首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
To improve the thermostability of a mesophilic GH family 10 xylanase, AuXyn10A, from Aspergillus usamii E001, its modification was performed by in silico design. Based on the comparison of B-factor values, a mutant xylanase ATXyn10 was predicted by substituting a segment YP from Tyr25 to Pro34 of AuXyn10A with the corresponding one from Asn24 to Ala32 of TaXyn10, a thermophilic GH family 10 xylanase from Thermoascus aurantiacus. Analysis of a TaXyn10 crystal structure indicated that there is a close interaction between segments YP and FP. For that reason, another mutant xylanase ATXyn10M was designed by mutating Ser286 and His288 of ATXyn10 into the corresponding Gly285 and Phe287 in the FP of TaXyn10. Then, two ATXyn10- and ATXyn10M-encoding genes, ATxyn10 and ATxyn10 M, were expressed in Pichia pas toris GS115. The temperature optimum of recombinant (re) ATXyn10M was 60 °C, 10 °C higher than that of reAuXyn10A. Its thermal inactivation half-life (t 1/2) at 55 °C was 10.4-fold longer than that of reAuXyn10A. As compared with reAuXyn10A, reATXyn10M displayed a slight decrease in K m value and a significant increase in V max value from 6,267 to 8,870 U/mg.  相似文献   

2.
Based on the hyperthermostable family 11 xylanase (EvXyn11TS) gene sequence (EU591743), the gene Syxyn11 encoding a thermophilic xylanase SyXyn11 was synthesized with synonymous codons biasing towards Pichia pastoris. The homology alignment of primary structures among family 11 xylanases revealed that, at their N-termini, only SyXyn11 contains a disulfide bridge (Cys5–Cys32). This to some extent implied the significance of the disulfide bridge of SyXyn11 to its thermostability. To confirm the correlation between the N-terminal disulfide bridge and thermostability, a SyXyn11C5T-encoding gene, Syxyn11 C5T, was constructed by mutating the Cys5 codon of Syxyn11 to Thr5. Then, the genes for the recombinant xylanases, reSyXyn11 and reSyXyn11C5T, were expressed in P. pastoris GS115, yielding xylanase activity of about 35 U per ml cell culture. Both xylanases were purified to homogeneity with specific activities of 363 and 344 U/mg, respectively. The temperature optimum and stability of reSyXyn11C5T decreased to 70 and 50°C from 85 and 80°C of reSyXyn11, respectively. There was no obvious change in pH characteristics.  相似文献   

3.
A cDNA gene (Auxyn10A), which encodes a mesophilic family 10 xylanase from Aspergillus usamii E001 (abbreviated to AuXyn10A), was amplified and inserted into the XhoI and NotI sites of pPIC9KM vector constructed from a parent pPIC9K. The recombinant expression vector, designated pPIC9KM-Auxyn10A, was transformed into Pichia pastoris GS115. All P. pastoris transformants were spread on a MD plate, and then inoculated on geneticin G418-containing YPD plates for screening multiple copies of integration of the Auxyn10A. One transformant expressing the highest recombinant AuXyn10A (reAuXyn10A) activity of 368.6 U/ml, numbered as P. pastoris GSX10A4-14, was selected by flask expression test. SDS-PAGE assay demonstrated that the reAuXyn10A was extracellularly expressed with an apparent M.W. of 39.8 kDa. The purified reAuXyn10A displayed the maximum activity at pH 5.5 and 50 °C. It was highly stable at a broad pH range of 4.5–8.5, and at a temperature of 45 °C. Its activity was not significantly affected by EDTA and several metal ions except Mn2+, which caused a strong inhibition. The K m and V max, towards birchwood xylan at pH 5.5 and 50 °C, were 2.25 mg/ml and 6,267 U/mg, respectively. TLC analysis verified that the AuXyn10A is an endo-β-1,4-d-xylanase, which yielded a major product of xylotriose and a small amount of xylose, xylotetraose, and xylopentose from birchwood xylan, but no xylobiose.  相似文献   

4.
Highly efficient production of a Thermomyces lanuginosus IOC-4145 β-1,4-xylanase was achieved in Pichia pastoris under the control of the AOX1 promoter. P. pastoris colonies expressing recombinant xylanase were selected by enzymatic activity plate assay, and their ability to secrete high levels of the enzyme was evaluated in small-scale cultures. Furthermore, an optimization of enzyme production was carried out with a 23 factorial design. The influence of initial cell density, methanol, and yeast nitrogen base concentration was evaluated, and initial cell density was found to be the most important parameter. A time course profile of recombinant xylanase production in 1-liter flasks with the optimized conditions was performed and 148 mg of xylanase per liter was achieved. Native and recombinant xylanases were purified by gel filtration and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, circular dichroism spectroscopy, matrix-assisted laser desorption ionization-time of flight-mass spectrometry and physicochemical behavior. Three recombinant protein species of 21.9, 22.1, and 22.3 kDa were detected in the mass spectrum due to variability in the amino terminus. The optimum temperature, thermostability, and circular dichroic spectra of the recombinant and native xylanases were identical. For both enzymes, the optimum temperature was 75°C, and they retained 60% of their original activity after 80 min at 70°C or 40 min at 80°C. The high level of fully active recombinant xylanase obtained in P. pastoris makes this expression system attractive for fermentor growth and industrial applications.  相似文献   

5.
To improve the temperature characteristics of a mesophilic glycoside hydrolase family (GHF) 11 xylanase AoXyn11A from Aspergillus oryzae, both introduction of a disulfide bridge and the substitution of a specific amino acid were carried out by in silico design and site-directed mutagenesis. Based on the analysis of a known crystal structure of thermophilic xylanase TlXynA from Thermomyces lanuginosus, and the alignment of primary structures between AoXyn11A and TlXynA, one mutant AoXyn11AM with a disulfide bridge (Cys108–Cys152) was designed by replacing the Ser108 and Asn152 of AoXyn11A with Cys residues, respectively. Additionally, based on the analysis of amino acid B-factor values, another mutant AoXyn11AM-G22A was predicted by substituting Gly22 of AoXyn11AM (having the maximum B-factor value of 69.25 Å, with the corresponding Ala23 of TlXynA. Thereafter, two mutant xylanase-encoding genes, Aoxyn11A M and Aoxyn11A M-G22A, were constructed by site-directed mutagenesis. Aoxyn11A and two mutant genes were expressed in E. coli BL21(DE3) respectively, and three expressed recombinant xylanases, reAoXyn11A, reAoXyn11AM and reAoXyn11AM-G22A, were purified to homogeneity. The temperature optima of reAoXyn11AM and reAoXyn11AM-G22A were 60 and 65°C, respectively, being 5 and 10°C higher than that of reAoXyn11A. Their thermal inactivation half-lives at 50°C were 1.8- and 8.4-folds longer than that of reAoXyn11A. There were no obvious alterations after mutations in specific activity and enzymatic properties, except for the temperature characteristics.  相似文献   

6.
The termini of a pair of xylanases, one of mesophilic and one of thermophilic origin, was studied by molecular dissection and systematic mutagenesis. The thermostability of the mesophilic xylanase SoxB from Streptomyces olivaceovirdis was significantly improved by substituting its 33 N-terminal amino acid residues with the corresponding residues of the thermophilic xylanase TfxA from Thermomonospora fusca. Five amino acid substitutions, which clustered in one of the regions of the N-terminus, were discovered, for the first time, to account for the majority of the improvement in thermostability of SoxB. Further systematic mutagenesis and analysis of the five mutations demonstrated that comprehensive synergism of the five mutations was involved in conferring the thermostability on the SoxB. Moreover, when the five thermostabilizing mutations were introduced into two other G/11 xylanases, SlxB from Streptomyces lividans and AnxB from Aspergillus niger, their thermostabilities were also dramatically enhanced.  相似文献   

7.
A xylanase gene (xyl11B) was cloned from Bispora sp. MEY-1 and expressed in Pichia pastoris. xyl11B, with a 66-bp intron, encodes a mature protein of 219 residues with highest identity (57.1%) to the Trichoderma reesei xylanase of glycoside hydrolase family 11. The purified recombinant XYL11B was acidophilic, exhibiting maximum activity at pH 2.6 and 65 °C. The enzyme was also thermostable, pH stable, and was highly resistant to both pepsin and trypsin, suggesting good performance in the digestive tract as a feed supplement to improve animal nutrition. The activity of XYL11B was enhanced by most metal ions but was inhibited weakly by Hg2+, Pb2+and Cu2+, which strongly inhibit many other xylanases. The specific activity of XYL11B for oat spelt xylan substrate was 2049 U mg?1. The main hydrolysis products of xylan were xylose and xylobiose.  相似文献   

8.

Background  

The filamentous fungus Penicillium funiculosum produces a range of glycoside hydrolases (GH). The XynD gene, encoding the sole P. funiculosum GH10 xylanase described so far, was cloned into the pPICZαA vector and expressed in methylotrophe yeast Pichia pastoris, in order to compare the results obtained with the P. funiculosum GH11 xylanases data.  相似文献   

9.

Background

In the hydrolysis of lignocellulosic materials, thermostable enzymes decrease the amount of enzyme needed due to higher specific activity and elongate the hydrolysis time due to improved stability. For cost-efficient use of enzymes in large-scale industrial applications, high-level expression of enzymes in recombinant hosts is usually a prerequisite. The main aim of the present study was to compare the biochemical and hydrolytic properties of two thermostable recombinant glycosyl hydrolase families 10 and 11 (GH10 and GH11, respectively) xylanases with respect to their potential application in the hydrolysis of lignocellulosic substrates.

Results

The xylanases from Nonomuraea flexuosa (Nf Xyn11A) and from Thermoascus aurantiacus (Ta Xyn10A) were purified by heat treatment and gel permeation chromatography. Ta Xyn10A exhibited higher hydrolytic efficiency than Nf Xyn11A toward birchwood glucuronoxylan, insoluble oat spelt arabinoxylan and hydrothermally pretreated wheat straw, and it produced more reducing sugars. Oligosaccharides from xylobiose to xylopentaose as well as higher degree of polymerization (DP) xylooligosaccharides (XOSs), but not xylose, were released during the initial hydrolysis of xylans by Nf Xyn11A, indicating its potential for the production of XOS. The mode of action of Nf Xyn11A and Ta Xyn10A on glucuronoxylan and arabinoxylan showed typical production patterns of endoxylanases belonging to GH11 and GH10, respectively.

Conclusions

Because of its high catalytic activity and good thermostability, T. aurantiacus xylanase shows great potential for applications aimed at total hydrolysis of lignocellulosic materials for platform sugars, whereas N. flexuosa xylanase shows more significant potential for the production of XOSs.  相似文献   

10.
A mesophilic Aspergillus oryzae xylanase (AoXyn11A) belongs to glycoside hydrolase family 11. Hydrogen bonds and a disulfide bridge were introduced between the N-terminus extension and the β-sheet A2 of AoXyn11A, which were located in the corresponding region of a hyperthermostable xylanase. The mutants were designated as AoXyn11AC5 and AoXyn11AC5–C32, respectively. The thermostabilities of AoXyn11A and the mutants were assessed by the molecular dynamics simulations. After being incubated at 55 °C for 30 min, AoXyn11AC5–C32 retained 49 % of its original activity, AoXyn11AC5 retained 12 % and AoXyn11A retained 3 %. The interactions between the N-terminus extension and the β-sheet A2 were analyzed in depth: there was enhancement of the interactions between the N-terminus extension and the β-sheet A2 of AoXyn11A that improved its thermostability.  相似文献   

11.
30 strains of xylanolytic thermophilic actinomycetes were isolated from composted grass and cattle manure and identified as members of the generaThermomonospora, Saccharomonospora, Microbispora, Streptomyces andActinomadura. Screening of these strains for extracellular xylanase indicated that strains ofSaccharomonospora andMicrobispora generally were poor xylanase producers (0.5–1.5 U/ml) whereas relatively high activities were observed in cultures ofStreptomyces andActionomadura (4–12 U/ml).A preliminary characterization of the enzymes of strains of the latter genera suggested that xylanases of all the strains ofActinomadura exhibited higher thermostabilities than those ofStreptomyces. To evaluate the potential of thermophilicActinomadura for industrial applications, xylanases of three strains were studied in more detail. The highest activity levels for xylanases were observed in cultures grown on xylan and wheat bran. The optimal pH and temperature for xylanase activities ranged from 6.0 to 7.0 and 70 to 80°C. The enzymes exhibited considerable thermostability at their optimum temperature. The half-lives at 75°C were in the range from 6.5 to 17h. Hydrolysis of xylan by extracellular xylanases yielded xylobiose, xylose and arabinose as principal products. Estimated by the amount of reducing sugars liberated the degree of hydrolysis was 55 to 65%. Complete utilization of xylan is presumably achieved by -xylosidase activities which could be shown to be largely cell-associated in the 3Actinomadura strains.  相似文献   

12.
Overexpression of gonadotropin‐releasing hormone (GnRH) receptor in many tumors but not in normal tissues makes it possible to use GnRH analogs as targeting peptides for selective delivery of cytotoxic agents, which may help to enhance the uptake of anticancer drugs by cancer cells and reduce toxicity to normal cells. The GnRH analogs [d ‐Cys6, desGly10, Pro9‐NH2]‐GnRH, [d ‐Cys6, desGly10, Pro9‐NHEt]‐GnRH, and [d ‐Cys6, α‐aza‐Gly10‐NH2]‐GnRH were conjugated with doxorubicin (Dox), respectively, through N‐succinimidyl‐3‐maleimidopropionate as a linker to afford three new GnRH‐Dox conjugates. The metabolic stability of these conjugates in human serum was determined by RP‐HPLC. The antiproliferative activity of the conjugates was examined in GnRH receptor‐positive MCF‐7 human breast cancer cell line by MTT assay. The three GnRH‐Dox conjugates showed improved metabolic stability in human serum in comparison with AN‐152. The antiproliferative effect of conjugate II ([d ‐Cys6, desGly10, Pro9‐NHEt]‐GnRH‐Dox) on MCF‐7 cells was higher than that of conjugate I ([d ‐Cys6, desGly10, Pro9‐NH2]‐GnRH‐Dox) and conjugate III ([d ‐Cys6, α‐aza‐Gly10‐NH2]‐GnRH‐Dox), and the cytotoxicity of conjugate II against GnRH receptor‐negative 3T3 mouse embryo fibroblast cells was decreased in comparison with free Dox. GnRH receptor inhibition test suggested that the antiproliferative activity of conjugate II might be due to the cellular uptake mediated by the targeting binding of [d ‐Cys6‐des‐Gly10‐Pro9‐NHEt]‐GnRH to GnRH receptors. Our study indicates that targeting delivery of conjugate II mediated by [d ‐Cys6‐des‐Gly10‐Pro9‐NHEt]‐GnRH is a promising strategy for chemotherapy of tumors that overexpress GnRH receptors.  相似文献   

13.
Xylanases are crucial for lignocellulosic biomass deconstruction and generally contain noncatalytic carbohydrate-binding modules (CBMs) accessing recalcitrant polymers. Understanding how multimodular enzymes assemble can benefit protein engineering by aiming at accommodating various environmental conditions. Two multimodular xylanases, XynA and XynB, which belong to glycoside hydrolase families 11 (GH11) and GH10, respectively, have been identified from Caldicellulosiruptor sp. strain F32. In this study, both xylanases and their truncated mutants were overexpressed in Escherichia coli, purified, and characterized. GH11 XynATM1 lacking CBM exhibited a considerable improvement in specific activity (215.8 U nmol−1 versus 94.7 U nmol−1) and thermal stability (half-life of 48 h versus 5.5 h at 75°C) compared with those of XynA. However, GH10 XynB showed higher enzyme activity and thermostability than its truncated mutant without CBM. Site-directed mutagenesis of N-terminal amino acids resulted in a mutant, XynATM1-M, with 50% residual activity improvement at 75°C for 48 h, revealing that the disordered region influenced protein thermostability negatively. The thermal stability of both xylanases and their truncated mutants were consistent with their melting temperature (Tm), which was determined by using differential scanning calorimetry. Through homology modeling and cross-linking analysis, we demonstrated that for XynB, the resistance against thermoinactivation generally was enhanced through improving both domain properties and interdomain interactions, whereas for XynA, no interdomain interactions were observed. Optimized intramolecular interactions can accelerate thermostability, which provided microbes a powerful evolutionary strategy to assemble catalysts that are adapted to various ecological conditions.  相似文献   

14.
A mesophilic xylanase from Aspergillus oryzae CICC40186 (abbreviated to AoXyn11A) belongs to glycoside hydrolase family 11. The thermostability of AoXyn11A was significantly improved by substituting its N‐terminus with the corresponding region of a hyperthermostable family 11 xylanase, EvXyn11TS. The suitable N‐terminus of AoXyn11A to be replaced was selected by the comparison of B‐factors between AoXyn11A and EvXyn11TS, which were generated and calculated after a 15 ns molecular dynamic (MD) simulation process. Then, the predicted hybrid xylanase (designated AEx11A) was modeled, and subjected to a 2 ns MD simulation process for calculating its total energy value. The N‐terminus substitution was confirmed by comparing the total energy value of AEx11A with that of AoXyn11A. Based on the in silico design, the AEx11A was constructed and expressed in Pichia pastoris GS115. After 72 h of methanol induction, the recombinant AEx11A (reAEx11A) activity reached 82.2 U/mL. The apparent temperature optimum of reAEx11A was 80°C, much higher than that of reAoXyn11A. Its half‐life was 197‐fold longer than that of reAoXyn11A at 70°C. Compared with reAoXyn11A, the reAEx11A displayed a slight alteration in Km but a decrease in Vmax. Biotechnol. Bioeng. 2013; 110: 1028–1038. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
The alkaline xylanase Xyn11A-LC from the alkalophilic Bacillus sp. SN5 was expressed in E. coli, purified and crystallized. The crystal structure was determined at a resolution of 1.49 Å. Xyn11A-LC has the β-jelly roll structure typical of family 11 xylanases. To improve its thermostability and thermophilicity, a mutant SB3 was constructed by introducing three arginines on the different sides of the protein surface. SB3 increased the optimum temperature by 5 °C. The wild type and SB3 had the half-lives of 22 and 68 min at 65 °C at pH 8.0 (Tris/HCl buffer), respectively. CD spectroscopy revealed that the melting temperature (T m) of the wild type and SB3 were 55.3 and 66.9 °C, respectively. These results showed that the introduction of arginines enhance the thermophilicity and thermostability of Xyn11A-LC.  相似文献   

16.
A two-step PCR protocol was used to identify and sequence a family 11 xylanase gene from Dictyoglomus thermophilum Rt46B.1. Family 11 xylanase consensus fragments (GXCFs) were amplified from Rt46B.1 genomic DNA by using different sets of consensus PCR primers that exhibited broad specificity for conserved motifs within fungal and/or bacterial family 11 xylanase genes. On the basis of the sequences of a representative sample of the GXCFs a single family 11 xylanase gene (xynB) was identified. The entire gene sequence was obtained in the second step by using genomic walking PCR to amplify Rt46B.1 genomic DNA fragments upstream and downstream of the xynB GXCF region. The putative XynB peptide (Mr, 39,800) encoded by the Rt46B.1 xynB open reading frame was a multidomain enzyme comprising an N-terminal catalytic domain (Mr, 22,000) and a possible C-terminal substrate-binding domain (Mr, 13,000) that were separated by a short serine-glycine-rich 23-amino-acid linker peptide. Seven xylanases which differed at their N and C termini were produced from different xynB expression plasmids. All seven xylanases exhibited optimum activity at pH 6.5. However, the temperature optima of the XynB xylanases varied from 70 to 85°C. Pretreatment of Pinus radiata and eucalypt kraft-oxygen pulps with XynB resulted in moderate xylan solubilization and a substantial improvement in the bleachability of these pulps.  相似文献   

17.
Some physicochemical properties of neutral proteinases I and II, zinc-containing metalloenzymes, from Aspergillus sojae were investigated.

Neutral proteinase I: The enzyme protein had a sedimentation coefficient of 3.90S, an intrinsic viscosity of 0.0315 dl/g, and a partial specific volume, calculated from the amino acid and carbonhydrate composition, of 0.715 cm3/g. The molecular weight was 42,200 from the Yphantis’ procedure, and was 42,500 from the calculation according to the Scheraga-Mandel-kern’s formula. The integral numbers of amino acid residues per molecule calculated on the basis of 42,200 as molecular weight were as follows; Lys16, His6, Arg13, Trp8, Asp56, Thr25, Ser23, Glu31, Pro18, Gly40, Ala33, l/2Cys4, Val11, Met6, Ile15, Leu25, Tyr20, Р?е10, (amide-ammonia)29, in addition to mannose6, galactose1, hexosamine3.

Neutral proteinase II: The enzyme protein had a sedimentation coefficient of 2.32S, an intrinsic viscosity of 0.0270 dl/g, and a calculated partial specific volume of 0.714 cm3/g. The molecular weight was 16,800 from the Yphantis’ procedure, and was 18,000 from the sedimentation and intrinsic viscosity. The following amino acid compositions was calculated on the basis of 16,800 as molecular weight; Lys8, His3, Arg3, Asp19, Thr17, Ser11, GIu23, Pro5, Gly9, Ala24, l/2Cys4, Val5, Ile3, Leu13, Tyr10, Phe3, (amide-ammonia)15. In the enzyme preparation, neither methionine nor tryptophan was detected and carbohydrate was also absent.

In both neutral proteinases I and II, no free SH group was detected by the PCMB-titration in the presence of 8 M urea.  相似文献   

18.
The Aspergillus niger xylanase (Xyn) was used as a model to investigate impacts of un-structured residues on GH11 family enzyme, because the β-jelly roll structure has five residues (Ser1Ala2Gly3Ile4Asn5) at N-terminus and two residues (Ser183Ser184) at C-terminus that do not form to helix or strand. The N- or/and C-terminal residues were respectively deleted to construct three mutants. The optimal temperatures of XynΔN, XynΔC, and XynΔNC were 46, 50, and 46°C, and the thermostabilities were 15.7, 73.9, 15.5 min at 50°C, respectively, compared to 48°C and 33.9 min for the Xyn. After kinetic analysis, the substrate-binding affinities for birch-wood xylan decreased in the order XynΔC>Xyn>XynΔNC>XynΔN, while the Kcat values increased in the order XynΔC<XynΔNC<Xyn<XynΔN. The C-terminal deletion increased the GH11 xylanase thermostability and Topt, while the N- and NC-terminal deletions decreased its thermostability and optimal temperature. The C-terminal residues created more impact on enzyme thermal property, while the N-terminal residues created more impact on its catalytic efficiency and substrate-binding affinity. The impact of non-structured residues on GH11 xylanase was different from that of similar residues on GH10 xylanase, and the difference is attributed to structural difference between GH11 jelly-roll and GH10 (β/α)8.  相似文献   

19.
Novel xylanase (EC 3.2.1.8) is in great demand due to its industrial significance. In this study, we have developed and characterized a novel xylanase-producing yeast strain. This mature xylanase gene xyn11A consists of 870 base pairs and belongs to GH11 family. The gene sequence was optimized and synthesized, and was then cloned into yeast vector pGAPZαA under the control of the constitutive GAP promoter. SDS-PAGE analysis indicates that Xyn11A is extracellularly expressed as a glycosylated protein in P. pastoris. Xyn11A is optimally active at 70 °C and pH 7.4. This xylanase retained more than 90% of its activity after incubation at 50 °C and 60 °C for up to 1 h. Xyn11A is also stable over a wide range of pH (2.0–11.0). Most metal ions tested such as copper (Cu2+) and lead (Pb2+) have little inhibitory effects on Xyn11A. It is also resistant to pepsin and proteinase K digestion, retaining 80% and 90% of its activity after digestion at 37 °C for 1 h, respectively. Those superior properties make Xyn11A a robust xylanase with great potential for industrial use. To the best of our knowledge, this is the first report of xylanase from the fungus Corynascus thermophilus.  相似文献   

20.
The xynA gene encoding a xylanase from the recently isolated Bacillus sp. strain BP-7 has been cloned and expressed in Escherichia coli. Recombinant xylanase A showed high activity on xylans from hardwoods and cereals, and exhibited maximum activity at pH 6 and 60°C. The enzyme remained stable after incubation at 50°C and pH 7 for 3 h, and it was strongly inhibited by Mn2+, Fe3+, Pb2+, and Hg2+. Analysis of xylanase A in zymograms showed an apparent molecular size of 24 kDa and a pI of above 9. The amino acid sequence of xylanase A, as deduced from xynA gene, shows homology to alkaline pI-low molecular weight xylanases of family 11 such as XynA from Bacillus subtilis. Analysis of codon usage in xynA from Bacillus sp. BP-7 shows that the G+C content at the first and second codon positions is notably different from the mean values found for glycosyl hydrolase genes from Bacillus subtilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号