首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subcutaneous endothelin-1 (ET-1; 200 microM, 2 nmoles/paw) injected into the rat hind paw, has been shown to cause robust hind paw flinching (HPF) and paw licking, and to induce impulses selectively in primary nociceptors. Here we report that a much lower [ET-1] sensitizes the paw to a nocifensive withdrawal response to tactile stimulation (by von Frey hairs, VFH), a sensitization that involves local TRPV1 receptors. Injection of 10 microM ET-1 (0.1 nmole/paw) causes only marginal HPF but rapidly (20 mins after injection) lowers the force threshold for paw withdrawal (PWT) to VFH, to approximately 30% of pre-injection baseline. Such tactile allodynia persists for 3 hrs. In rats pre-injected with the TRPV1-antagonists capsazepine (CPZ; 1.33 mM) or 5'-iodoresiniferatoxin (I-RTX; 0.13 microM), 15 min before ET-1, a fast initial drop in PWT, as with ET-1 alone, occurs (to 40% or to 19% of baseline, respectively), but this earliest reduction then regresses back to the pre-injection PWT value more rapidly than with ET-1 alone. The recovery of allodynia from the maximum value is about two times faster for ET-1+CPZ and about 4 times faster for ET-1+ I-RTX, compared with that from ET-1 +vehicle (t(1/2) = 130, 60, and 250 mins, respectively). In contrast, spontaneous pain indicated by overt HPF from ET-1 is not attenuated by TRPV1 antagonists. Tactile allodynia is similarly abbreviated by antagonists of both ET(A) (BQ-123, 32 nmoles/paw) and ET(B) (BQ-788, 30 nmoles/paw) receptors, whereas HPF is abolished by this ET(A) antagonist but enhanced by the ET(B) antagonist. We conclude that low ET-1 causes tactile allodynia, which is characterized by a different time-course and pharmacology than ET-1-induced nociception, and that local TRPV1 receptors are involved in the maintenance of this ET-1-induced allodynia but not in the overt algesic action of ET-1.  相似文献   

2.
In this investigation, the effect of pH (4.0–11.0) on waste-activated sludge (WAS) hydrolysis and acidification in the presence of a biosurfactant rhamnolipid (RL) were studied. The results showed that the hydrolysis and acidification of WAS in the presence of RL at alkaline pH values were more efficient than that at acidic and near-neutral pH values. After 6 h of hydrolysis, the soluble protein and carbohydrate were 1,654.7 and 675.9 mg/L (pH 11.0), and 825.6 and 376.0 mg/L (pH 7.0), whereas the values were only 315.0 and 84.0 mg/L at pH 4.0 and 164.1 and 32.0 mg/L for the blank, respectively. After 2 or 3 days of fermentation, the accumulated short-chain fatty acids (SCFAs) reached the highest and then decreased with a further increase in time at all investigated pH values. The analysis of SCFA compositions showed that acetic, propionic, and iso-valeric acids were the three main products at any pH value. A higher pH contributed to a greater proportion of acetic acid and a lesser proportion of iso-valeric acid; a lower pH resulted in a greater proportion of iso-valeric and lesser proportion of acetic acid in the initial fermentation. The proportions of acetic acid for the system with biosurfactant RL addition were 16.65, 36.33, and 62.94 %, respectively, at pH 4.0, 7.0, and 11.0 after 1 day. Correspondingly, the proportions were 40.34, 12.60, and 11.01 % for iso-valeric acid.  相似文献   

3.
S-(+)-Dicentrine is an aporphinic alkaloid found in several plant species, mainly from Lauraceae family, which showed significant antinociceptive activity in an acute model of visceral pain in mice. In this work, we extended the knowledge on the antinociceptive properties of S-(+)-dicentrine and showed that this alkaloid also attenuates mechanical and cold hypersensitivity associated with cutaneous inflammation induced by Complete Freund’s Adjuvant in mice. Given orally, S-(+)-dicentrine (100 mg/kg) reversed CFA-induced mechanical hypersensitivity, evaluated as the paw withdrawal threshold to von Frey hairs, and this effect lasted up to 2 hours. S-(+)-Dicentrine also reversed CFA-induced cold hypersensitivity, assessed as the responses to a drop of acetone in the injured paw, but did not reverse the heat hypersensitivity, evaluated as the latency time to paw withdrawal in the hot plate (50°C). Moreover, S-(+)-dicentrine (100 mg/kg, p.o.) was effective in inhibit nociceptive responses to intraplantar injections of cinnamaldehyde, a TRPA1 activator, but not the responses induced by capsaicin, a TRPV1 activator. When administered either by oral or intraplantar routes, S-(+)-dicentrine reduced the licking time (spontaneous nociception) and increased the latency time to paw withdrawal in the cold plate (cold hypersensitivity), both induced by the intraplantar injection of cinnamaldehyde. Taken together, our data adds information about antinociceptive properties of S-(+)-dicentrine in inflammatory conditions, reducing spontaneous nociception and attenuating mechanical and cold hypersensitivity, probably via a TRPA1-dependent mechanism. It also indicates that S-(+)-dicentrine might be potentially interesting in the development of new clinically relevant drugs for the management of persistent pain, especially under inflammatory conditions.  相似文献   

4.
Central or systemic administration of agonists directed at the mu or delta opiate receptors generally produce a greater degree of analgesia in males than in females. To date, most studies examining sex-based differences in opioid analgesia have used acute noxious stimuli (i.e., tail-flick and hot plate test); thus the potential dimorphic response of centrally acting opiates in the alleviation of persistent inflammatory pain is not well established. In the present study, right hind paw withdrawal latency (PWL) to radiant thermal stimuli was measured in intact male and cycling female Sprague-Dawley rats before and after unilateral hind paw injection of the inflammatory agent complete Freund's adjuvant (CFA). Control animals received intraplantar injection of saline. Twenty four hours after CFA or saline injection, animals received either saline or morphine bisulfate (0.5-15 mg/kg sc). Separate groups of control or inflamed animals were tested on their responsiveness to morphine at 7, 14, and 21 days post-CFA or saline. No sex differences were noted for baseline PWLs, and females displayed slightly less thermal hyperalgesia at 24 h post-CFA. At all morphine doses administered, both the antihyperalgesic effects of morphine in the inflamed animals and the antinociceptive effects of morphine in control animals were significantly greater in males compared with females. Similarly, in males, the antihyperalgesic effects of morphine increased significantly at 7-21 days post-CFA; no significant shift in morphine potency was noted for females. These studies demonstrate sex-based differences in the effects of morphine on thermal hyperalgesia in a model of persistent inflammatory pain.  相似文献   

5.
The aim of this research was to design and evaluate a hydrophilic matrix system for sustained release of glipizide, a weakly acidic poor soluble drug. A combination of inclusion complexation and microenvironmental pH modification techniques was utilized to improve the dissolution and pH-independent release of glipizide. Hydroxypropyl-β-cyclodextrin (HP-β-CD) was used as the complexation agent while sodium citrate and magnesium oxide (MgO) were used as model pH modifiers. The hydrophilic matrix tablets were prepared by powder direct compression and evaluated by in vitro dissolution study respectively in pH 6.8 and pH 1.2 dissolution media. The formulations containing MgO exhibited increased cumulative drug release from less than 40% in the reference formulation to 90% within 24 h in acidic media (pH 1.2). The release profile in acidic media was similar to the alkaline media (pH 6.8) with a similarity factor (f2) of 55.0, suggesting the weakening of the effect of pH on the dissolution efficiency of glipizide. The release profile fitted well into the Higuchi model and the dominant mechanism of drug release was Fickian diffusion while case II transport/polymer relaxation occurred. In conclusion, combining inclusion complexation agents and pH modifiers had improved the dissolution of glipizide as well as achieved the pH-independent release profile.  相似文献   

6.
In addition to causing overt nociception, intraplantar (ipl) endothelin (ET)-1 injection into the rat hind paw induces hyperalgesia to mechanical stimuli, mediated via local ET(B) receptors coupled to protein kinase (PK) C, but not PKA. The present study further examines the intracellular signaling mechanisms underlying this effect of ET-1. ET-1 (30 pmol) or phospate-buffered saline (PBS) was injected ipl in rats and the threshold of responsiveness to mechanical stimulation was assessed repeatedly each hour up to 8 hrs and 24 hrs, using the dynamic plantar aesthesiometer test, which detects the minimal pressure required to evoke paw withdrawal. Different groups were treated, 15 mins before ET-1 administration, with ipsilateral injection of selective inhibitors of either phospholipase (PL) A2 (1 nmol PACOCF3), PLC (30 pmol U73122), PKC (1 nmol GF109203X), p38 mitogen-activated protein kinase (MAPK; 30 nmol SB203580), extracellular signal-regulated kinase (ERK1/2; 30 nmol PD98059), c-Jun N-terminal kinase (JNK; 30 nmol SP600125), or vehicle, to assess their influence on the hyperalgesic response. The mechanical hyperalgesia caused by ET-1 started 2 hrs after injection, peaked at 5 hrs (PBS, 29 +/- 0.5 g; ET-1, 17 +/- 1.3 g) and lasted up to 8 hrs. The inhibitors of PLC, PKC, p38 MAPK, ERK1/2, and JNK caused long-lasting reductions of the mechanical hyperalgesia (inhibitions at 4 hrs of 100%, 90%, 97%, 90%, and 100%, respectively), but the PLA2 inhibitor reduced hyperalgesia only at 4 hrs (by 58%). Thus, mechanical hyperalgesia triggered by ET-1 in the rat hind paw depends importantly on signaling pathways involving PLC, PKC, p38 MAPK, ERK1/2, and JNK, whereas the contribution of PLA2 is relatively minor.  相似文献   

7.
Enhancement of acid resistance of Scenedesmus dimorphus by acid adaptation   总被引:1,自引:0,他引:1  
When using flue gas as carbon source for microalgae cultivation, the resulting acidic environment caused by SO X and NO X can inhibit microalgal growth. In this study, Scenedesmus dimorphus acquired increased acid resistance by prior exposure to sublethal acid stress; a process defined as acid adaptation. Among the five algal species tested, S. dimorphus showed the highest level of acid tolerance to extreme acid challenge (exposure to pH 3.0). Non-adapted and acid-adapted exponential algal cells were used as inocula for tubular photobioreactors aerated with 2 % CO2. Previously adapted at pH 4.0 for 1 h, S. dimorphus developed highest growth rate under extreme acidic condition, and the maximum biomass concentration and specific growth rate at pH 3.0 (3.638?±?0.074 g?L?1 and 1.037?±?0.008 d?1, respectively) were respectively 14.22 and 10.79 % higher than those of non-adapted cells. Moreover, acid-adapted cells could tolerate lower pH of 2.5, at which the growth of non-adapted cells was totally inhibited. All the results indicated that acid adaptation was an effective approach for the acid resistance enhancement of microalgae.  相似文献   

8.

Background

The frequency of accidental spider bites in Brazil is growing, and poisoning due to bites from the spider genus Phoneutria nigriventer is the second most frequent source of such accidents. Intense local pain is the major symptom reported after bites of P. nigriventer, although the mechanisms involved are still poorly understood. Therefore, the aim of this study was to identify the mechanisms involved in nociception triggered by the venom of Phoneutria nigriventer (PNV).

Methodology/Principal Findings

Twenty microliters of PNV or PBS was injected into the mouse paw (intraplantar, i.pl.). The time spent licking the injected paw was considered indicative of the level of nociception. I.pl. injection of PNV produced spontaneous nociception, which was reduced by arachnid antivenin (ArAv), local anaesthetics, opioids, acetaminophen and dipyrone, but not indomethacin. Boiling or dialysing the venom reduced the nociception induced by the venom. PNV-induced nociception is not dependent on glutamate or histamine receptors or on mast cell degranulation, but it is mediated by the stimulation of sensory fibres that contain serotonin 4 (5-HT4) and vanilloid receptors (TRPV1). We detected a kallikrein-like kinin-generating enzyme activity in tissue treated with PNV, which also contributes to nociception. Inhibition of enzymatic activity or administration of a receptor antagonist for kinin B2 was able to inhibit the nociception induced by PNV. PNV nociception was also reduced by the blockade of tetrodotoxin-sensitive Na+ channels, acid-sensitive ion channels (ASIC) and TRPV1 receptors.

Conclusion/Significance

Results suggest that both low- and high-molecular-weight toxins of PNV produce spontaneous nociception through direct or indirect action of kinin B2, TRPV1, 5-HT4 or ASIC receptors and voltage-dependent sodium channels present in sensory neurons but not in mast cells. Understanding the mechanisms involved in nociception caused by PNV are of interest not only for better treating poisoning by P. nigriventer but also appreciating the diversity of targets triggered by PNV toxins.  相似文献   

9.
Sensing noxiously high temperatures is crucial for living organisms to avoid heat-induced injury. The TRPV1 channel has long been known as a sensor for noxious heat. However, the mechanism of how this channel is activated by heat remains elusive. Here we found that a series of polyols including sucrose, sorbitol, and hyaluronan significantly elevate the heat activation threshold temperature of TRPV1. The modulatory effects of these polyols were only observed when they were perfused extracellularly. Interestingly, mutation of residues E601 and E649 in the outer pore region of TRPV1 largely abolished the effects of these polyols. We further observed that intraplantar injection of polyols into the hind paws of rats reduced their heat-induced pain response. Our observations not only suggest that the extracellular regions of TRPV1 are critical for the modulation of heat activation by polyols, but also indicate a potential role of polyols in reducing heat-induced pain sensation.  相似文献   

10.
A recent hypothesis suggesting that the pharmacological target TRPV1 (transient receptor potential vanilloid subfamily, member 1) may function as a tumour suppressor, which potentially impacts the development of TRPV1 antagonist therapeutics for a range of conditions. However, little is known about the long-term physiologic effects of TRPV1 blockade in the skin. In vitro and in vivo studies suggested that the potent TRPV1 competitive antagonist AMG-9810 promoted proliferation in N/TERT1 cells (telomerase-immortalised primary human keratinocytes 1) and tumour development in mouse skin that was mediated through EGFR/Akt/mTOR signalling. We attempted to reproduce the reported in vitro and in vivo findings to further explore this hypothesis to understand the underlying mechanism and the risk associated with TRPV1 antagonism in the skin. In vitro proliferation studies using multiple methods and topical application with AMG-9810 and structurally similar TRPV1 antagonists such as SB-705498 and PAC-14028 were performed. Although we confirmed expression of TRPV1 in primary human epidermal keratinocytes (HEKn) and spontaneously immortalised human keratinocytes (HaCaT), we were unable to demonstrate cell proliferation in either cell type or any clear evidence of increased expression of proteins in the EGFR/Akt/mTOR signalling pathway with these molecules. We were also unable to demonstrate skin tumour promotion or underlying molecular mechanisms involved in the EGFR/Akt/mTOR signalling pathway in a single-dose and two-stage carcinogenesis mouse study treated with TRPV1 antagonists. In conclusion, our data suggest that inhibiting the pharmacological function of TRPV1 in skin by specific antagonists has not been considered to be indicative of skin tumour development.  相似文献   

11.

Background

Spinal cord N-methyl-D-aspartate (NMDA) receptors are intimately involved in the development and maintenance of central sensitization. However, the mechanisms mediating the altered function of the NMDA receptors are not well understood. In this study the role of phosphorylation of NR1 splice variants and NR2 subunits was examined following hind paw inflammation in rats. We further examined the level of expression of these proteins following the injury.

Results

Lumbar spinal cord NR1 subunits were found to be phosphorylated on serine residues within two hours of the induction of hind paw inflammation with carrageenan. The enhanced NR1 serine phosphorylation reversed within six hours. No phosphorylation on NR1 threonine or tyrosine residues was observed. Likewise, no NR2 subunit phosphorylation was observed on serine, threonine or tyrosine residues. An analysis of NR1 and NR2 protein expression demonstrated no change in the levels of NR1 splice variants or NR2A following the inflammation. However, spinal cord NR2B expression was depressed by the hind paw inflammation. The expression of NR2B remained depressed for more than one week following initiation of the inflammation.

Conclusion

These data suggest that NR1 serine phosphorylation leads to an initial increase in NMDA receptor activity in the spinal cord following peripheral injury. The suppression of NR2B expression suggests compensation for the enhanced nociceptive activity. These data indicate that spinal cord NMDA receptors are highly dynamic in the development, maintenance and recovery from central sensitization following an injury. Thus, chronic pain therapies targeted to NMDA receptors should be designed for the exact configuration of NMDA receptor subunits and post-translational modifications present during specific stages of the disease.  相似文献   

12.

Background

There is current interest in understanding the molecular mechanisms of tumor-induced bone pain. Accumulated evidence shows that endogenous formaldehyde concentrations are elevated in the blood or urine of patients with breast, prostate or bladder cancer. These cancers are frequently associated with cancer pain especially after bone metastasis. It is well known that transient receptor potential vanilloid receptor 1 (TRPV1) participates in cancer pain. The present study aims to demonstrate that the tumor tissue-derived endogenous formaldehyde induces bone cancer pain via TRPV1 activation under tumor acidic environment.

Methodology/Principal Findings

Endogenous formaldehyde concentration increased significantly in the cultured breast cancer cell lines in vitro, in the bone marrow of breast MRMT-1 bone cancer pain model in rats and in tissues from breast cancer and lung cancer patients in vivo. Low concentrations (1∼5 mM) of formaldehyde induced pain responses in rat via TRPV1 and this pain response could be significantly enhanced by pH 6.0 (mimicking the acidic tumor microenvironment). Formaldehyde at low concentrations (1 mM to 100 mM) induced a concentration-dependent increase of [Ca2+]i in the freshly isolated rat dorsal root ganglion neurons and TRPV1-transfected CHO cells. Furthermore, electrophysiological experiments showed that low concentration formaldehyde-elicited TRPV1 currents could be significantly potentiated by low pH (6.0). TRPV1 antagonists and formaldehyde scavengers attenuated bone cancer pain responses.

Conclusions/Significance

Our data suggest that cancer tissues directly secrete endogenous formaldehyde, and this formaldehyde at low concentration induces metastatic bone cancer pain through TRPV1 activation especially under tumor acidic environment.  相似文献   

13.
Halogenated compounds represent potential long-term threats to human well-being and health and, therefore, the quest for microorganisms capable of degrading these hazardous substances merits urgent consideration. We have isolated a novel dehalogenase-producing bacterium from the hypersaline environment of Tuz Gölü Lake, Turkey and subsequently identified this isolate as Pseudomonas halophila HX. Under optimal culture conditions (pH 8.0, 15% NaCl, 30 °C, 200 rpm, 96 h culture time), the strain almost completely degraded (99.3%) 2,2-dichloropropionic acid (20 mM). The dehalogenase gene (dehHX) of the bacterium was amplified by PCR, and the deduced amino acid sequence of the DehHX was found to belong to a Group I dehalogenase and to share an 82% sequence identity to the dehalogenase DehI of Pseudomonas putida strain PP3. Interestingly, the pI of DehHX was more acidic (pI 3.89) than those of the non-halophilic dehalogenases (average measured pI 5.95). Homology-based structural modeling revealed that the surface of DehHX was unusually negatively charged due to the higher presence of acidic residues, which accounts for the uncommonly low pI seen in DehHX and explains the mechanism of adaptation that contributes to the exceptional halotolerance of the enzyme. The excess surface acidic residues were beneficial in enhancing the water-binding capacity, a crucial feature for preserving the stability and solubility of DehHX in highly saline conditions. In summary, we suggest that bio-prospecting for halogenated compound-degrading microorganisms in highly saline environments is a practical and safe strategy for the bioremediation of contaminated coastal areas.  相似文献   

14.
Abnormal respiratory chemosensitivity is implicated in recurrent apnea syndromes, with the peripheral chemoreceptors, the carotid bodies, playing a particularly important role. Previous work suggests that supraphysiological concentrations of the endocannabinoid endovanilloid and TASK channel blocker anandamide (ANA) excite carotid bodies, but the mechanism(s) and physiological significance are unknown. Given that carotid body output is temperature-sensitive, we hypothesized that ANA stimulates carotid body chemosensory afferents via temperature-sensitive vanilloid (TRPV1) receptors. To test this hypothesis, we used the dual-perfused in situ rat preparation to confirm that independent perfusion of carotid arteries with supraphysiological concentrations of ANA strongly excites carotid sinus nerve afferents and that this activity is sufficient to increase phrenic activity. Next, using ex vivo carotid body preparations, we demonstrate that these effects are mediated by TRPV1 receptors, not CB1 receptors or TASK channels: in CB1-null mouse preparations, ANA increased afferent activity across all levels of Po(2), whereas in TRPV1-null mouse preparations, the stimulatory effect of ANA was absent. In rat ex vivo preparations, ANA's stimulatory effects were mimicked by olvanil, a nonpungent TRPV1 agonist, and suppressed by the TRPV1 antagonist AMG-9810. The specific CB1 agonist oleamide had no effect. Physiological levels of ANA had no effect alone but increased sensitivity to mild hyperthermia. AMG-9810 blocked ANA's effect on the temperature response. Immunolabeling and RT-PCR demonstrated that TRPV1 receptors are not expressed in carotid body glomus cells but reside in petrosal sensory afferents. Together, these results suggest that ANA plays a physiological role in augmenting afferent responses to mild hyperthermia by activating TRPV1 receptors on petrosal afferents.  相似文献   

15.
ATP is a putative inhibitory neurotransmitter responsible for inhibitory junction potentials (IJPs) at neuromuscular junctions (IJPs) in the intestine. This study tested the hypothesis that the purinergic P2Y(1) receptor subtype mediates the IJPs. IJPs were evoked by focal electrical stimulation in the myenteric plexus and recorded with "sharp" intracellular microelectrodes in the circular muscle coat. Stimulation evoked three categories of IJPs: 1) purely purinergic IJPs, 2) partially purinergic IJPs, and 3) nonpurinergic IJPs. Purely purinergic IJPs were suppressed by the selective P2Y(1) purinergic receptor antagonist MRS2179. Purely purinergic IJPs comprised 26% of the IJPs. Partially purinergic IJPs (72% of the IJPs) consisted of a component that was abolished by MRS2179 and a second unaffected component. The MRS2179-insensitive component was suppressed or abolished by inhibition of formation of nitric oxide by N(omega)-nitro-l-arginine methyl ester (l-NAME) in some, but not all, IJPs. An unidentified neurotransmitter, different from nitric oxide, mediated the second component in these cases. Nonpurinergic IJPs were a small third category (4%) of IJPs that were abolished by l-NAME and unaffected by MRS2179. Exogenous application of ATP evoked IJP-like hyperpolarizing responses, which were blocked by MRS2179. Application of apamin, which suppresses opening of small-conductance Ca(2+)-operated K(+) channels in the muscle, decreased the amplitude of the purinergic IJPs and the amplitude of IJP-like responses to ATP. The results support ATP as a neurotransmitter for IJPs in the intestine and are consistent with the hypothesis that the P2Y(1) purinergic receptor subtype mediates the action of ATP.  相似文献   

16.
The physiological mechanisms that regulate reactive hyperemia are not fully understood. We postulated that the endothelial P2Y1 receptor that release vasodilatory factors in response to ADP might play a vital role in the regulation of coronary flow. Intracoronary flow was measured with a Doppler flow-wire in a porcine model. 2-MeSADP (10–5 M), ATP (10–4 M) or UTP (10–4 M) alone or as co-infusion with a selective P2Y1 receptor blocker, MRS 2179 (10–3 M) was locally delivered through the tip of a coronary angioplasty balloon. In separate pigs the coronary artery was occluded with the balloon for 10 min. During the first and tenth minutes of coronary ischemia, 2.5 ml of MRS 2179 (10–3 M) was delivered distal to the occlusion in 8 pigs, 10 pigs were used as controls. MRS 2179 fully inhibited the 2-MeSADP-mediated coronary flow increase (P < 0.05) with no effect on UTP, indicating selective P2Y1 inhibition. ATP-mediated flow increase was significantly inhibited by MRS 2179. During reactive hyperemia following coronary occlusion, flow increased by nearly sevenfold. MRS 2179, however, reduced the post-ischemic hyperemia by a mean of 46% during the period 1–2.5 min following balloon deflation (P < 0.05), which corresponds to peak velocity flow during reperfusion. In conclusion, MRS 2179, a selective P2Y1 receptor blocker, significantly reduces the increased coronary flow caused both by 2-MeSADP and reactive hyperemia in coronary arteries. Thus, ADP acting on the endothelial P2Y1 receptor may play a major role in coronary flow during post-ischemic hyperemia.  相似文献   

17.
The effect of age on pain response to paw pressure and intraplantar formalin injection in rats is elucidated. Pain responses evoked by mechanical pressure on hind paw and intraplantar injection of formaldehyde (5%) into the hind paw were evaluated in groups of adult, young and aged male Sprague Dawley rats, after intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) injection of L-arginine or NG-nitro-L-arginine methyl ester (L-NAME). Nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase staining was done in the two groups. The results show that pain response was reduced in the aged rats and enhanced pain response to paw pressure in aged rats only. L-arginine (i.c.v.) had no effect on pain response to paw pressure in the two groups but enhanced biphasic pain response to formalin. L-NAME (i.p. and i.c.v.) suppressed pain response to paw pressure in the two groups. L-NAME (i.c.v.) suppressed pain response to formalin during the acute phase and enhanced it during the late phase. NADPH-diaphorase activity was significantly greater in young rats. In conclusion, pain response is blunted in the aged rats. NO might be involved in mechanical nociception in aged rats and in formalin-induced nociception in both groups. NO blockade has an antinociceptive effect on pain response. Central NO has dual role in pain response evoked by formalin.  相似文献   

18.
Indirect evidence suggests that ATP is a neurotransmitter involved in inhibitory pathways in the neuromuscular junction in the gastrointestinal tract. The aim of this study was to characterize purinergic inhibitory neuromuscular transmission in the human colon. Tissue was obtained from colon resections for neoplasm. Muscle bath, microelectrode experiments, and immunohistochemical techniques were performed. 2'-deoxy-N(6)-methyl adenosine 3',5'-diphosphate tetraammonium salt (MRS 2179) was used as a selective inhibitor of P2Y(1) receptors. We found that 1) ATP (1 mM) and adenosine 5'-beta-2-thiodiphosphate (ADPbetaS) (10 microM), a preferential P2Y agonist, inhibited spontaneous motility and caused smooth muscle hyperpolarization (about -12 mV); 2) MRS 2179 (10 microM) and apamin (1 microM) significantly reduced these effects; 3) both the fast component of the inhibitory junction potential (IJP) and the nonnitrergic relaxation induced by electrical field stimulation were dose dependently inhibited (IC(50) approximately 1 microM) by MRS 2179; 4) ADPbetaS reduced the IJP probably by a desensitization mechanism; 5) apamin (1 microM) reduced the fast component of the IJP (by 30-40%) and the inhibitory effect induced by electrical field stimulation; and 6) P2Y(1) receptors were localized in smooth muscle cells as well as in enteric neurons. These results show that ATP or a related purine is released by enteric inhibitory motoneurons, causing a fast hyperpolarization and smooth muscle relaxation. The high sensitivity of MRS 2179 has revealed, for the first time in the human gastrointestinal tract, that a P2Y(1) receptor present in smooth muscle probably mediates this mechanism through a pathway that partially involves apamin-sensitive calcium-activated potassium channels. P2Y(1) receptors can be an important pharmacological target to modulate smooth muscle excitability.  相似文献   

19.
The low extracellular pH of inflamed or ischemic tissues enhances painful sensations by sensitizing and activating the vanilloid receptor 1 (TRPV1). We report here that activation of TRPV1 results in a marked intracellular acidification in nociceptive dorsal root ganglion neurons and in a heterologous expression system. A characterization of the underlying mechanisms revealed a Ca(2+)-dependent intracellular acidification operating at neutral pH and an additional as yet unrecognized direct proton conductance through the poorly selective TRPV1 pore operating in acidic extracellular media. Large organic cations permeate through the activated TRPV1 pore even in the presence of physiological concentrations of Na(+), Mg(2+), and Ca(2+). The wide pore and the unexpectedly high proton permeability of TRPV1 point to a proton hopping permeation mechanism along the water-filled channel pore. In acidic media, the high relative proton permeability through TRPV1 defines a novel proton entry mechanism in nociceptive neurons.  相似文献   

20.

Introduction

Alterations in voltage-gated sodium channel (VGSC) function have been linked to chronic pain and are good targets for analgesics. Lacosamide (LCM) is a novel anticonvulsant that enhances the slow inactivation state of VGSCs. This conformational state can be induced by repeated neuronal firing and/or under conditions of sustained membrane depolarisation, as is expected for hyperexcitable neurones in pathological conditions such as epilepsy and neuropathy, and probably osteoarthritis (OA). In this study, therefore, we examined the antinociceptive effect of LCM on spinal neuronal and behavioural measures of pain, in vivo, in a rat OA model.

Methods

OA was induced in Sprague Dawley rats by intraarticular injection of 2 mg of monosodium iodoacetate (MIA). Sham rats received saline injections. Behavioural responses to mechanical and cooling stimulation of the ipsilateral hind paw and hindlimb weight-bearing were recorded. In vivo electrophysiology experiments were performed in anaesthetised MIA or sham rats, and we recorded the effects of spinal or systemic administration of LCM on the evoked responses of dorsal horn neurones to electrical, mechanical (brush, von Frey, 2 to 60 g) and heat (40°C to 50°C) stimulation of the peripheral receptive field. The effect of systemic LCM on nociceptive behaviours was assessed.

Results

Behavioural hypersensitivity ipsilateral to knee injury was seen as a reduced paw withdrawal threshold to mechanical stimulation, an increase in paw withdrawal frequency to cooling stimulation and hind limb weight-bearing asymmetry in MIA-treated rats only. Spinal and systemic administration of LCM produced significant reductions of the electrical Aβ- and C-fibre evoked neuronal responses and the mechanical and thermal evoked neuronal responses in the MIA group only. Systemic administration of LCM significantly reversed the behavioural hypersensitive responses to mechanical and cooling stimulation of the ipsilateral hind paw, but hind limb weight-bearing asymmetry was not corrected.

Conclusions

Our in vivo electrophysiological results show that the inhibitory effects of LCM were MIA-dependent. This suggests that, if used in OA patients, LCM may allow physiological transmission but suppress secondary hyperalgesia and allodynia. The inhibitory effect on spinal neuronal firing aligned with analgesic efficacy on nociceptive behaviours and suggests that LCM may still prove worthwhile for OA pain treatment and merits further clinical investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号