首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Few new insecticides have been produced for control of disease vectors for public health in developing countries over the past three decades, owing to market constraints, and the available insecticides are often poorly deployed. The Innovative Vector Control Consortium will address these market failures by developing a portfolio of chemical and technological tools that will be directly and immediately accessible to populations in the developing world. The Bill and Melinda Gates Foundation has supported this new initiative to enable industry and academia to change the vector control paradigm for malaria and dengue and to ensure that vector control, alongside drugs, case management and vaccines, can be better used to reduce disease.  相似文献   

2.
In spite of advances in medicine and public health, malaria and other mosquito-borne diseases are on the rise worldwide. Although vaccines, genetically modified mosquitoes and safer insecticides are under development, herein we examine a promising new approach to malaria control through better repellents. Current repellents, usually based on DEET, inhibit host finding by impeding insect olfaction, but have significant drawbacks. We discuss how comparative genomics, using data from the Anopheles genome project, allows the rapid identification of members of three protein classes critical to insect olfaction: odorant-binding proteins, G-protein-coupled receptors, and odorant-degrading enzymes. A rational design approach similar to that used by the pharmaceutical industry for drug development can then be applied to the development of products that interfere with mosquito olfaction. Such products have the potential to provide more complete, safer and longer lasting protection than conventional repellents, preventing disease transmission by interrupting the parasite life cycle.  相似文献   

3.
Plant-produced vaccines and therapeutic agents offer enormous potential for providing relief to developing countries by reducing the incidence of infant mortality caused by infectious diseases. Vaccines derived from plants have been demonstrated to effectively elicit an immune response. Biopharmaceuticals produced in plants are inexpensive to produce, require fewer expensive purification steps, and can be stored at ambient temperatures for prolonged periods of time. As a result, plant-produced biopharmaceuticals have the potential to be more accessible to the rural poor. This review describes current progress with respect to plant-produced biopharmaceuticals, with a particular emphasis on those that target developing countries. Specific emphasis is given to recent research on the production of plant-produced vaccines toward human immunodeficiency virus, malaria, tuberculosis, hepatitis B virus, Ebola virus, human papillomavirus, rabies virus and common diarrheal diseases. Production platforms used to express vaccines in plants, including nuclear and chloroplast transformation, and the use of viral expression vectors, are described in this review. The review concludes by outlining the next steps for plant-produced vaccines to achieve their goal of providing safe, efficacious and inexpensive vaccines to the developing world.  相似文献   

4.
Vaccines have undoubtedly saved the lives of millions, and along with improved sanitation, they remain one of the cornerstones of modern medicine. Many diseases that were once widespread are now eradicated, but vaccine programs face ongoing challenges. Safety concerns as well as limited funding have led to pockets of reduced vaccine coverage around the world - including in developed countries. Chronic and recurrent diseases such as human immunodeficiency virus (HIV), tuberculosis, and malaria remain without effective vaccines. This review will briefly describe vaccines and the two major issues faced by modern vaccination programs: insufficient vaccine coverage and developing effective vaccines for chronic and recurrent diseases.  相似文献   

5.
Pei Han 《Biologicals》2009,37(3):169-172
The biomedical industry in China is developing rapidly, and new biological drugs are increasing their share of the pharmaceutical market based on people's needs. China is the largest producer and user of vaccines in the world, but the existing production of vaccines is far from enough to meet the needs of the market. The entire market of biological drugs in China is still smaller than that for traditional medicines and chemicals. Therefore, the biopharmaceutical industry has the potential to be the rising star in the pharmaceutical market in the future.  相似文献   

6.
Cerebral malaria (CM) is a serious complication of Plasmodium falciparum infection, causing significant morbidity and mortality among young children and nonimmune adults in the developing world. Although previous work on experimental CM has identified T cells as key mediators of pathology, the APCs and subsets therein required to initiate immunopathology remain unknown. In this study, we show that conventional dendritic cells but not plasmacytoid dendritic cells are required for the induction of malaria parasite-specific CD4+ T cell responses and subsequent experimental CM. These data have important implications for the development of malaria vaccines and the therapeutic management of CM.  相似文献   

7.
The acquisition of substantial anti-malarial protection in people naturally exposed to P. falciparum is often cited as evidence that malaria vaccines can be developed, but is rarely used to guide the development. We are pursuing the development of vaccines based on antigens and immune responses that appear key in naturally acquired protection.  相似文献   

8.
The complex life cycle of the malaria parasite Plasmodium falciparum provides many options for vaccine design. Several new types of vaccine are now being evaluated in clinical trials. Recently, two vaccine candidates that target the pre-erythrocytic stages of the malaria life cycle - a protein particle vaccine with a powerful adjuvant and a prime-boost viral-vector vaccine - have entered Phase II clinical trials in the field and the first has shown partial efficacy in preventing malarial disease in African children. This Review focuses on the potential immunological basis for the encouraging partial protection induced by these vaccines, and it considers ways for developing more effective malaria vaccines.  相似文献   

9.
Herein, we analyze in general the current vaccine market and identify potential factors driving and modulating supply and demand for vaccines. An emphasis is placed on changes in regulation in the last 20 years which have led to increased indirect costs of production, and which can create a barrier against the timely use of technological advances to reduce direct costs. Other defining industry characteristics, such as firm numbers and sizes, cost and pricing strategies, nature extent and impact of Government involvement and international regulation are noted. These considerations, far from being removed from basic vaccine research, influence its ability to achieve aims that can be then progressed into effective vaccine products. We discuss specifically the development of particulate vaccines against malaria, a major lethal disease and health problem prevalent in Africa, including some key economic and methodological challenges and opportunities. We note some practical issues blocking the development of effective particulate vaccines for the Third World, mainly driven by the regulatory spiral noted above.  相似文献   

10.
Greater investment is required in developing new drugs and vaccines against malaria in order to eradicate malaria. These precious funds must be carefully managed to achieve the greatest impact. We evaluate existing efforts to discover and develop new drugs and vaccines for malaria to determine how best malaria R&D can benefit from an enhanced open source approach and how such a business model may operate. We assess research articles, patents, clinical trials and conducted a smaller survey among malaria researchers. Our results demonstrate that the public and philanthropic sectors are financing and performing the majority of malaria drug/vaccine discovery and development, but are then restricting access through patents, ‘closed’ publications and hidden away physical specimens. This makes little sense since it is also the public and philanthropic sector that purchases the drugs and vaccines. We recommend that a more “open source” approach is taken by making the entire value chain more efficient through greater transparency which may lead to more extensive collaborations. This can, for example, be achieved by empowering an existing organization like the Medicines for Malaria Venture (MMV) to act as a clearing house for malaria-related data. The malaria researchers that we surveyed indicated that they would utilize such registry data to increase collaboration. Finally, we question the utility of publicly or philanthropically funded patents for malaria medicines, where little to no profits are available. Malaria R&D benefits from a publicly and philanthropically funded architecture, which starts with academic research institutions, product development partnerships, commercialization assistance through UNITAID and finally procurement through mechanisms like The Global Fund to Fight AIDS, Tuberculosis and Malaria and the U.S.’ President’s Malaria Initiative. We believe that a fresh look should be taken at the cost/benefit of patents particularly related to new malaria medicines and consider alternative incentives, like WHO prequalification.  相似文献   

11.
Vaccines against infectious diseases have had great successes in the history of public health. Major breakthroughs have occurred in the development of vaccine-based interventions against viral and bacterial pathogens through the application of classical vaccine design strategies. In contrast the development of a malaria vaccine has been slow. Plasmodium falciparum malaria affects millions of people with nearly half of the world population at risk of infection. Decades of dedicated research has taught us that developing an effective vaccine will be time consuming, challenging, and expensive. Nevertheless, recent advancements such as the optimization of robust protein synthesis platforms, high-throughput immunoscreening approaches, reverse vaccinology, structural design of immunogens, lymphocyte repertoire sequencing, and the utilization of artificial intelligence, have renewed the prospects of an accelerated discovery of the key antigens in malaria. A deeper understanding of the major factors underlying the immunological and molecular mechanisms of malaria might provide a comprehensive approach to identifying novel and highly efficacious vaccines. In this review we discuss progress in novel antigen discoveries that leverage on the wheat germ cell-free protein synthesis system (WGCFS) to accelerate malaria vaccine development.  相似文献   

12.
疟疾肆虐,对全球公共卫生健康提出了严峻的挑战,疫苗作为一个关键性的预防策略,为消除疟疾提供了新的机遇。随着现代科技的高速发展,科学家们针对疟疾疫苗的研究正如火如荼进行着,其中红细胞前期疟疾疫苗、红细胞内期疟疾疫苗、传播阻断疫苗以及多抗原、多表位重组疟疾疫苗和多阶段融合蛋白疟疾疫苗等的相关研究已取得了重大进展。虽目前尚未有任何一种疟疾疫苗获得上市许可,未来作为可以拯救生命的优质、高效的抗疟疫苗或将成为根除疟疾不可替代的工具。  相似文献   

13.
Iron and malaria   总被引:1,自引:0,他引:1  
Iron deficiency is common in the developing world; consequently, programmes of presumptive therapy and mass supplementation have been introduced in several countries. In this article Stephen Oppenheimer suggests caution, as recent evidence suggests that these practices may actually increase the likelihood of the subject developing patent malaria in endemic areas. This may be especially significant in infants, who are less likely to be immune to malaria, and in pregnant women, who are often routinely given iron supplements and in whom malaria may damage the foetus.  相似文献   

14.
The growing health disparities between the developing and the developed world call for urgent action from the scientific community. Science and technology have in the past played a vital role in improving public health. Today, with the tremendous potential of genomics and other advances in the life sciences, the contribution of science to improve public health and reduce global health disparities is more pertinent than ever before. Yet the benefits of modern medicine still have not reached millions of people in developing countries. It is crucial to recognize that science and technology can be used very effectively in partnership with public health practices in developing countries and can enhance their efficacy. The fight to improve global health needs, in addition to effective public health measures, requires rapid and efficient diagnostic tools; new vaccines and drugs, efficient delivery methods and novel approaches to therapeutics; and low-cost restoration of water, soil and other natural resources. In 2002, the University of Toronto published a report on the "Top 10 Biotechnologies for Improving Health in Developing Countries". Here we review these new and emerging biotechnologies and explore how they can be used to support the goals of developing countries in improving health.  相似文献   

15.
《Biotechnology advances》2014,32(3):575-582
The population of sub-Saharan Africa is at risk from multiple, poverty-related endemic diseases. HIV and malaria are the most prevalent, but they disproportionately affect different groups of people, i.e. HIV predominantly affects sexually-active adults whereas malaria has a greater impact on children and pregnant women. Nevertheless, there is a significant geographical and epidemiological overlap which results in bidirectional and synergistic interactions with important consequences for public health. The immunosuppressive effects of HIV increase the risk of infection when individuals are exposed to malaria parasites and also the severity of malaria symptoms. Similarly, acute malaria can induce a temporary increase in the HIV viral load. HIV is associated with a wide range of opportunistic infections that can be misdiagnosed as malaria, resulting in the wasteful misuse of antimalarial drugs and a failure to address the genuine cause of the disease. There is also a cumulative risk of toxicity when antiretroviral and antimalarial drugs are given to the same patients. Synergistic approaches involving the control of malaria as a strategy to fight HIV/AIDS and vice versa are therefore needed in co-endemic areas. Plant biotechnology has emerged as a promising approach to tackle poverty-related diseases because plant-derived drugs and vaccines can be produced inexpensively in developing countries and may be distributed using agricultural infrastructure without the need for a cold chain. Here we explore some of the potential contributions of plant biotechnology and its integration into broader multidisciplinary public health programs to combat the two diseases in developing countries.  相似文献   

16.
Dengue and dengue hemorrhagic fever have spread to all tropical areas of the developing world, but still remain largely neglected diseases. Several promising vaccine candidates in the form of live attenuated and chimeric vaccines have been developed and are currently in human clinical trials. However, significant practical, logistic, and scientific challenges remain before these vaccines can widely and safely be applied to vulnerable populations. Vector control, community education and public health measures must be pursued in parallel with vaccine development.  相似文献   

17.
Enteric infections are a major cause of morbidity and mortality in developing countries. To date, vaccines have played a limited role in public health efforts to control enteric infections. Licensed vaccines exist for cholera and typhoid, but these vaccines are used primarily for travellers; and there are two internationally licensed vaccines for rotavirus, but they are mainly used in affluent countries. The reasons that enteric vaccines are little used in developing countries are multiple, and certainly include financial and political constraints. Also important is the need for more cogent evidence on the performance of enteric vaccines in developing country populations. A partial inventory of research questions would include: (i) does the vaccine perform well in the most relevant settings? (ii) does the vaccine perform well in all epidemiologically relevant age groups? (iii) is there adequate evidence of vaccine safety once the vaccines have been deployed in developing countries? (iv) how effective is the vaccine when given in conjunction with non-vaccine cointerventions? (v) what is the level of vaccine protection against all relevant outcomes? and (vi) what is the expected population level of vaccine protection, including both direct and herd vaccine protective effects? Provision of evidence addressing these questions will help expand the use of enteric vaccines in developing countries.  相似文献   

18.
It has been known for more than 150 years that the risk of carcinoma of the uterine cervix correlates with the number of sexual partners. Laboratory and epidemiological evidence demonstrated that infection with certain human papillomavirus (HPV) types initiates the vast majority of, if not all, cervical cancer, as well as a substantial fraction of other cancers, including other anogenital cancer and oropharyngeal cancer. Pap smear testing resulted in a dramatic reduction in the incidence of cervical cancer in the developed world, and HPV vaccination has the potential to eradicate HPV-associated cancer worldwide and represents a major public health breakthrough. The major current challenge is to ensure that HPV vaccines are widely administered.  相似文献   

19.
Weiss WR  Jiang CG 《PloS one》2012,7(2):e31247
Live attenuated malaria vaccines are more potent than the recombinant protein, bacterial or viral platform vaccines that have been tested, and an attenuated sporozoite vaccine against falciparum malaria is being developed for humans. In mice, attenuated malaria sporozoite vaccines induce CD8(+) T cells that kill parasites developing in the liver. We were curious to know if CD8(+) T cells were also important in protecting primates against malaria. We immunized 9 rhesus monkeys with radiation attenuated Plasmodium knowlesi sporozoites, and found that 5 did not develop blood stage infections after challenge with live sporozoites. We then injected 4 of these protected monkeys with cM-T807, a monoclonal antibody to the CD8 molecule which depletes T cells. The fifth monkey received equivalent doses of normal IgG. In 3 of the 4 monkeys receiving cM-T807 circulating CD8(+) T cells were profoundly depleted. When re-challenged with live sporozoites all 3 of these depleted animals developed blood stage malaria. The fourth monkey receiving cM-T807 retained many circulating CD8(+) T cells. This monkey, and the vaccinated monkey receiving normal IgG, did not develop blood stage malaria at re-challenge with live sporozoites. Animals were treated with antimalarial drugs and rested for 4 months. During this interval CD8(+) T cells re-appeared in the circulation of the depleted monkeys. When all vaccinated animals received a third challenge with live sporozoites, all 5 monkeys were once again protected and did not develop blood stage malaria infections. These data indicate that CD8(+) T cells are important effector cells protecting monkeys against malaria sporozoite infection. We believe that malaria vaccines which induce effector CD8+ T cells in humans will have the best chance of protecting against malaria.  相似文献   

20.
Increased international support for both research into new vaccines and their deployment in developing countries has been evident over the past decade. In particular, the GAVI Alliance has had a major impact in increasing uptake of the six common infant vaccines as well as those against hepatitis B and yellow fever. It further aims to introduce pneumococcal and rotavirus vaccines in the near future and several others, including those against human papillomavirus, meningococcal disease, rubella and typhoid not long after that. In addition, there is advanced research into vaccines against malaria, HIV/AIDS and tuberculosis. By 2030, we may have about 20 vaccines that need to be used in the developing world. Finding the requisite funds to achieve this will pose a major problem. A second and urgent question is how to complete the job of global polio eradication. The new strategic plan calls for completion by 2013, but both pre-eradication and post-eradication challenges remain. Vaccines will eventually become available beyond the field of infectious diseases. Much interesting work is being done in both autoimmunity and cancer. Cutting across disease groupings, there are issues in methods of delivery and new adjuvant formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号