首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermosensitive mutant strains of Saccharomyces cerevisiae that fail to generate an osmotically stable cell wall when grown at a non-permissive temperature release their cell contents upon expression of the mutation. Therefore, they may represent an alternative for the production of homologous or heterologous protein preparations. In order to analyse the expression of two of these mutations, lyt2 and slt2, we grew the corresponding strains under precisely defined conditions in batch and continuous fermentors. A switch in the temperature of batch cultures from 24° C to 37° C determined lysis of the cells with a significant release of intracellular enzymes. These include alkaline phosphatase and periplasmic proteins such as glucan-degrading enzymes, the pattern of cell lysis and protein release being maintained for about 6 h. One-stage continuous cultures of a lyt2 mutant were maintained for long periods at 37° C; a fraction of the population lysed and released the indicated proteins, but eventually a revertant of the lytic phenotype was selected. To avoid this, a two-stage continuous culture system was developed by connecting two fermentors in series, the effluent from the first one at 24°C being fed to the second one adjusted to 37° C. A steady state of cell lysis and protein liberation was reached in the second-stage fermentor without any evidence of selection of revertants. This system can be very useful for developing conditions for the use of yeast strains to produce protein preparations. Correspondence to: C. Nombela  相似文献   

2.

Background

The maintenance of genomic integrity is essential for cell viability. Complex signalling pathways (DNA integrity checkpoints) mediate the response to genotoxic stresses. Identifying new functions involved in the cellular response to DNA-damage is crucial. The Saccharomyces cerevisiae SLT2 gene encodes a member of the mitogen-activated protein kinase (MAPK) cascade whose main function is the maintenance of the cell wall integrity. However, different observations suggest that SLT2 may also have a role related to DNA metabolism.

Results

This work consisted in a comprehensive study to connect the Slt2 protein to genome integrity maintenance in response to genotoxic stresses. The slt2 mutant strain was hypersensitive to a variety of genotoxic treatments, including incubation with hydroxyurea (HU), methylmetanosulfonate (MMS), phleomycin or UV irradiation. Furthermore, Slt2 was activated by all these treatments, which suggests that Slt2 plays a central role in the cellular response to genotoxic stresses. Activation of Slt2 was not dependent on the DNA integrity checkpoint. For MMS and UV, Slt2 activation required progression through the cell cycle. In contrast, HU also activated Slt2 in nocodazol-arrested cells, which suggests that Slt2 may respond to dNTP pools alterations. However, neither the protein level of the distinct ribonucleotide reductase subunits nor the dNTP pools were affected in a slt2 mutant strain. An analysis of the checkpoint function revealed that Slt2 was not required for either cell cycle arrest or the activation of the Rad53 checkpoint kinase in response to DNA damage. However, slt2 mutant cells showed an elongated bud and partially impaired Swe1 degradation after replicative stress, indicating that Slt2 could contribute, in parallel with Rad53, to bud morphogenesis control after genotoxic stresses.

Conclusions

Slt2 is activated by several genotoxic treatments and is required to properly cope with DNA damage. Slt2 function is important for bud morphogenesis and optimal Swe1 degradation under replicative stress. The MAPK Slt2 appears as a new player in the cellular response to genotoxic stresses.  相似文献   

3.
Mitogen-activated protein (MAP) kinases represent a group of serine/threonine protein kinases playing a central role in signal transduction processes in eukaryotic cells. Using a strategy based on the complementation of the thermosensitive autolytic phenotype of slt2 null mutants, we have isolated a Candida albicans homolog of Saccharomyces cerevisiae MAP kinase gene SLT2 (MPK1), which is involved in the recently outlined PKC1-controlled signalling pathway. The isolated gene, named MKC1 (MAP kinase from C. albicans), coded for a putative protein, Mkc1p, of 58,320 Da that displayed all the characteristic domains of MAP kinases and was 55% identical to S. cerevisiae Slt2p (Mpk1p). The MKC1 gene was deleted in a diploid Candida strain, and heterozygous and homozygous strains, in both Ura+ and Ura- backgrounds, were obtained to facilitate the analysis of the function of the gene. Deletion of the two alleles of the MKC1 gene gave rise to viable cells that grew at 28 and 37 degrees C but, nevertheless, displayed a variety of phenotypic traits under more stringent conditions. These included a low growth yield and a loss of viability in cultures grown at 42 degrees C, a high sensitivity to thermal shocks at 55 degrees C, an enhanced susceptibility to caffeine that was osmotically remediable, and the formation of a weak cell wall with a very low resistance to complex lytic enzyme preparations. The analysis of the functions downstream of the MKC1 gene should contribute to understanding of the connection of growth and morphogenesis in pathogenic fungi.  相似文献   

4.
镉离子(Cd2+)是一种对人体具有致癌性的非必需金属离子,能严重影响生物体的生长、发育和生殖。有丝分裂原蛋白激酶(Mitogen-activated protein kinase,MAPK)是调节细胞存活、增殖和分化中的重要信号分子。细胞壁完整性(Cell Wall Integrity,CWI)途径是酿酒酵母细胞(Saccharomyces cerevisiae)中的一个MAPK信号传导途径,参与镉胁迫下的细胞应答。镉胁迫导致CWI途径的MAPK蛋白激酶Slt2激活并被磷酸化。在CWI途径中,有4个蛋白磷酸酯酶Ptp2、Ptp3、Sdp1和Msg5可以调控Slt2的磷酸化和活性,但是它们在镉胁迫条件下的功能未知。本研究通过同源重组的原理构建了4个单基因缺失株之间的6个双基因缺失株,利用倍比稀释方法分析了这四个磷酸酯酶基因之间在镉胁迫条件下的遗传相互作用。结果发现Msg5是镉胁迫条件下调控Slt2的主要蛋白磷酸酯酶。  相似文献   

5.
Summary Mutations in the RAD3 gene of Saccharomyces cerevisiae were generated by integration of a mutagenized incomplete copy of the cloned gene into wild-type cells. Integrants were mass screened for colonies with abnormal growth characteristics at 37°C. A single temperature-sensitive mutant (rad3ts-1) was isolated and was shown to result from a missense mutation at codon 73 of the RAD3 gene. When shifted from 30° C to 37° C the strain undergoes only 2–4 cell doublings. This phenotype can be rescued by plasmids in which the essential function of the cloned RAD3 gene is intact, but not plasmids in which this function is inactivated. The mutant strain is weakly sensitive to ultraviolet (UV) radiation at restrictive temperatures. Measurement of RNA, DNA and protein synthesis at various times after shifting to restrictive temperatures does not show preferential inactivation of any one of these parameters and the temperature-sensitive mutation does not cause arrest at any specific phase of the cell cycle. The rad3ts-1 strain was transformed with multicopy plasmids from a normal yeast genomic library and two plasmids that partially suppress the temperature-sensitive phenotype were isolated. These suppressor genes (designated SRE1 and SRE2) are distinct from RAD3 and do not suppress the phenotype of several other temperature-sensitive mutants tested. Mutant strains carrying disruptions of the SRE1 gene are viable and are not sensitive to UV or radiation.  相似文献   

6.
NIN1 is an essential gene for growth of the yeastSaccharomyces cerevisiae and was recently found to encode a component of the regulatory subunit of the 26S proteasome. Thenin1-1 mutant is temperature sensitive and its main defect is in G1/S progression and G2/M progression at non-permissive temperatures. One of the two multicopy suppressors ofnin1-1, SUN2 (SUppressor of Nin1-1), was found to encode a protein of 523 amino acids whose sequence is similar to those ofDrosophila melanogaster diphenol oxidase A2 and the mouse mast-cell Tum transplantation antigen, P91A. The C-terminal half of Sun2p was found to be functional as Sun2p at 25° C, 30° C, and 34° C but not at 37° C. The open reading frame (ORF) of theDrosophila diphenol oxidase A2 gene (Dox-A2) was obtained from a lambda phage cDNA library using the polymerase chain reaction technique. TheDox-A2 ORF driven by theTDH3 promoter complemented the phenotype of a strain deleted forsun2. ThisDox-A2-dependent strain was temperature sensitive and accumulated dumb-bell-shaped cells, with an undivided nucleus at the isthmus, after temperature upshift. This morphology is similar to that ofnin1-1 cells kept at a restrictive temperature. These results suggest thatSUN2 is a functional counterpart ofDox-A2 and that these genes play a pivotal role in the cell cycle in each organism.  相似文献   

7.
MKK1/MKK2 and SLT2 ( MPK1 ) are three Saccharomyces cerevisiae genes, coding for protein kinases, that have been postulated to act sequentially as part of the Pkc1p signalling pathway, a phosphorylation cascade essential for cell integrity. By using the 'two-hybrid system' and co-purification experiments on glutathione-agarose beads, we have shown that Slt2p interacts in vivo and in vitro with both Mkk1p and Mkk2p, thus confirming a previous suggestion based on epistasis experiments of the corresponding genes. Plasmid constructs of the SLT2 gene, deleted in the whole C-terminal non-kinase region or part of it, and therefore containing all of the conserved kinase subdomains, were still functional in complementation of the slt2 lytic phenotype and in vivo interaction with Mkk1p and Mkk2p. In contrast, the Slt2p C-terminal domain (162 residues) that carries a glutamine-rich fragment followed by a 16 polyglutamine tract, was shown to be dispensable for complementation and in vivo association with Mkk1p and Mkk2p. We have also demonstrated that the N-terminal putative regulatory domain of these two MAP kinase activators is the main region involved in the interaction with Slt2p.  相似文献   

8.
Cell-free extracts of the yeast Saccharomyces cerevisiae can be used to catalyse the recombination of bacterial plasmids in vitro. Recombination between homologous plasmids containing different mutations in the gene encoding tetracycline resistance is detectable by the appearance of tetracycline-resistance following transformation of the recombinant plasmid DNA into Escherichia coli DH5. This in vitro recombination system was used to determine the involvement of eukaryotic topo-isomerases in genetic recombination. Cell-free extracts prepared from a temperature-sensitive topo-isomerase II mutant (top2-1) of S. cerevisiae yielded tetracycline-resistant recombinants, when the recombination assays were performed at both a non-restrictive temperature (30°C) and the restrictive temperature (37°C). This result was obtained whether or not ATP was present in the recombination buffer. Extracts from a non-conditional topo-isomerase I mutant (top1-1) of S. cerevisiae yielded tetracycline-resistant recombinants, as did a temperature-sensitive double mutant (top2-1/top1-8) at the restrictive temperature. The results of this study indicate that neither topo-isomerase I nor topo-isomerase II was involved in the recombinational activity examined.  相似文献   

9.
By genetic analysis of a thermosensitive autolytic mutant whose phenotype was complemented by osmotic stabilization with sorbitol, we identified gene LYT2 of Saccharomyces cerevisiae, which is probably involved in cell wall formation. A yeast gene complementing lyt2 strains was cloned and shown to carry an open reading frame coding for a 484-amino-acid protein exhibiting all the characteristic domains of serine/threonine protein kinases and highly homologous to other yeast protein kinases involved in control of the mitotic cycle. Mutants disrupted in the cloned gene also displayed an autolytic phenotype complemented by osmotic stabilization with sorbitol. However, genetic comparison of lyt2 mutants and disruptants of the protein kinase gene revealed that the cloned gene is not the structural gene LYT2 but a suppressor of the lytic phenotype, named gene SLT2, that was mapped to chromosome V. The product of gene SLT2 is the first protein kinase to be described in relation to the yeast cell-wall functions.  相似文献   

10.
Cell growth in the yeast Saccharomyces cerevisiae depends on polarization of the actin cytoskeleton. In this study, we investigated how the cell regulates the distribution of actin in response to low pH conditions, focusing on the role of mitogen-activated protein kinases, Hog1 and Slt2. Changing the extracellular pH from 6.0 to 3.0 caused a transient depolarization of the actin cytoskeleton. Actin cables were no longer visible, and actin patches appeared randomly distributed after 30 min at pH 3.0. The deletion strain hog1Δ did not show this low-pH phenotype, suggesting that Hog1 is involved in depolarization of the actin cytoskeleton in response to low-pH stress. Yeast cells incubated at pH 3.0 also showed markedly increased endocytosis compared with the control at neutral pH, as indicated by the uptake of Lucifer Yellow (LY). Both the hog1Δ and slt2Δ mutants took up LY into the vacuole to a similar extent as the wild-type strain. In addition, cells grown at pH 3.0 showed a 2-fold increase in phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) levels, as did the hog1Δ or slt2Δ cells. Efficient uptake of LY and actin repolarization at pH 3.0 might therefore require activation of PI(4,5)P2 synthesis.  相似文献   

11.
A prolonged incubation of Escherichia, Salmonella or Pseudomonas at 48°C with nalidixic acid selected mutants (T48) able to grow at 48°C. A prolonged incubation at 54°C of the T48 mutants selected mutants (T54) able to grow at 54°C. These mutants were susceptible to the same bacteriophages as the original mesophilic strains. Auxotrophic phenotypes of Escherichia coli and Salmonella typhimurium mesophilic parents were demonstrated by these mutants if they were cultivated on minimal agar with cellobiose at 48°C or 54°C or on a minimal agar with glucose at 37°C. The T48 alleles mapped in the gyrA region of E. coli or S. typhimurium chromosome. In S. typhimurium the T54 alleles, which permit growth at 54°C, were shown by cotransductional analysis to be linked to gyrA.  相似文献   

12.
The effect of physiological conditions on autolysis and autolytic activity in various strains ofStaphylococcus aureus was determined. The rate of whole cell autolysis ofS. aureus was growth phase dependent and a maximum rate was observed in early stationary phase cultures. However, the autolysins extracted by the freeze-thaw method (cell-wall bound autolytic activity) did not show any significant increase in activity. The addition of NaCl to the growth medium enhanced the rate of autolysis with the highest rate being displayed by cultures grown in 1.5 M NaCl. However, lower autolytic activity was found in the freeze-thaw extracts of cultures grown at higher concentrations of NaCl. The rate of autolysis of cultures grown at 30°C was higher than cultures grown at 37 or 43°C. Thus, the rate of autolysis seems to be independent of the bacterial growth rate. Cultures grown in slightly acidic conditions showed a faster rate of autolysis compared to cultures grown under alkaline conditions. SDS-polyacrylamide gel containing 0.2% crude cell-wall ofS. aureus did not show any obvious correlation with the appearance of any particular lytic band in the zymogram to autolytic activity or rate of autolysis of cultures grown under various environmental conditions. A nonhemolytic phenotype, mutations in the accessory gene regulator, and lysogeny (phages ø11, ø12, ø13) had no obvious effect either on the rate of autolysis or on the pattern of lytic bands in the zymograms.  相似文献   

13.
A genetic screen was devised to identify Saccharomyces cerevisiae splicing factors that are important for the function of the 5′ end of U2 snRNA. Six slt (stands for synthetic lethality with U2) mutants were isolated on the basis of synthetic lethality with a U2 snRNA mutation that perturbs the U2-U6 snRNA helix II interaction. SLT11 encodes a new splicing factor and SLT22 encodes a new RNA-dependent ATPase RNA helicase (D. Xu, S. Nouraini, D. Field, S. J. Tang, and J. D. Friesen, Nature 381:709–713, 1996). The remaining four slt mutations are new alleles of previously identified splicing genes: slt15, previously identified as prp17 (slt15/prp17-100), slt16/smd3-1, slt17/slu7-100, and slt21/prp8-21. slt11-1 and slt22-1 are synthetically lethal with mutations in the 3′ end of U6 snRNA, a region that affects U2-U6 snRNA helix II; however, slt17/slu7-100 and slt21/prp8-21 are not. This difference suggests that the latter two factors are unlikely to be involved in interactions with U2-U6 snRNA helix II but rather are specific to interactions with U2 snRNA. Pairwise synthetic lethality was observed among slt11-1 (which affects the first step of splicing) and several second-step factors, including slt15/prp17-100, slt17/slu7-100, and prp16-1. Mutations in loop 1 of U5 snRNA, a region that is implicated in the alignment of the two exons, are synthetically lethal with slu4/prp17-2 and slu7-1 (D. Frank, B. Patterson, and C. Guthrie, Mol. Cell. Biol. 12:5179–5205, 1992), as well as with slt11-1, slt15/prp17-100, slt17/slu7-100, and slt21/prp8-21. These same U5 snRNA mutations also interact genetically with certain U2 snRNA mutations that lie in the helix I and helix II regions of the U2-U6 snRNA structure. Our results suggest interactions among U2 snRNA, U5 snRNA, and Slt protein factors that may be responsible for coupling and coordination of the two reactions of pre-mRNA splicing.  相似文献   

14.
Saccharomyces cerevisiae whi2Delta cells are unable to halt cell division in response to nutrient limitation and are sensitive to a wide variety of stresses. A synthetic lethal screen resulted in the isolation of siw mutants that had a phenotype similar to that of whi2Delta. Among these were mutations affecting SIW14, FEN2, SLT2, and THR4. Fluid-phase endocytosis is severely reduced or abolished in whi2Delta, siw14Delta, fen2Delta, and thr4Delta mutants. Furthermore, whi2Delta and siw14Delta mutants produce large actin clumps in stationary phase similar to those seen in prk1Delta ark1Delta mutants defective in protein kinases that regulate the actin cytoskeleton. Overexpression of SIW14 in a prk1Delta strain resulted in a loss of cortical actin patches and cables and was lethal. Overexpression of SIW14 also rescued the caffeine sensitivity of the slt2 mutant isolated in the screen, but this was not due to alteration of the phosphorylation state of Slt2. These observations suggest that endocytosis and the organization of the actin cytoskeleton are required for the proper response to nutrient limitation. This hypothesis is supported by the observation that rvs161Delta, sla1Delta, sla2Delta, vrp1Delta, ypt51Delta, ypt52Delta, and end3Delta mutations, which disrupt the organization of the actin cytoskeleton and/or reduce endocytosis, have a phenotype similar to that of whi2Delta mutants.  相似文献   

15.
The accurate segregation of sister chromatids at the metaphase to anaphase transition in Saccharomyces cerevisiae is regulated by the activity of the anaphase-promoting complex or cyclosome (APC/C). In the event of spindle damage or monopolar spindle attachment, the spindle checkpoint is activated and inhibits APC/C activity towards the anaphase inhibitor Pds1p, resulting in a cell cycle arrest at metaphase. We have identified a novel allele of a gene for an APC/C subunit, cdc16-183 , in S. cerevisiae. cdc16-183 mutants arrest at metaphase at 37°C, and are supersensitive to the spindle-damaging agent nocodazole, which activates the spindle checkpoint, at lower temperatures. This supersensitivity to nocodazole cannot be explained by impairment of the spindle checkpoint pathway, as cells respond normally to spindle damage with a stable metaphase arrest and high levels of Pds1p. Despite showing metaphase arrest at G2/M at 37°C, cdc16-183 mutants are able to perform tested G1 functions normally at this temperature. This is the first demonstration that a mutation in a core APC/C subunit can result in a MAD2-dependent arrest at the restrictive temperature. Our results suggest that the cdc16-183 mutant may have a novel APC/C defect(s) that mimics or activates the spindle checkpoint pathway.Communicated by C. P. Hollenberg  相似文献   

16.
A Saccharomyces cerevisiae strain in which the GPP1 and GPP2 genes, both encoding glycerol-3-phosphate phosphatase isoforms, are deleted, displays both osmo- and thermosensitive (ts) phenotypes. We isolated genes involved in cell wall maintenance as multicopy suppressors of the gpp1gpp2 ts phenotype. We found that the gpp1gpp2 strain is hypersensitive to cell wall stress such as treatment with β-1,3-glucanase containing cocktail Zymolyase and chitin-binding dye Calcofluor-white (CFW). Sensitivity to Zymolyase was rescued by overexpression of SSD1, while CFW sensitivity was rescued by SSD1, FLO8 and WSC3—genes isolated as multicopy suppressors of the gpp1gpp2 ts phenotype. Some of the isolated suppressor genes (SSD1, FLO8) also rescued the lytic phenotype of slt2 deletion strain. Additionally, the sensitivity to CFW was reduced when the cells were supplied with glycerol. Both growth on glycerol-based medium and overexpression of SSD1, FLO8 or WSC3 had additive suppressing effect on CFW sensitivity of the gpp1gpp2 mutant strain. We also confirmed that the internal glycerol level changed in cells exposed to cell wall perturbation.  相似文献   

17.
Summary We have isolated a mutant of the yeast Schizosaccharomyces pombe which exhibits sensitivity to UV light when grown at either 30° or 37°C, as compared to the parental wild-type strain. This increased sensitivity is more pronounced when cells are grown at 37°C. The mutant is also sensitive to 18 MeV electrons at the high temperature. Tetrad analysis of spores generated by crossing the mutant and a Rad+ strain revealed that sensitivity to both types of radiation cosegregate 2:2, relative to wild-type resistance, indicating that a single altered chromosomal locus is responsible for the radiation sensitivities observed. In addition, analysis of spores resulting from crosses between the mutant and all other known S. pombe rad mutants indicates that the temperature-dependent sensitivity described in this report is mediated by a mutation in a previously unidentified rad locus.  相似文献   

18.
We have isolated and characterized two multicopy suppressors, mssA and mssB, which suppress the cold-sensitive growth phenotype of the smbA2 mutant of Escherichia coli. The mssA gene is located immediately upstream of the rpsA gene (20.5 min). MssA protein was found to be related to nucleoside monophosphate kinases. The mssB, gene was found to be identical to the deaD gene (69 min), which encodes a putative RNA helicase. The SmbA protein belongs to the aspartokinase family and probably represents a new, fourth aspartokinase species in E. coli. Expression of the smbA gene is essential for cell growth. The smbA2 mutant shows a pleiotropic phenotype characterized by cold-sensitive growth, hypersensitivity to the detergent sodium dodecyl sulfate, and formation of a translucent segment at midcell or at a pole of the cell when grown at 22° C. In addition, some cellular proteins were either increased or decreased in amount in the smbA2 mutant. SmbA may be a regulatory factor in the expression of a battery of genes. MssA and MssB might also relate to the expression of some of these genes. Multiple copies mssA and mssB, suppressed the various phenotypic features of the smbA2 mutant to various extents, suppressing the cold-sensitive growth completely.  相似文献   

19.
Nalidixic acid-resistant mutants ofEscherichia coli CGSC #6353 capable of growth at 48°C were obtained by mutagenesis withN-methyl-N-nitro-N-nitrosoguanidine. Cotransductional analyses employing phage P1 indicated that the mutation resulting in the phenotype of growth at 48°C is an allele of thegyrA structural gene. Similar thermal inactivation kinetics were observed for ribosomes isolated from a thermotolerant (T/r) mutant grown at both 37°C and 48°C and from the parental strain grown at 37°C. Cell-free extracts prepared from the T/r mutant grown at 48°C exhibited a sharp increase in protein synthesis at 55°C, whereas this effect was not displayed by extracts from the mutant or parental strains grown at 37°C. In addition, preincubation at 55°C enhanced protein synthesis at 37°C up to 15-fold in an extract prepared from the T/r mutant grown at 48°C, whereas comparable values were 2.6- to 3.0-fold for extracts from the mutant and parental strains grown at 37°C.  相似文献   

20.
A cDNA encoding farnesyl diphosphate synthase, an enzyme that synthesizes C15 isoprenoid diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate, was cloned from an Arabidopsis thaliana cDNA library by complementation of a mutant of Saccharomyces cerevisiae deficient in this enzyme. The A. thaliana cDNA was also able to complement the lethal phenotype of the erg20 deletion yeast mutant. As deduced from the full-length 1.22 kb cDNA nucleotide sequence, the polypeptide contains 343 amino acids and has a relative molecular mass of 39689. The predicted amino acid sequence presents about 50% identity with the yeast, rat and human FPP synthases. Southern blot analyses indicate that A. thaliana probably contains a single gene for farnesyl diphosphate synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号