首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Astrobiology is mistakenly regarded by some as a field confined to studies of life beyond Earth. Here, we consider life on Earth through an astrobiological lens. Whereas classical studies of microbiology historically focused on various anthropocentric sub-fields (such as fermented foods or commensals and pathogens of crop plants, livestock and humans), addressing key biological questions via astrobiological approaches can further our understanding of all life on Earth. We highlight potential implications of this approach through the articles in this Environmental Microbiology special issue ‘Ecophysiology of Extremophiles’. They report on the microbiology of places/processes including low-temperature environments and chemically diverse saline- and hypersaline habitats; aspects of sulphur metabolism in hypersaline lakes, dysoxic marine waters, and thermal acidic springs; biology of extremophile viruses; the survival of terrestrial extremophiles on the surface of Mars; biological soils crusts and rock-associated microbes of deserts; subsurface and deep biosphere, including a salticle formed within Triassic halite; and interactions of microbes with igneous and sedimentary rocks. These studies, some of which we highlight here, contribute to our understanding of the spatiotemporal reach of Earth'sfunctional biosphere, and the tenacity of terrestrial life. Their findings will help set the stage for future work focused on the constraints for life, and how organisms adapt and evolve to circumvent these constraints.  相似文献   

2.
André Brack 《Grana》2013,52(2):505-509
Terrestrial life can be schematically described as organic molecules organized in liquid water. According to Oparin's hypothesis, organic building blocks required for early life were produced from simple organic molecules formed in a primitive reducing atmosphere. Precursors of lipids, nucleic acids and enzymes obtained in the laboratory under simulating conditions are reviewed. Geochemists favor now a less reducing atmosphere dominated by carbon dioxide. In such an atmosphere, very few building blocks are formed under prebiotic conditions. Import of extraterrestrial organic molecules may represent an alternative supply. Experimental support for such an alternative scenario is examined in comets, cosmic dust, meteorites and micrometeorites. Even the prebiotic broth receives today severe criticism for being implausible. In contrast to the classical scenario, a chemoautotrophic origin of life is discussed. Finally, interesting information related to early terrestrial life may be gained from Mars exploration.  相似文献   

3.
4.
Combined top-down and bottom-up research strategies and the principle of biological continuity were employed in an attempt to reconstruct a comprehensive origin of life theory, which is an extension of the coevolution theory (Lahav and Nir, Origins of Life Evol. Biosphere (1997) 27, 377-395). The resulting theory of emergence of templated-information and functionality (ETIF) addresses the emergence of living entities from inanimate matter, and that of the central mechanisms of their further evolution. It proposes the emergence of short organic catalysts (peptides and proto-ribozymes) and feedback-loop systems, plus their template-and-sequence-directed (TSD) reactions, encompassing catalyzed replication and translation of populations of molecules organized as chemical-informational feedback loop entities, in a fluctuating (wetting-drying) environment, functioning as simplified extant molecular-biological systems. The feedback loops with their TSD systems are chemically and functionally continuous with extant living organisms and their emergence in an inanimate environment may be defined as the beginning of life. The ETIF theory considers the emergence of bio-homochirality, a primordial genetic code, information and the incorporation of primordial metabolic cycles and compartmentation into the emerging living entities. This theory helps to establish a novel measure of biological information, which focuses on its physical effects rather than on the structure of the message, and makes it possible to estimate the time needed for the transition from the inanimate state to the closure of the first feedback-loop systems. Moreover, it forms the basis for novel laboratory experiments and computer modeling, encompassing catalytic activity of short peptides and proto-RNAs and the emergence of bio-homochirality and feedback-loop systems.  相似文献   

5.
6.
7.
Gross M 《Current biology : CB》2012,22(7):R207-R211
As the NASA rover Curiosity approaches Mars on its quest to look for signs of past or present life there and sophisticated instruments like the space telescopes Kepler and CoRoT keep discovering additional, more Earth-like planets orbiting distant stars, science faces the question of how to spot life on other planets. Even here on Earth biotopes remain to be discovered and explored.  相似文献   

8.
In songbirds, nocturnal activity is believed to be a characteristic feature of migration. However, unlike experimental conditions where the onset of nocturnal restlessness is defined as a shift of activity leading up to the dark period, this behaviour has, until now, not been observed in natural conditions. Here we studied the nocturnal behaviour of radio-tagged juvenile Eurasian reed warblers (Acrocephalus scirpaceus) during the pre-migratory period. The birds started nocturnal flights at the age of 38 days, whereas migration did not commence until they were at least 50 days old. The birds left their natal site by nocturnal flights and repeatedly returned to it. Such shuttle movements suggest the existence of a previously unknown period of nocturnal activity. Motivation to perform such night flights gradually increases with age. We relate the function of these nocturnal pre-migratory flights to the development of a stellar compass, necessary for detecting the compass direction towards winter quarters and for the formation of a navigational target, which will be used during return (spring) migration.  相似文献   

9.
10.
11.
12.
The present study is based on the proposal that if the aqueous phosphorus-capture mechanism by iron oxide precursors was inhibited in prebiotic anoxic scenarios then soluble phosphates could have been more available than what is observed now. Supporting this conjecture, we examine prevailing contemporary trapping mechanisms of orthophosphate (Pi) and pyrophosphate (PPi). To illustrate its efficiency, the attachment of (Pi) ontoaggregates of iron-3 oxyhydroxide is compared with the one reported for the product of its condensation, PPi. The electrophoretic profiles of the Pi- and PPi-aggregatecomplexes reveal different pH-modulated interactions ofthe phosphorylated compounds with both the aggregate andits aqueous surrounding layers. The observed differencesof Pi/PPi sorption and desorption mechanisms are discussed in terms of their consequences to the prebiotic availability of soluble orthophosphate and of a phosphorylated compound having the high-energy phosphoanhydride linkage and a molecule representative of condensed oligophosphates.  相似文献   

13.
14.
How life emerged from simple non-life chemicals on the ancient Earth is one of the greatest mysteries in biology. The gene expression system of extant life is based on the interdependence between multiple molecular species (DNA, RNA, and proteins). While DNA is mainly used as genetic material and proteins as functional molecules in modern biology, RNA serves as both genetic material and enzymes (ribozymes). Thus, the evolution of life may have begun with the birth of a ribozyme that replicated itself (the RNA world hypothesis), and proteins and DNA joined later. However, the complete self-replication of ribozymes from monomeric substrates has not yet been demonstrated experimentally, due to their limited activity and stability. In contrast, peptides are more chemically stable and are considered to have existed on the ancient Earth, leading to the hypothesis of RNA–peptide co-evolution from the very beginning. Our group and collaborators recently demonstrated that (1) peptides with both hydrophobic and cationic moieties (e.g., KKVVVVVV) form β-amyloid aggregates that adsorb RNA and enhance RNA synthesis by an artificial RNA polymerase ribozyme and (2) a simple peptide with only seven amino acid types (especially rich in valine and lysine) can fold into the ancient β-barrel conserved in various enzymes, including the core of cellular RNA polymerases. These findings, together with recent reports from other groups, suggest that simple prebiotic peptides could have supported the ancient RNA-based replication system, gradually folded into RNA-binding proteins, and eventually evolved into complex proteins like RNA polymerase.  相似文献   

15.
The last decade has witnessed outstanding progress in sequencing the genomes of photosynthetic eukaryotes, from major cereal crops to single celled marine phytoplankton. For the algae, we now have whole genome sequences from green, red, and brown representatives, and multiple efforts based on comparative and functional genomics approaches have provided information about the unicellular origins of higher plants, and about the evolution of photosynthetic life in general. Here we present some of the highlights from such studies, including the endosymbiotic origins of photosynthetic protists and their positioning with respect to plants and animals, the evolution of multicellularity in photosynthetic lineages, the role of sex in unicellular algae, and the potential relevance of epigenetic processes in contributing to the adaptation of algae to their environment.  相似文献   

16.
17.
18.
This article examines the origin of life on Earth and its connection to the Superstring Theory, that attempts to explain all phenomena in the universe (Theory of Everything) and unify the four known forces and relativity and quantum theory. The four forces of gravity, electro-magnetism, strong and weak nuclear were all present and necessary for the origin of life on the Earth. It was the separation of the unified force into four singular forces that allowed the origin of life.  相似文献   

19.
20.
Several lines of evidence such as the basal location of thermophilic lineages in large-scale phylogenetic trees and the ancestral sequence reconstruction of single enzymes or large protein concatenations support the conclusion that the ancestors of the bacterial and archaeal domains were thermophilic organisms which were adapted to hot environments during the early stages of the Earth. A parsimonious reasoning would therefore suggest that the last universal common ancestor (LUCA) was also thermophilic. Various authors have used branch-wise non-homogeneous evolutionary models that better capture the variation of molecular compositions among lineages to accurately reconstruct the ancestral G + C contents of ribosomal RNAs and the ancestral amino acid composition of highly conserved proteins. They confirmed the thermophilic nature of the ancestors of Bacteria and Archaea but concluded that LUCA, their last common ancestor, was a mesophilic organism having a moderate optimal growth temperature. In this letter, we investigate the unknown nature of the phylogenetic signal that informs ancestral sequence reconstruction to support this non-parsimonious scenario. We find that rate variation across sites of molecular sequences provides information at different time scales by recording the oldest adaptation to temperature in slow-evolving regions and subsequent adaptations in fast-evolving ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号