首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
The regions around the human insulin gene have been studied by heteroduplex, hybridization and sequence analysis. These studies indicated that there is a region of heterogeneous length located approximately 700 bp before the 5' end of the gene; and that the 19 kb of cloned DNA which includes the 1430 bp insulin gene as well as 5650 bp before and 11,500 bp after the gene is single copy sequence except for 500 bp located 6000 bp from the 3' end of the gene. This 500 bp segment contains a member of the Alu family of dispersed middle repetitive sequences as well as another less highly repeated homopolymeric segment. The sequence of this region was determined. This Alu repeat is bordered by 19 bp direct repeats and also contains an 83 bp sequence which is present twice. The regions flanking the human and rat I insulin genes were compared by heteroduplex analysis to localize homologous sequences in the flanking regions which could be involved in the regulation of insulin biosynthesis. The homology between the two genes is restricted to the region encoding preproinsulin and a short region of approximately 60 bp flanking the 5' side of the genes.  相似文献   

7.
The non-transcribed spacers (NTS) of the ribosomal genes of a number of organisms have been studied and were found to contain repetitive sequences. In these studies with plasmid subclones of NTS, designated p3.4, p2.6 and p1.7, which come from both 5' and 3' flanking regions of the rat ribosomal genes, respectively, it has been determined that these sequences are found elsewhere within the genome. Southern hybridization analysis has demonstrated that the 5' and 3' NTS subclones cross-hybridize, and that the cross-hybridizing regions are synonymous with the highly repetitive regions. Sequences homologous to the rat NTS were specifically localized to both 5' and 3' flanking regions as well as to a number of the introns of cloned genes including rat serum albumin, rat alpha-fetoprotein, rat casein and human serum albumin. No hybridization was detected of the 5' NTS subclone to the human Alu sequence clone, Blur 8, or to the rodent equivalent, a clone containing Chinese hamster ovary type I and II Alu sequences. However, as reported for type II Alu sequences, the subcloned rat NTS sequences contain RNA polymerase III initiation sites and also hybridize to a number of small RNAs, but not 4.5 S or 7 S RNA. Sequence analysis of two distinct repetitive regions in p1.7 has revealed a region of alternating purine-pyrimidine nucleotides, potentially of Z DNA, and stretches of repetitive sequences. The possible roles for these repetitive sequences in recombination and in maintaining a hierarchical structure for the ribosomal genes are discussed.  相似文献   

8.
9.
Revision of consensus sequence of human Alu repeats--a review   总被引:37,自引:0,他引:37  
Nucleotide sequences of 50 human Alu repeats and their flanking regions are presented together with the consensus sequence based on the literature and our findings. The results indicate the need for some revisions of the Alu consensus sequence published by Deininger et al. (1981). Most nucleotide substitutions among the Alu members are transitions, rather than transversions. The Alu sequence seems to consist of 'conserved' regions and 'variable' regions. The conserved regions consist of a 25-bp region between nt positions 23 and 47 and a 16-bp region between nt positions 245 and 260. The 16-bp region corresponds to the region of 7SL RNA that is claimed to fold and become paired with the internal promoter sequence. Two A-rich regions, one located at the right end of the first monomer and the other at the right end of the second monomer, are variable. No defined property was found with direct repeats flanking the Alu repeats.  相似文献   

10.
11.
12.
Cloned human apo-C-II cDNA was used as a hybridization probe to identify the human apo-C-II gene in a genomic library constructed in our laboratory. The isolated apo-C-II DNA was studied both by electron microscopy and by direct sequence analysis. Ultrastructural morphological analysis of RNA-DNA hybrids revealed that the apo-C-II gene had complex structures because of regions of inverted complementary sequences in and around the gene forming stem-and-loop structures which interfere with the formation of stable RNA:DNA hybrids. Extensive morphological analysis revealed a minimum of 3 intervening sequences (IVS), and their lengths were measured. Direct sequence analysis of the cloned gene confirmed the presence of 3 IVS. There are 4 Alu type sequences in IVS-I. We sequenced 4340 nucleotides which include 545 nucleotides in the 5' flanking region, the entire gene which spans 3320 nucleotides, and 475 nucleotides in the 3' flanking region which also encompasses an additional Alu sequence. The 5' end of the gene was identified by primer extension and sequencing of the primer extended cDNA. Apo-C-II mRNA structure was deduced from the cDNA sequence, the primer extension experiments, and the genomic sequence. It is 494 nucleotides in length. Its sequence differs from previously published sequences in that there are 7 additional nucleotides before the polyadenylate tail. In the 5' flanking region, nucleotides -234 to -213 encompass a GC-rich region which exhibits high homology (greater than 70%) to the 5' flanking regions of the genes of all the apolipoproteins published to date, namely, apo-A-II (-497 to -471), apo-A-I (approximately -196 to -179), apo-E (-409 to -391), and apo-C-III (approximately -116 to -103). This highly conserved region might represent some evolutionarily conserved sequences from these related genes and/or might represent a region with regulatory function.  相似文献   

13.
Nucleotide sequence and transcription of a gene encoding human tRNAGlyCCC   总被引:1,自引:0,他引:1  
  相似文献   

14.
15.
16.
17.
18.
Organization and sequence of the human alpha-lactalbumin gene.   总被引:10,自引:1,他引:9       下载免费PDF全文
  相似文献   

19.
Two human Alu repeats terminating in an oligo(T) run rather than the usual A-rich 3' tail were isolated by library screening. Base sequence comparisons reveal that these unusual Alus are also exceptionally divergent from other Alu family members implying that they are evolutionarily old. Unlike other members of the family, they are not transcribed in vitro by RNA polymerase III (Pol III) suggesting a partial explanation for how Alu source genes might become inactive with age.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号