首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The 81 MHz 31P-NMR spectra of isolated rabbit liver microsomes before and after trypsin treatment and of the total microsomal lipid extract were recorded in the 4-40 degrees C temperature range. In both treated and untreated microsomes at 4 degrees C most of the phospholipids gave rise to typical bilayer spectra whereas the lineshape of the latter in the 25-37 degrees C temperature range becomes narrower and more symmetrical. Quasi-elastic light scattering (QELS) measurements revealed that the microsomes maintain their size in the temperature region of the measurements. We interpret the lineshape changes for untreated microsomes above 25 degrees C as being determined by lateral diffusion. This is supported by lineshape calculations as a function of the lateral diffusion coefficient. The different spectral behavior of enzymatically active (untreated) and inactive (treated) microsomes suggests that the membrane proteins influence the lateral diffusion of the phospholipids.  相似文献   

2.
3.
4.
5.
We now report a mouse model system of brain tumor for 31P-NMR spectroscopic study of in vivo cerebral metabolism. In vivo 31P-NMR (109 MHz) spectra were taken on the 9th day by the Faraday shield method of the brain of mice (3-week-old) transplanted intracerebrally with mKS X A tumor cells. In tumor-bearing mice, the amount of creatine phosphate decreased markedly and that of inorganic phosphate plus sugar phosphate increased accordingly. Furthermore, the broadening and splitting of individual signals were also noted with tumor-bearing mice; this is interpreted as indicating a variety of changes in chemical shift occurring in the brain of the animals due to heterogeneous distribution of pH. Binding or detaching of divalent cations to and from phosphometabolites may also be responsible for these changes.  相似文献   

6.
The self-assembled supramolecular structures of diacylphosphatidylcholine (diC(n)PC), diacylphosphatidylethanolamine (diC(n)PE), diacylphosphatidyglycerol (diC(n)PG), and diacylphosphatidylserine (diC(n)PS) were investigated by (31)P nuclear magnetic resonance (NMR) spectroscopy as a function of the hydrophobic acyl chain length. Short-chain homologs of these lipids formed micelles, and longer-chain homologs formed bilayers. The shortest acyl chain lengths that supported bilayer structures depended on the headgroup of the lipids. They increased in the order PE (C(6)) < PC (C(9)) < or = PS (C(9) or C(10)) < PG (C(11) or C(12)). This order correlated with the effective headgroup area, which is a function of the physical size, charge, hydration, and hydrogen-bonding capacity of the four headgroups. Electrostatic screening of the headgroup charge with NaCl reduced the effective headgroup area of PS and PG and thereby decreased the micelle-to-bilayer transition of these lipid classes to shorter chain lengths. The experimentally determined supramolecular structures were compared to the assembly states predicted by packing constraints that were calculated from the hydrocarbon-chain volume and effective headgroup area of each lipid. The model accurately predicted the chain-length threshold for bilayer formation if the relative displacement of the acyl chains of the phospholipid were taken into account. The model also predicted cylindrical rather than spherical micelles for all four diacylphospholipid classes and the (31)P-NMR spectra provided evidence for a tubular network that appeared as an intermediate phase at the micelle-to-bilayer transition. The free energy of micellization per methylene group was independent of the structure of the supramolecular assembly, but was -0.95 kJ/mol (-0.23 kcal/mol) for the PGs compared to -2.5 kJ/mol (-0.60 kcal/mol) for the PCs. The integral membrane protein OmpA did not change the bilayer structure of thin (diC(10)PC) bilayers.  相似文献   

7.
Microviscosity of human erythrocytes studied with hypophosphite and 31P-NMR   总被引:1,自引:0,他引:1  
A 31P-NMR method, which complements earlier 13C-NMR procedures for probing the intra-erythrocyte microenvironment, is described. Hypophosphite is an almost unique probe of the erythrocyte microenvironment, since it is rapidly transported into the cell via the band 3 protein, and intra- and extracellular populations give rise to distinct resonances in the 31P-NMR spectrum. Relaxation mechanisms of the 31P nucleus in the hypophosphite ion were shown to be spin-rotation and dipole-dipole. Analysis of longitudinal relaxation rates in human erythrocytes, haemolysates and concentrated glycerol solutions allowed the determination of microviscosity using the Debye equation. Bulk viscosities of lysates and glycerol solutions were measured using Ostwald capillary viscometry. Translational diffusion coefficients were then calculated from the viscosity estimates using the Stokes-Einstein equation. The results with a range of solvent systems showed that 'viscosity' is a relative phenomenon and that bulk (i.e., macro-) viscosity is therefore not necessarily related to the NMR-determined viscosity. The intracellular NMR-determined viscosities from red cells, ranging in volume from 65.5 to 100.1 fl, varied from 2.10 to 2.67 mPa s. This is consistent with the translational diffusion coefficients of the hypophosphite ion altering by only 20%, whereas the values determined from bulk viscosity measurements conducted on lysates of these cells are consistent with a 230% change.  相似文献   

8.
The effects of ovariectomy on metabolism of high-energy phosphate compounds during and after exercise were studied in hindleg muscles of 14 rats. Sciatic nerve stimulation was used to establish different work loads, and the changes in inorganic phosphate-to-phosphocreatine ratios (Pi/PCr) were recorded by 31P nuclear magnetic resonance (NMR) in vivo. Four weeks after ovariectomy, there was evidence of significantly higher Pi/PCr during work at stimulation rates greater than 0.5 Hz. The slope for the stimulation rate-to-Pi/PCr relationship decreased from 1.98 +/- 0.15 to 1.36 +/- 0.2 Hz/Pi/PCr after ovariectomy. The normalized tension output of these muscles, tested separately using identical stimulation protocols, was not changed with ovariectomy. Thus the relationship between work (tension-time integral) and bioenergetic cost (Pi/PCr) suggested reduced maximal enzyme activity (Vmax) by 9-17% as a result of lack of ovarian sex hormones, but no change in Michaelis-Menten constant (Km) was found. Postexercise recovery was also significantly slower (3.27 +/- 0.54 PCr/Pi units per minute compared with 4.04 +/- 1.08 in controls). It is suggested that reduced levels of ovarian sex hormones decrease oxidative phosphorylation. Cytochrome oxidase activity was reduced in these muscles by 40%, but other mitochondrial enzyme systems may be affected as well. The possible significance of these data is the implication of a reduced capacity for menopausal women or amenorrheic female athletes to perform prolonged intensive exercise.  相似文献   

9.
Theoretical consideration and experimental findings of 31P nuclear magnetic resonance spectroscopy (NMR) studies of exercising human muscle suggest that a graded, steady-state work protocol is highly suitable for performance evaluation in health and disease. We describe a similar rat model for repeated 31P-NMR studies that follows many of the 31P-NMR features observed in normal human controls. Calf muscles of rats anesthetized with chloral hydrate were indirectly stimulated at four frequencies (0.25, 0.5, 1.0, and 2.0 Hz). It was found that 1) several steady states can be briefly maintained in this model; 2) work-induced phosphocreatine (PCr) fall and inorganic phosphate (Pi) rise is stoichiometric; 3) a linear relationship between stimulation rate and Pi/PCr was obtained, with a slope of 2.01 +/- 0.4 (+/- 2SD, n = 15); 4) no significant drop in ATP was observed, allowing the estimation of phosphorylation potential (PP) changes during this range of muscle work (PP at rest was 61,603 +/- 25,100 M-1 and fell to 6,700 +/- 900 M-1 at the end of exercise); and 5) poststimulation recovery was rapid, with a rate of 2.27 +/- 0.5 PCr/Pi U/min. This simple model can be used for prolonged studies of chronic animal muscle disorders.  相似文献   

10.
Objective: Mitochondrial activity is altered in skeletal muscle of obese, insulin‐resistant or type 2 diabetic patients. We hypothesized that this situation was associated with profound adaptations in resting muscle energetics. For that purpose, we used in vivo 31P‐nuclear magnetic resonance (31P‐NMR) in male sedentary Wistar rats fed with obesogenic diets known to induce alterations in muscle mitochondrial activity. Methods and Procedures: Two experimental diets (high sucrose and high fat) were provided for 6 weeks at two levels of energy (standard, N and high, H) and compared to control diet. The rates of the adenosine triphosphate (ATP) exchange between phosphocreatine (PCr) and γ ‐ATP (ka) and β ‐adenosine diphosphate ( β ‐ADP) to β ‐ATP (kb) were evaluated using 31P‐NMR in resting gastrocnemius muscle. Muscle contents in phosphorylated compounds as well as creatine, were assessed using 31P‐NMR and biochemical assays, respectively. Results: ATP content increased by 6.7–8.5% in standard‐energy high‐sucrose (NSU), high‐energy high‐fat (HF) and high‐energy high‐sucrose (HSU) groups compared to control (P < 0.05), whereas PCr content decreased by 4.2–6.4% (P < 0.01). Consequently, PCr to ATP ratio decreased in NSU, HF, and HSU groups, compared to control (P < 0.01). Furthermore in high‐energy groups (HF and HSU) compared to control, creatine contents were decreased by 14–19% (P < 0.001), whereas ka and kb fluxes were increased by 89–133% (P < 0.001) and 243–277% (P < 0.01), respectively. Discussion: Our in vivo data showed adaptations of resting skeletal muscle energetics in response to high‐energy diets. Increased activity of enzymes catalyzing ATP production may reflect a compensatory mechanism to face impaired mitochondrial ATP synthesis in order to preserve intracellular energy homeostasis.  相似文献   

11.
To evaluate the energy-shuttle hypothesis of the phosphocreatine/creatine kinase system, diffusion rates for ATP, phosphocreatine and flux through the creatine kinase reaction were determined by 31P-NMR in resting bullfrog biceps muscle. The diffusion coefficient of phosphocreatine measured by 31P-pulsed gradient NMR was 1.4-times larger than ATP in the muscle, indicating the advantage of phosphocreatine molecules for the intracellular energy transport. The flux of the creatine kinase reaction measured by 31P-saturation transfer NMR was 3.6 mmol/kg wet wt. per s in the resting muscle. The flux is equal to the turnover rate of ATP, ADP, phosphocreatine and creatine molecules, therefore, the life-times of these substrates and the average distance traversed after the life-times by the diffusing molecules were calculated using the diffusion coefficients obtained by 31P-NMR. The mean square length of one-dimensional diffusion was 22 microns in ATP molecules and the minimum diffusion length was 1.8 microns in ADP molecules. The latter was calculated using free ADP concentration, 30 mumol/kg wet wt., obtained from the equilibrium constant of the creatine kinase reaction and the diffusion coefficient assumed to be the same of ATP in muscle. Similar diffusion lengths of ADP were calculated using the reported values for the flux of the creatine kinase reaction in heart and smooth-muscle. The diffusion lengths of all substrates involved in the creatine kinase reaction were larger than the radii of myofibrils. Therefore, in the muscles with an alternating arrangement of mitochondria and myofibrils, such as heart and certain skeletal muscles, ATP and ADP molecules can move freely between myofibrils and mitochondria without the aid of the creatine kinase reaction; thus, we conclude that the energy-shuttle hypothesis is not obligatory for energy transport between the mitochondria and the myofibrils.  相似文献   

12.
Changes in the content of high-energy phosphates, intracellular pH (pHi) and the ratio of MgATP to total ATP ([MgATP]/[ATP]t) resulting from continuous stimulation with acetylcholine (10(-9) to 10(-4) M) were measured by 31P-NMR spectroscopy in the isolated, perfused rabbit mandibular gland at 37 degrees C. With 10(-9) to 10(-7) M acetylcholine, no significant changes in these parameters were observed. On stimulation with 10(-6) M acetylcholine, the optimal concentration for sustained secretion, the content of ATP decreased by 28 +/- 10% (mean +/- S.E.; n = 8) of its control value. pHi decreased initially by approx. 0.05 pH unit, then showed an alkalinization of 0.09 +/- 0.02 pH unit (n = 8). With 10(-5) and 10(-4) M acetylcholine, changes in ATP and pHi were similar to those induced by 10(-6) M acetylcholine: the total content of high-energy phosphates remained at approx. 70% of the control value and no decrease in [MgATP]/[ATP]t was observed. As possible causes of the reduced secretory rate observed with higher concentrations of acetylcholine (10(-5) to 10(-3) M), we can exclude depletion of high-energy phosphates, inhibition of metabolism caused by intracellular acidosis, and inhibition of ATP usage caused by a decrease in MgATP availability.  相似文献   

13.
The metabolism of the green unicellular halotolerant alga Dunaliella parva was studied by means of 31P nuclear magnetic resonance spectroscopy. The major soluble phosphate compounds were found to be similar to those in other organisms but two phosphodiesters, glycerophosphorylglycerol and glycerophosphorylcholine, were identified in algal tissue for the first time. Only a single pool of intracellular orthophosphate was observed and the chemical shift of the corresponding resonance was used to monitor the intracellular pH. The cell pH and the orthophosphate content were sensitive both to the oxygenation of the cells and to the illumination of the cell suspension. The intracellular pH was controlled over an external pH range of 6–9, but at pH 5 the cell contents became acidic. Carbonyl cyanide p-trifluoromethoxyphenylhydrazone was observed to uncouple oxidative phosphorylation but it did not equilibrate the pH difference across the cell membrane in experiments conducted at an external pH of 7.8.  相似文献   

14.
31P-NMR spectroscopy was used to monitor intracellular pH (pHi) in a suspension of LLC-PK1 cells, a renal epithelial cell line. The regulation of intracellular pH (pHi) was studied during intracellular acidification with 20% CO2 or intracellular alkalinization with 30 mM NH4Cl. The steady-state pHi in bicarbonate-containing Ringer's solution (pHo 7.40) was 7.14 +/- 0.04 and in bicarbonate-free Ringer's solution (pHo 7.40) 7.24 +/- 0.04. When pHo was altered in nominally HCO3(-)-free Ringer's, the intracellular pHi changed to only a small extent between pHo 6.6 and pHo 7.6; beyond this range pHi was linearly related to pHo. Below pHo 6.6 the cell was capable of maintaining a delta pH of 0.2 pH unit (inside more alkaline), above pH 7.6 a delta pH of 0.4 unit could be generated (inside more acid). During exposure to 20% CO2 in HCO3(-)-free Ringer's solution, pHi dropped initially to 6.9 +/- 0.05, the rate of realkalinisation was found to be 0.071 pH unit X min-1. After removal of CO2 the pHi increased by 0.65 and the rate of reacidification was 0.056 pH unit X min-1. Exposure to 30 mM NH4Cl caused a raise of pHi by 0.48 pH unit and an initial rate of re-acidification of 0.063 pH unit X min-1, after removal of NH4Cl the pHi fell by 0.58 pH unit below the steady-state pHi, followed by a subsequent re-alkalinization of 0.083 pH unit X min-1. Under both experimental conditions, the pHi recovery after an intracellular acidification, introduced by exposure to 20% CO2 and by removal of NH4+, was found to be inhibited by 53% and 63%, respectively, in the absence of sodium and 60% and 72%, respectively, by 1 mM amiloride. These studies indicate that 31P-NMR can be used to monitor steady-state intracellular pH as well a pHi transients in suspensions of epithelial cells. The results support the view that LLC-PK1 cells use an Na+-H+ exchange system to readjust their internal pH after acid loading of the cell.  相似文献   

15.
1H- and 31P-NMR and UV-absorption studies were carried out with the oligonucleotide strands d(AGCT-TATC-ATC-GATAAGCT) (-ATC-) and d(AGCTTATC-GAT-GATAAGCT) (-GAT-) contained in the strongest and salt resistant cleavage site for topoisomerase II in pBR322 DNA. We found that the two oligonucleotides were stabilized under a hairpin structure characterized by a eight base pair stem and a three base loop at low DNA and salt concentrations. In such experimental conditions, only the -GAT- oligonucleotide displayed a partial homoduplex structure in slow equilibrium with its folded structure. Temperature dependencies of imino protons showed that the partial homoduplex of -GAT- melted at a lower temperature than the hairpin structure. It was suggested that the appearance of the partial homoduplex in -GAT- is related to the formation of two stabilizing (G.T) mismatched base pairs in the central loop of this structure. Finally, it was inferred from the dispersion of chemical shifts in the 31P-NMR spectra that the distortions affecting the backbone of the hairpin loop are larger in the case of -ATC- compared with -GAT-. At the same time NOEs proved that the base stacking was stronger within the loop of the -ATC- hairpin.  相似文献   

16.
31P-NMR measurements of the concentrations of phosphorus-containing metabolites in mammalian cells immobilised and perifused with glucose and glutamine as sole carbon source have shown that the intracellular Pi concentration is significantly higher in cells perifused with glutamine than with glucose. The data are consistent with the proposal that the rate of glutamine utilisation may be controlled by the activity of phosphate-activated glutaminase.  相似文献   

17.
Muscle phosphorylase deficiency (McArdle's disease) has conventionally been considered a disorder of glycogenolysis, and the associated impairment in oxidative metabolism has been largely overlooked. Muscle glycogen normally is the primary oxidative fuel at exercise work loads requiring more than 75-80% of maximal O2 uptake (VO2max). Evidence is presented to support the hypothesis that a limited flux through the Embden-Myerhof pathway in McArdle's disease reduces the capacity to generate NADH required to support a normal VO2max. The extent of the oxidative defect is substrate dependent; i.e., it can be partially corrected by increasing the availability of alternative oxidative substrates (e.g., glucose, free fatty acids) to working muscle. Experiments employing modification of substrate availability closely link the hyperkinetic circulatory response to exercise (i.e., an abnormally large increase in O2 transport to skeletal muscle) and the premature muscle fatigue and cramping of McArdle patients with their oxidative impairment and suggest that a metabolic common denominator in these abnormal responses may be a pronounced decline in the muscle phosphorylation potential ([ATP]/[ADP][Pi]). The hyperkinetic circulation likely is mediated by the local effects on metabolically sensitive skeletal muscle afferents and vascular smooth muscle of K+, Pi, or adenosine or a combination of these substances released excessively from working skeletal muscle. The premature muscle fatigue and cramping of McArdle patients does not appear to be due to depletion of ATP but is associated with an increased accumulation of Pi and probably ADP in skeletal muscle. Accumulations of Pi and ADP are known to inhibit the myofibrillar, Ca2+, and Na+-K+-ATPase reactions.  相似文献   

18.
Quantitative analysis of phospholipids by 31P-NMR   总被引:1,自引:0,他引:1  
High-field 31P nuclear magnetic resonance spectroscopy was used to quantitate phospholipids in mixtures in organic solvents. The sample is dissolved in chloroform-methanol and analyzed at 161.7 MHz with decoupling of the protons. Signals were identified using authentic compounds, and their relative distribution was measured in mole percent. The method has good accuracy and reproducibility, and was used to analyze phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, lysophosphatidylcholine, lysophosphatidylethanolamine, phosphatidylinositol, cardiolipin, and phosphatidic acid in egg lecithin. Four commercial egg phospholipids and the phospholipids from a total lipid extract of rat liver were analyzed. The method could be utilized to analyze phospholipids from other sources.  相似文献   

19.
A mathematical model is developed whereby the longitudinal magnetization of phosphocreatine (PC), ATP, Pi, and total phosphate (PT) can be calculated on the basis of assumed chemical rate constants (kappa i) and spin lattice relaxation times of the muscle PC in equilibrium ATP in equilibrium Pi exchange system. By means of this model, some unexplained 31P nuclear magnetic resonance (NMR) spectroscopy results from the literature (e.g., a decrease of PT in a closed system) could be explained simply on the basis of the physiological variability of kappa i. Moreover, appropriate model simulations indicate that 1) 31P-NMR spectra obtained with short relaxation delays may be influenced to various extents by the metabolic and physicochemical status of the muscle; 2) the assessment of kappa i by standard NMR spectroscopy techniques may be extremely critical; 3) delta PC/delta Pi, as obtained from conventional 31P-NMR spectra, may represent a sensible index of kappa 2 (the pseudo first-order chemical exchange rate constant of the adenosinetriphosphatase reaction); 4) delta PC/delta Pi changes as detected from sequential (short relaxation delays) 31P-NMR spectra obtained in humans during metabolic transients (e.g., during transition from rest to work and vice versa) may represent an index of transient changes of kappa 2.  相似文献   

20.
The effect of low concentrations of nonionic detergents with different critical micelle concentrations such as Triton X-100, Brij 35 and octylglucoside on rabbit liver microsomes is studied by means of 31P-NMR, 1H-NMR, dynamic light scattering and functional investigations. Hexane phosphonic acid diethyl ester was used as a phosphorus membrane probe molecule to monitor the interaction of detergent molecules with microsomal phospholipids by 31P-NMR. This method is more sensitive than 31P-NMR of phospholipids alone and permitted the estimation of the maximum number of detergent molecules which can be incorporated in microsomes without the formation of mixed micelles outside the membrane. These membrane saturation concentrations were determined to be 0.07 (Brij 35), 0.1 (Triton X-100) and 0.4 (octylglucoside) (molar ratio of detergent/total phospholipids). Above these detergent concentrations, mixed micelles consisting of detergent and membrane constituents are formed, coexisting with the microsomes up to the membrane solubilization concentration. The results indicate a dependence of the membrane saturation concentration on the critical micelle concentration of the detergent and a preferential removal of phosphatidylcholine over phosphatidylethanolamine from the microsomes by all detergents studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号