to those of basalar muscle. Wavy Z lines, lack of a hexagonal packing of myofilaments, and larger thin/thick myofilament ratios are similar to those of other postural muscles of insects. The morphology of basalar and tibial extensor muscle is compared to that of other insect muscle with known functions, and reference is made to the possible contribution of the transverse element of sarcoplasmic reticulum in basalar flight muscle to speed and synchrony in this muscle.  相似文献   

2.
The sarcoplasmic reticulum of the frog's sartorius muscle was examined by electron microscopy following sequential fixation in glutaraldehyde and osmium tetroxide and embedding in Epon. The earlier results of Porter and Palade on Ambystoma muscle were confirmed in the sartorius. In addition, the transverse tubules were observed to be continuous across the width of the fiber, a set of flat intermediate cisternae was seen to connect the terminal cisternae to the longitudinal tubules in the A band, and the continuous reticulum collar at the center of the A band was found to be perforated by circular and elongated pores (the fenestrated collar). The transverse tubules have a volume about 0.3 per cent of the fiber volume, and a surface area about 7 times the outer cylindrical surface area for a fiber 100 µ in diameter. The terminal cisternae, the intermediate cisternae, and the longitudinal tubules together with the fenestrated collar each have a volume of 4 to 5 per cent of the fiber volume and a surface area 40 to 50 times the outer surface area of a fiber 100 µ in diameter. Some evidence for continuity of the transverse tubules with the fiber surface is presented, but this is thought to be not so convincing as evidence presented by others. The results are discussed in terms of a possible mechanism for a role of the transverse tubules and sarcoplasmic reticulum in excitation-contraction coupling, as suggested by their morphology and a variety of physiological studies. In this scheme, the transverse tubules are thought to be electrically coupled to the terminal cisternae, so that depolarization of the fiber surface spreads inward along the transverse tubules and to the terminal cisternae, initiating the release of a contraction-activating substance.  相似文献   

3.
An electron microscope study has been made of the distribution of membrane couplings between the sarcoplasmic reticulum (SR) and either the plasmalemma or the T tubules in fetal and neonatal rat intercostal muscle. Within primitive muscle cells at 12 days of gestation, the SR forms both simple and specialized membrane junctions with the plasmalemma; caveolae are very few, and T tubules are not detected. Undifferentiated cells neighbor muscle cells. Occasionally these cells contain subsurface couplings between the endoplasmic reticulum and plasmalemmae. Possible relationships between these couplings and the peripheral couplings of muscle cells are discussed. By 15–18 days of gestation, caveolae and beaded T tubules, comparable to those of cultured muscle, develop; T tubules lie along-side myofibrils and are rarely transverse. SR couples both to T tubules and to plasmalemmae during this period. T tubules with lineal profiles appear after further development and their orientation transverse to A–I junctions becomes increasingly evident. Membrane couplings between SR and T tubules also increase in number, whereas the incidence of peripheral coupling declines rapidly Evidence suggests that peripheral couplings are swept into myotubes as caveolae proliferate and T tubules form. SR thus appears to initially couple with the plasmalemma and then to await T tubular growth. This contrasts with the developmental pattern described in cultured chick muscle in which peripheral couplings are not reported and T tubules with diads and triads occur at very primitive stages of muscle differentiation.  相似文献   

4.
The fast-acting, synchronous "remotor" muscle of the lobster second antenna was examined by light and electron microscopy and was found to have a more profuse sarcoplasmic reticulum (SR) than any other muscle known. Myofibrils are widely separated from one another and occupy only about one-fourth of the volume of the muscle; most of the remaining volume is taken up by the SR, which resembles the smooth-surfaced reticulum of steroid-secreting cells. Dense granules (0.03–0.1 µ in diameter) are scattered through the reticulum. T-tubules penetrate into the fibers and form dyads along the A bands of myofibrils; however, ferritin-labeling experiments show that the volume of the T-system is very small compared with that of the SR. Myofibrils are ~0.5 µ x 1.0 µ in cross section and consist of thick filaments, which appear tubular except at the M region, and thin filaments, which are situated midway between neighboring thick filaments. The ratio of thin to thick filaments is 3:1. The extreme development of the SR in this muscle is discussed in relation to the exceedingly short duration of the contraction-relaxation cycle.  相似文献   

5.
The structure of the longitudinal body muscles of Branchiostoma caribaeum has been studied by light and electron microscopy. These muscles are shown to be composed of fibers in the form of flat lamellae about 0.8µ in thickness, more than 100 µ wide, and reaching in length from one intermuscular septum to the next, a distance of about 0.6 mm. Each flat fiber is covered by a plasma membrane and contains a single myofibril consisting of myofilaments packed in the interdigitating hexagonal array characteristic of vertebrate striated muscle. Little or no sarcoplasmic reticulum is present. Mitochondria are found infrequently and have a tubular internal structure. These morphological observations are discussed in relation to a proposed hypothesis of excitation-contraction coupling. It is pointed out that the maximum distance from surface to myofilament in these muscles is about 0.5 µ and that diffusion of an "activating" substance over this distance would essentially be complete in less than 0.5 msec. after its release from the plasma membrane. It is concluded that the flat form of amphioxus muscle substitutes for the specialized mechanisms of excitation-contraction coupling thought possibly to involve the sarcoplasmic reticulum in higher vertebrate muscles.  相似文献   

6.
Sarcoplasmic vesicles and β-glycogen particles 30–40 mµ in diameter were isolated from perfused rabbit skeletal muscle by the differential precipitation-centrifugation method. This microsomal fraction was subjected to zonal centrifugation on buffered sucrose gradients, in a B XIV Anderson type rotor, for 15 hr at 45,000 rpm in order to separate the two cytoplasmic organelles. Zonal profiles of absorbance at 280 mµ, proteins, glycogen, and enzymatic activities (phosphorylase b kinase, phosphorylase b, and glycogen synthetase) were performed. Whereas the entire synthetase activity was found combined with the glycogen particles, 39% of phosphorylase and 53% of phosphorylase b kinase activities, present in the microsomal fraction, were recovered in the purified vesicular fraction (d = 1.175). This latter fraction consists of vesicles, derived from the sarcoplasmic reticulum, and of small particles 10–20 mµ in diameter attached to the outer surface of the membranes. These particles disappear after α-amylase treatment. Incubation of the sarcovesicular fraction with 14C-labeled glucose-1-phosphate confirms the localization of a polysaccharide synthesis at the level of the membranes. "Flash activation" of phosphorylase b, i.e. Ca "activation" of phosphorylase kinase followed by a conversion of phosphorylase b into a, was demonstrated in the purified sarcovesicular fraction. Moreover, the active enzymatic sites were detected on the membranes by electron microscopy. The presence of binding sites between the membranes of the sarcoplasmic vesicles and a glycogen-enzyme complex suggests that this association plays a role in the glycogenolysis during muscle contraction.  相似文献   

7.
The fine structure of the cardiac muscle of the horseshoe crab, Limulus polyphemus, has been studied with respect to the organization of its contractile material, and the structure of its organelles and the cell junctions. Longitudinal sections show long sarcomeres (5.37 µ at Lmax), wide A bands (2.7 µ), irregular Z lines, no M line, and no apparent H zone. Transverse sections through the S zone of the A band show that each thick filament is ca. 180 A in diameter, is circular in profile with a center of low density, and is surrounded by an orbit of 9–12 thin filaments, each 60 A in diameter. Thick filaments are confined to the A band: thin filaments originate at the Z band, extend through the I band, and pass into the A band between the thick filaments. The sarcolemmal surface area is increased significantly by intercellular clefts. Extending into the fiber from these clefts and from the sarcolemma, T tubules pass into the fiber at the A-I level. Each fibril is enveloped by a profuse membranous covering of sarcoplasmic reticulum (SR). Sacculations of the SR occur at the A-I boundary where they make diadic contact with longitudinal branches of the T system. These branches also extend toward the Z, enlarge at the Z line, and pass into the next sarcomere. Infrequently noted were intercalated discs possessing terminal insertion and desmosome modifications, but lacking close junctions (fasciae occludentes). These structural details are compared with those of mammalian cardiac and invertebrate muscles.  相似文献   

8.
Cardiac cells with distinctive electrophysiological and morphological features were found at the junctional region between Purkinje and ventricular cells of the dog heart. The electrophysiological exploration of these "transitional" cells revealed action potentials markedly different in configuration from those generated by Purkinje or by ventricular cells. The impaled cardiac cells which generated transitional action potentials were identified in serial sections and studied with the light and the electron microscopes. The transitional cells were found to be characterized cytologically by: (a) their subendocardial location, (b) their small diameter, (c) the absence of T system and sarcoplasmic reticulum, and (d) the lack of intercalated discs under the light microscope and the sparsity of specialized intercellular junctions under the electron microscope. Purkinje, transitional, and ventricular cells were found to be joined by gap junctions permeable to lanthanum. A quantitative difference in the extent and distribution of specialized intercellular junctions may be one of the factors responsible for the slow velocity of conduction characteristic of the Purkinje-ventricular junctional region.  相似文献   

9.
A quantitative analysis of the volumes, surface areas, and dimensions of the ultrastructural components in the soleus muscle fibers of the guinea pig was made by using point counting methods of stereology. Muscle fibers have structural orientation (anisotropy) and have spatial gradients of the structures within the fiber; therefore the standard stereological methods were modified where necessary. The entire analysis was repeated at two section orientations to test the modifications and identical results obtained from both. The volume of lipid droplets was 0.20 ± 0.06% (mean ± standard error, n = 5 animals) and the nuclei volume was 0.86 ± 0.20% of the fiber volume. The total mitochondrial volume was 4.85 ± 0.66% of the fiber volume with about one-third being found in an annulus within 1 µm of the sarcolemma. The mitochondrial volume in the remaining core of the fiber was 3.6 ± 0.4%. The T system has a volume of 0.14 ± 0.01% and a surface area of 0.064 ± 0.005 µm2/µm3 of the fiber volume. The surface area of the sarcolemma is 0.116 ± 0.013 µm2/µm3 which is twice the T system surface area. The volume of the entire sarcoplasmic reticulum is 3.52 ± 0.33% and the surface area is 0.97 ± 0.09 µm2/µm3. The sarcoplasmic reticulum is composed of the terminal cisternae whose volume is 1.04 ± 0.19% and surface area is 0.24 ± 0.05 µm2/µm3. The tubules of the sarcoplasmic reticulum in the I band and A band have volumes of 1.97 ± 0.24% and 0.51 ± 0.08%, and the surface areas of the I and A band reticulum are 0.56 ± 0.07 µm2/µm3 and 0.16 ± 0.04 µm2/µm3, respectively. The Z line width, myofibril and fiber diameters were measured.  相似文献   

10.
Localization of calsequestrin in chicken ventricular muscle cells was determined by indirect immunofluorescence and immuno-Protein A-colloidal gold labeling of cryostat and ultracryotomy sections, respectively. Calsequestrin was localized in the lumen of peripheral junctional sarcoplasmic reticulum, as well as in the lumen of membrane-bound structures present in the central region of the I-band, while being absent from the lumen of the sarcoplasmic reticulum in the A-band region of the cardiac muscle cells. Since chicken ventricular muscle cells lack transverse tubules, the presence of calsequestrin in membrane bound structures in the central region of the I-band suggests that these cells contain nonjunctional regions of sarcoplasmic reticulum that are involved in Ca2+ storage and possibly Ca2+ release. It is likely that the calsequestrin containing structures present throughout the I-band region of the muscle cells correspond to specialized regions of the free sarcoplasmic reticulum in the I-band called corbular sarcoplasmic reticulum. It will be of interest to determine whether Ca2+ storage and possibly Ca2+ release from junctional and nonjunctional regions of the sarcoplasmic reticulum in chicken ventricular muscle cells are regulated by the same or different physiological signals.  相似文献   

11.
The structure of a small strand of rabbit heart muscle fibers (trabecula carnea), 30–80 µ in diameter, has been examined with light and electron microscopy. By establishing a correlation between the appearance of regions of close fiber contact in light and electron microscopy, the extent and distribution of regions of close apposition of fibers has been evaluated in approximately 200 µ length of a strand. The distribution of possible regions of resistive coupling between fibers has been approximated by a model system of cables. The theoretical linear electrical properties of such a system have been analyzed and the implications of the results of this analysis are discussed. Since this preparation is to be used for correlated studies of the electrical, mechanical, and cytochemical properties of cardiac muscle, a comprehensive study of the morphology of this preparation has been made. The muscle fibers in it are distinguished from those of the rabbit papillary muscle, in that they have no triads and have a kind of mitochondrion not found in papillary muscle. No evidence of a transverse tubular system was found, but junctions of cisternae of the sarcoplasmic reticulum and the sarcolemma, peripheral couplings, were present. The electrophysiological implications of the absence of transverse tubules are discussed. The cisternae of the couplings showed periodic tubular extensions toward the sarcolemma. A regularly spaced array of Z line-like material was observed, suggesting a possible mechanism for sarcomere growth.  相似文献   

12.
The extrinsic eye muscles of the killifish (F. heteroclitus) were fixed in OSO4 (pH 7.6) and subsequently dehydrated, embedded, and sectioned for electron microscopy. The fine structures of neuromuscular junctions and of sarcoplasmic reticulum were then observed. The neuromuscular junction consists of the apposition of axolemma (60 to 70 Å) and sarcolemma (90 to 100 Å), with an intervening cleft space of 200 to 300 Å, forming a synaptolemma 400 to 500 Å thick. The terminal axons contain synaptic vesicles, mitochondria, and agranular reticulum. The subsynaptic sarcolemma lacks the infolding arrangement characteristic of neuromuscular junctions from other vertebrate skeletal muscle, making them more nearly like that of insect neuromuscular junctions. A comparison between the folded and non-folded subsynaptic membrane types is made and discussed in terms of comparative rates of acetylcholine diffusion from the synaptic cleft and resistances of the clefts and subsynaptic membranes. The sarcoplasmic reticulum consists of segmentally arranged, membrane-limited vesicles and tubular and cisternal elements which surround individual myofibrils in a sleeve-like arrangement. Triadic differentiation occurs at or near the A-I junction. Unit sleeves span the A and I bands alternately and consist of closed terminal cisternae interconnected across the A and I bands by tubular cisternae. The thickness of the sarcoplasmic membranes increases from 30 to 40 Å in intertriadic regions to 50 to 70 Å at the triads. The location of the triads is compared with previously described striated muscle from Ambystoma larval myotomes, cardiac and sartorius muscles of the albino rat, mouse limb muscle, chameleon lizard muscle, and insect muscle, with reference to their possible role in intracellular impulse conduction.  相似文献   

13.
SPECIFIC GRANULES IN ATRIAL MUSCLE CELLS   总被引:32,自引:15,他引:17       下载免费PDF全文
Large populations (up to 600/cell) of spherical, electron-opaque granules ~0.3 to 0.4 µ in diameter are characteristically found in muscle fibers of mammalian atria. They are absent in muscle fibers of the ventricles. The granules are concentrated in the sarcoplasmic core and occur in lesser numbers in the sarcoplasmic layers between myofibrils and under the plasma membrane. Their intimate association with a central voluminous Golgi complex and the frequent occurrence of material reminiscent of the granular content within the cisternae of the Golgi complex suggest that the latter is involved in the formation of the atrial granules. Atrial granules are larger and more numerous in smaller species (rat, mouse), and generally smaller and less numerous in larger mammals (dog, cat, human); they are absent from the atrial fibers of very young fetuses (rat) but are present in those of newborn animals. A small population of bodies containing glycogen particles and remnants of the endoplasmic reticulum and mitochondria occurs in the sarcoplasmic cores of atrial as well as ventricular muscle fibers in the rat; they contain acid phosphatase and thus appear to be residual bodies of autolytic foci. Their frequency increases with the age of the animal. Typical lipofuscin pigment granules, which are known to contain acid phosphatase and are found in the sarcoplasmic cores in old animals (cat, dog and human), are presumed to arise by progressive aggregation and fusion of small residual bodies.  相似文献   

14.
Summary The ultrastructure of atrial and ventricular myocardial cells from Acipenser stellatus is described. The cells of the atrium are more loosely connected than those of the ventricle. Cell contact is by simple intercalated discs and by desmosomes. The cells are flattened, with peripheral myofibrils and a central region of mitochondria and the nucleus. The sarcoplasmic reticulum consists of subsarcolemmal tubules, that frequently extend towards the central mitochondria. Dyads are small and positioned at any sarcomeric level. No T-tubules are present. Specific granules are restricted to the atrial cell, and are sometimes present within the SR tubules.  相似文献   

15.
ULTRASTRUCTURE OF BARNACLE GIANT MUSCLE FIBERS   总被引:9,自引:3,他引:6       下载免费PDF全文
Increasing use of barnacle giant muscle fibers for physiological research has prompted this investigation of their fine structure. The fibers are invaginated by a multibranched system of clefts connecting to the exterior and filled with material similar to that of the basement material of the sarcolemmal complex. Tubules originate from the surface plasma membrane at irregular sites, and also from the clefts They run transversely, spirally, and longitudinally, making many diadic and some triadic contacts with cisternal sacs of the longitudinal sarcoplasmic reticulum. The contacts are not confined to any particular region of the sarcomere. The tubules are wider and their walls are thicker at points of contact with Z material. Some linking of the Z regions occurs across spaces within the fiber which contain large numbers of glycogen particles. A-band lengths are extremely variable, in the range 2.2 µm–20.3 µm (average 5.2 µm) Individual thick filaments have thin (110 Å) hollow regions alternating with thick (340 Å) solid ones. Bridges between thick filaments occur at random points and are not concentrated into an M band The thin:thick filament ratio is variable in different parts of a fiber, from 3:1 to 6:1. Z bands are basically perforated, but the number of perforations may increase during contraction.  相似文献   

16.
The atrial wall of Notophthalmus viridescens is 25–75 μm thick and is trabeculated sparsely. Coronary vessels are absent. The endocardial endothelium is continuous and has 50–60 nm-wide fenestrae with diaphragms, rests on a discontinuous basal lamina and lacks occluding junctions. Cells found in the subendothelial connective tissue are xanthophores, melanophores, mast cells, fibroblasts, macrophages, and unmyelinated nerve fibers with Schwann cell investments. Epicardial mesothelial cells contain numerous 6–7 nm filaments and lamellar bodies which resemble myelin figures. Mesothelial cell junctions include maculae adhaerentes diminutae, desmosomes, and interdigitations. The epicardial connective tissue layer is more extensive than that of the endocardium, with xanthophores and melanophores rarely present and nerve fibers never observed. The myocardium consists of a mesh-work of myocytes 3–5 cell layers thick with little intervening connective tissue. Myocytes are 6–10 μm in diameter and have two or three peripheral myofibrillae. Typical A, I, H, Z, and M bands are present with a sarcomere length of 2.5 μm. T tubules are not observed. The sarcoplasmic reticulum has subsarcolemmal dilations. The nuclear pole region contains abundant mitochondria and atrial granules, extensive Golgi, and elements of smooth and rough-surfaced endoplasmic reticulum. Lateral intercellular junctions consisting of dense plaques, frequently continuous with Z-line material, are common. Oblique and transversely oriented junctions consisting of primarily of fascia adhaerentes, are present. It appears that amphibian atrial myocytes more closely resemble those of the amphibian ventricle than those of the mammalian atrium. Structural differences between amphibian atrial and ventricular myocytes seem to be quantitative rather than qualitative in nature.  相似文献   

17.
Single fibers isolated from walking leg muscles of crayfish have 8- to 10-µ sarcomeres which are divided into A, I, and Z bands. The H zone is poorly defined and no M band is distinguishable. Changes in the width of the I band, accompanied by change in the overlap between thick and thin myofilaments, occur when the length of the sarcomere is changed by stretching or by shortening the fiber. The thick myofilaments (ca. 200 A in diameter) are confined to the A band. The thin myofilaments (ca. 50 A in diameter) are difficult to resolve except in swollen fibers, when they clearly lie between the thick filaments and run to the Z disc. The sarcolemma invaginates at 50 to 200 sites in each sarcomere. The sarcolemmal invaginations (SI) form tubes about 0.2 µ in diameter which run radially into the fiber and have longitudinal side branches. Tubules about 150 A in diameter arise from the SI and from the sarcolemma. The invaginations and tubules are all derived from and are continuous with the plasma membrane, forming the transverse tubular system (TTS), which is analogous with the T system of vertebrate muscle. In the A band region each myofibril is enveloped by a fenestrated membranous covering of sarcoplasmic reticulum (SR). Sacculations of the SR extend over the A-I junctions of the myofibrils, where they make specialized contacts (diads) with the TTS. At the diads the opposing membranes of the TTS and SR are spaced 150 A apart, with a 35-A plate centrally located in the gap. It appears likely that the anion-permselective membrane of the TTS which was described previously is located at the diads, and that this property of the diadic structures therefore may function in excitation-contraction coupling.  相似文献   

18.
Cholinesterase (ChE) activity is present in crustacean muscle extracts. However, since acetylcholine (ACh) is not a neuromuscular transmitter in these animals, the role and exact localization of ChE was unknown. The histochemical localization of the enzyme was studied in whole muscle and in the sarcoplasmic reticulum fraction of the extract, 50-µm frozen sections of glutaraldehyde-fixed crayfish tail flexor muscle were incubated with acetylthiocholine (ATC) as substrate, and examined under the electron microscope. After some modifications in published techniques, dense deposits were found associated with the sarcolemma, sarcolemmal invaginations, and transverse tubules. No deposits were found in 10-4 M eserine, or if butyrylthiocholine (BTC) was substituted for ATC. The vesicles in the sarcoplasmic reticulum fraction which demonstrate the activity must represent minced bits of these membranes. Using a spectrophotometric method, the kinetics of the crustacean muscle enzyme was compared to the acetylcholinesterase (AChE) on mammalian red blood cells and in the lobster ventral nerve cord. Surprisingly, and contrary to previous reports, the crustacean muscle enzyme did not demonstrate substrate inhibition. While a number of similarities to AChE were found, this lack of substrate inhibition makes questionable an unequivocal similarity with classical AChE.  相似文献   

19.
Frog ventricular cardiac muscle has structural features which set it apart from frog and mammalian skeletal muscle and mammalian cardiac muscle. In describing these differences, our attention focused chiefly on the distribution of cellular membranes. Abundant inter cellular clefts, the absence of tranverse tubules, and the paucity of sarcotubules, together with exceedingly small cell diameters (less than 5 µ), support the suggestion that the mechanism of excitation-contraction coupling differs in these muscle cells from that now thought to be characteristic of striated muscle such as skeletal muscle and mammalian cardiac muscle. These structural dissimilarities also imply that the mechanism of relaxation in frog ventricular muscle differs from that considered typical of other striated muscles. Additional ultrastructural features of frog ventricular heart muscle include spherical electron-opaque bodies on thin filaments, inconstantly present, forming a rank across the I band about 150 mµ from the Z line, and membrane-bounded dense granules resembling neurosecretory granules. The functional significance of these features is not yet clear.  相似文献   

20.
Action potential–driven Ca2+ currents from the transverse tubules (t-tubules) trigger synchronous Ca2+ release from the sarcoplasmic reticulum of cardiomyocytes. Loss of t-tubules has been reported in cardiac diseases, including heart failure, but the effect of uncoupling t-tubules from the sarcolemma on cardiac muscle mechanics remains largely unknown. We dissected intact rat right ventricular trabeculae and compared force, sarcomere length, and intracellular Ca2+ in control trabeculae with trabeculae in which the t-tubules were uncoupled from the plasma membrane by formamide-induced osmotic shock (detubulation). We verified disconnection of a consistent fraction of t-tubules from the sarcolemma by two-photon fluorescence imaging of FM4-64–labeled membranes and by the absence of tubular action potential, which was recorded by random access multiphoton microscopy in combination with a voltage-sensitive dye (Di-4-AN(F)EPPTEA). Detubulation reduced the amplitude and prolonged the duration of Ca2+ transients, leading to slower kinetics of force generation and relaxation and reduced twitch tension (1 Hz, 30°C, 1.5 mM [Ca2+]o). No mechanical changes were observed in rat left atrial trabeculae after formamide shock, consistent with the lack of t-tubules in rodent atrial myocytes. Detubulation diminished the rate-dependent increase of Ca2+-transient amplitude and twitch force. However, maximal twitch tension at high [Ca2+]o or in post-rest potentiated beats was unaffected, although contraction kinetics were slower. The ryanodine receptor (RyR)2 Ca-sensitizing agent caffeine (200 µM), which increases the velocity of transverse Ca2+ release propagation in detubulated cardiomyocytes, rescued the depressed contractile force and the slower twitch kinetics of detubulated trabeculae, with negligible effects in controls. We conclude that partial loss of t-tubules leads to myocardial contractile abnormalities that can be rescued by enhancing and accelerating the propagation of Ca2+-induced Ca2+ release to orphan RyR2 clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号