首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
韩乐 《生物信息学》2004,2(2):27-28
修正非齐次模型是在齐次模型和非齐次模型基础上提出的适用于蛋白质编码区的马尔可夫模型。此模型可以用来分析生物物种进化和基因突变,模型中的马尔可夫度与序列进化水平相关联,转移矩阵与基因突变相关联。本文通过比较7类不同物种-1度马尔可夫链的含量,验证了生物物种进化反映在密码子使用上的特征;通过密码子位点间转移矩阵的计算,分析了基因突变在密码子不同位点上发生的可能性。  相似文献   

2.
Models of amino acid substitution were developed and compared using maximum likelihood. Two kinds of models are considered. "Empirical" models do not explicitly consider factors that shape protein evolution, but attempt to summarize the substitution pattern from large quantities of real data. "Mechanistic" models are formulated at the codon level and separate mutational biases at the nucleotide level from selective constraints at the amino acid level. They account for features of sequence evolution, such as transition-transversion bias and base or codon frequency biases, and make use of physicochemical distances between amino acids to specify nonsynonymous substitution rates. A general approach is presented that transforms a Markov model of codon substitution into a model of amino acid replacement. Protein sequences from the entire mitochondrial genomes of 20 mammalian species were analyzed using different models. The mechanistic models were found to fit the data better than empirical models derived from large databases. Both the mutational distance between amino acids (determined by the genetic code and mutational biases such as the transition-transversion bias) and the physicochemical distance are found to have strong effects on amino acid substitution rates. A significant proportion of amino acid substitutions appeared to have involved more than one codon position, indicating that nucleotide substitutions at neighboring sites may be correlated. Rates of amino acid substitution were found to be highly variable among sites.   相似文献   

3.
Over the years, there have been claims that evolution proceeds according to systematically different processes over different timescales and that protein evolution behaves in a non-Markovian manner. On the other hand, Markov models are fundamental to many applications in evolutionary studies. Apparent non-Markovian or time-dependent behavior has been attributed to influence of the genetic code at short timescales and dominance of physicochemical properties of the amino acids at long timescales. However, any long time period is simply the accumulation of many short time periods, and it remains unclear why evolution should appear to act systematically differently across the range of timescales studied. We show that the observed time-dependent behavior can be explained qualitatively by modeling protein sequence evolution as an aggregated Markov process (AMP): a time-homogeneous Markovian substitution model observed only at the level of the amino acids encoded by the protein-coding DNA sequence. The study of AMPs sheds new light on the relationship between amino acid-level and codon-level models of sequence evolution, and our results suggest that protein evolution should be modeled at the codon level rather than using amino acid substitution models.  相似文献   

4.
Selection on Codon Usage for Error Minimization at the Protein Level   总被引:1,自引:0,他引:1  
Given the structure of the genetic code, synonymous codons differ in their capacity to minimize the effects of errors due to mutation or mistranslation. I suggest that this may lead, in protein-coding genes, to a preference for codons that minimize the impact of errors at the protein level. I develop a theoretical measure of error minimization for each codon, based on amino acid similarity. This measure is used to calculate the degree of error minimization for 82 genes of Drosophila melanogaster and 432 rodent genes and to study its relationship with CG content, the degree of codon usage bias, and the rate of nucleotide substitution. I show that (i) Drosophila and rodent genes tend to prefer codons that minimize errors; (ii) this cannot be merely the effect of mutation bias; (iii) the degree of error minimization is correlated with the degree of codon usage bias; (iv) the amino acids that contribute more to codon usage bias are the ones for which synonymous codons differ more in the capacity to minimize errors; and (v) the degree of error minimization is correlated with the rate of nonsynonymous substitution. These results suggest that natural selection for error minimization at the protein level plays a role in the evolution of coding sequences in Drosophila and rodents.Reviewing Editor: Dr. Massimo Di Giulio  相似文献   

5.
The covarion (or site specific rate variation, SSRV) process of biological sequence evolution is a process by which the evolutionary rate of a nucleotide/amino acid/codon position can change in time. In this paper, we introduce time-continuous, space-discrete, Markov-modulated Markov chains as a model for representing SSRV processes, generalizing existing theory to any model of rate change. We propose a fast algorithm for diagonalizing the generator matrix of relevant Markov-modulated Markov processes. This algorithm makes phylogeny likelihood calculation tractable even for a large number of rate classes and a large number of states, so that SSRV models become applicable to amino acid or codon sequence datasets. Using this algorithm, we investigate the accuracy of the discrete approximation to the Gamma distribution of evolutionary rates, widely used in molecular phylogeny. We show that a relatively large number of classes is required to achieve accurate approximation of the exact likelihood when the number of analyzed sequences exceeds 20, both under the SSRV and among site rate variation (ASRV) models.  相似文献   

6.
In the past, 2 kinds of Markov models have been considered to describe protein sequence evolution. Codon-level models have been mechanistic with a small number of parameters designed to take into account features, such as transition-transversion bias, codon frequency bias, and synonymous-nonsynonymous amino acid substitution bias. Amino acid models have been empirical, attempting to summarize the replacement patterns observed in large quantities of data and not explicitly considering the distinct factors that shape protein evolution. We have estimated the first empirical codon model (ECM). Previous codon models assume that protein evolution proceeds only by successive single nucleotide substitutions, but our results indicate that model accuracy is significantly improved by incorporating instantaneous doublet and triplet changes. We also find that the affiliations between codons, the amino acid each encodes and the physicochemical properties of the amino acids are main factors driving the process of codon evolution. Neither multiple nucleotide changes nor the strong influence of the genetic code nor amino acids' physicochemical properties form a part of standard mechanistic models and their views of how codon evolution proceeds. We have implemented the ECM for likelihood-based phylogenetic analysis, and an assessment of its ability to describe protein evolution shows that it consistently outperforms comparable mechanistic codon models. We point out the biological interpretation of our ECM and possible consequences for studies of selection.  相似文献   

7.
The formalism of absorbent Markov chains, previously developed by Kemeny & Snell (1960) is used as a model for the study of the evolution of proteins. Within the limits of statistical analysis used, the amino acid substitution frequencies of McLachlan (1972) are explained by the numerical values derived from the model used. In addition, the amino acid composition of proteins is partially explained and the relative mutability of amino acids receives a new interpretation in the light of the above mentioned stochastic model. The results show that some basic aspect of protein evolution can be predicted by a stochastic model and therefore a significant component of protein evolution is driven by a random element.  相似文献   

8.
The evolutionary speed and the consequent immune escape of H3N2 influenza A virus make it an interesting evolutionary system. Charged amino acid residues are often significant contributors to the free energy of binding for protein–protein interactions, including antibody–antigen binding and ligand–receptor binding. We used Markov chain theory and maximum likelihood estimation to model the evolution of the number of charged amino acids on the dominant epitope in the hemagglutinin protein of circulating H3N2 virus strains. The number of charged amino acids increased in the dominant epitope B of the H3N2 virus since introduction in humans in 1968. When epitope A became dominant in 1989, the number of charged amino acids increased in epitope A and decreased in epitope B. Interestingly, the number of charged residues in the dominant epitope of the dominant circulating strain is never fewer than that in the vaccine strain. We propose these results indicate selective pressure for charged amino acids that increase the affinity of the virus epitope for water and decrease the affinity for host antibodies. The standard PAM model of generic protein evolution is unable to capture these trends. The reduced alphabet Markov model (RAMM) model we introduce captures the increased selective pressure for charged amino acids in the dominant epitope of hemagglutinin of H3N2 influenza (R 2 > 0.98 between 1968 and 1988). The RAMM model calibrated to historical H3N2 influenza virus evolution in humans fit well to the H3N2/Wyoming virus evolution data from Guinea pig animal model studies.  相似文献   

9.
X Liu  H Liu  W Guo  K Yu 《Gene》2012,509(1):136-141
Codon models are now widely used to draw evolutionary inferences from alignments of homologous sequence data. Incorporating physicochemical properties of amino acids into codon models, two novel codon substitution models describing the evolution of protein-coding DNA sequences are presented based on the similarity scores of amino acids. To describe substitutions between codons a continue-time Markov process is used. Transition/transversion rate bias and nonsynonymous codon usage bias are allowed in the models. In our implementation, the parameters are estimated by maximum-likelihood (ML) method as in previous studies. Furthermore, instantaneous mutations involving more than one nucleotide position of a codon are considered in the second model. Then the two suggested models are applied to five real data sets. The analytic results indicate that the new codon models considering physicochemical properties of amino acids can provide a better fit to the data comparing with existing codon models, and then produce more reliable estimates of certain biologically important measures than existing methods.  相似文献   

10.
The evolution of haemagglutinin (HA), an important influenza virus antigen, has been the subject of intensive research for more than two decades. Many characteristics of HA's sequence evolution are captured by standard Markov chain substitution models. Such models assign equal fitness to all accessible amino acids at a site. We show, however, that such models strongly underestimate the number of homoplastic amino acid substitutions during the course of HA's evolution, i.e. substitutions that repeatedly give rise to the same amino acid at a site. We develop statistics to detect individual homoplastic events and find that they preferentially occur at positively selected epitopic sites. Our results suggest that the evolution of the influenza A HA, including evolution by positive selection, is strongly affected by the long-term site-specific preferences for individual amino acids.  相似文献   

11.
This paper analyzes the nucleotide sequences of three viruses: Kunjin, west Nile, and yellow fever. Each virus has one long open reading frame of greater than 10,200 nucleotides that codes for four structural and seven nonstructural genes. The Kunjin and west Nile viruses are the most closely related pair, when assessed on the basis of matches between their nucleotide sequences. As would be expected, the matching is least for bases at third-position codon sites and is greatest for second-position sites. Statistics are presented for the numbers of mismatches that are transitions or transversions. Nucleotide base usage is also reported. To each of the 33 virus-gene segments, nonhomogeneous Markov chain models have been fitted to describe the sequences of nucleotide bases. The models allow for different transition probabilities ("transition" is used in the mathematical sense here) and for different degrees of dependency, at the three sites in the codons. Reasonably satisfactory fits can be obtained for many of the genes by using models that are first order for both first- and second-position sites in the codon but that are second order for third-position sites. One consequence of such a model is that the correlation between one amino acid and the next is limited to the correlation of the last base of the former with the first base of the latter. Other consequences are that the model can (and does) prohibit the occurrence of stop codons within a gene and that subsequences of only first-position bases, or only third-position bases, are also first-order Markov chains. In theory, second-position subsequences may not be Markov chains at all. In practice, the data suggest that each of these subsequences is effectively a zero-order Markov chain, i.e., bases spaced three apart are statistically independent. Stationarity of nucleotide base distributions can be interpreted in either of two ways: (1) spatially along the sites or (2) temporally at each site. These interpretations must often be inconsistent, when the former allows for Markov dependence between adjacent sites whereas the latter assumes independence between sites. The inconsistency can be overcome, for these viruses, if subsequences at different codon positions are analyzed separately.  相似文献   

12.
13.
Directed protein evolution is the most versatile method for studying protein structure–function relationships, and for tailoring a protein's properties to the needs of industrial applications. In this review, we performed a statistical analysis on the genetic code to study the extent and consequence of the organization of the genetic code on amino acid substitution patterns generated in directed evolution experiments. In detail, we analyzed amino acid substitution patterns caused by (a) a single nucleotide (nt) exchange at each position of all 64 codons, and (b) two subsequent nt exchanges (first and second nt, first and third nt, second and third nt). Additionally, transitions and transversions mutations were compared at the level of amino acid substitution patterns. The latter analysis showed that single nucleotide substitution in a codon generates only 39.5% of the natural diversity on the protein level with 5.2–7 amino acid substitutions per codon. Transversions generate more complex amino acid substitution patterns (increased number and chemically more diverse amino acid substitutions) than transitions. Simultaneous nt exchanges at both first and second nt of a codon generates very diverse amino acid substitution patterns, achieving 83.2% of the natural diversity. The statistical analysis described in this review sets the objectives for novel random mutagenesis methods that address the consequences of the organization of the genetic code. Random mutagenesis methods that favor transversions or introduce consecutive nt exchanges can contribute in this regard.  相似文献   

14.
Incorrect protein translation, caused by codon mismatch, is an important problem of living cells. In this work, a computational model was introduced to quantify the effects of codon mismatch and the model was used to study the protein translation of Saccharomyces cerevisiae. According to simulation results, the probability of codon mismatch will increase when the supply of amino acids is unbalanced, and the longer is the codon sequence, the larger is the probability for incorrect translation to occur, making the synthesis of long peptide chain difficult. By comparing to simulation results without codon mismatch effects taken into account, the fraction of mRNAs with bound ribosome decrease faster along the mRNAs, making the 5’ ramp phenomenon more obvious. It was also found in our work that the premature mechanism resulted from codon mismatch can reduce the proportion of incorrect translation when the amino acid supply is extremely unbalanced, which is one possible source of high fidelity protein synthesis after peptidyl transfer.  相似文献   

15.
Directed protein evolution is the most versatile method for studying protein structure-function relationships, and for tailoring a protein's properties to the needs of industrial applications. In this review, we performed a statistical analysis on the genetic code to study the extent and consequence of the organization of the genetic code on amino acid substitution patterns generated in directed evolution experiments. In detail, we analyzed amino acid substitution patterns caused by (a) a single nucleotide (nt) exchange at each position of all 64 codons, and (b) two subsequent nt exchanges (first and second nt, first and third nt, second and third nt). Additionally, transitions and transversions mutations were compared at the level of amino acid substitution patterns. The latter analysis showed that single nucleotide substitution in a codon generates only 39.5% of the natural diversity on the protein level with 5.2-7 amino acid substitutions per codon. Transversions generate more complex amino acid substitution patterns (increased number and chemically more diverse amino acid substitutions) than transitions. Simultaneous nt exchanges at both first and second nt of a codon generates very diverse amino acid substitution patterns, achieving 83.2% of the natural diversity. The statistical analysis described in this review sets the objectives for novel random mutagenesis methods that address the consequences of the organization of the genetic code. Random mutagenesis methods that favor transversions or introduce consecutive nt exchanges can contribute in this regard.  相似文献   

16.
Functional shifts during protein evolution are expected to yield shifts in substitution rate, and statistical methods can test for this at both codon and amino acid levels. Although methods based on models of sequence evolution serve as powerful tools for studying evolutionary processes, violating underlying assumptions can lead to false biological conclusions. It is not unusual for functional shifts to be accompanied by changes in other aspects of the evolutionary process, such as codon or amino acid frequencies. However, models used to test for functional divergence assume these frequencies remain constant over time. We employed simulation to investigate the impact of non-stationary evolution on functional divergence inference. We investigated three likelihood ratio tests based on codon models and found varying degrees of sensitivity. Joint effects of shifts in frequencies and selection pressures can be large, leading to false signals for positive selection. Amino acid-based tests (FunDi and Bivar) were also compromised when several aspects of the substitution process were not adequately modeled. We applied the same tests to a core genome “scan” for functional divergence between light-adapted ecotypes of the cyanobacteria Prochlorococcus, and carried out gene-specific simulations for ten genes. Results of those simulations illustrated how the inference of functional divergence at the genomic level can be seriously impacted by model misspecification. Although computationally costly, simulations motivated by data in hand are warranted when several aspects of the substitution process are either misspecified or not included in the models upon which the statistical tests were built.  相似文献   

17.
A Likelihood Approach to Populations Samples of Microsatellite Alleles   总被引:4,自引:2,他引:2  
R. Nielsen 《Genetics》1997,146(2):711-716
This paper presents a likelihood approach to population samples of microsatellite alleles. A Markov chain recursion method previously published by GRIFFITHS and TAVARE is applied to estimate the likelihood function under different models of microsatellite evolution. The method presented can be applied to estimate a fundamental population genetics parameter θ as well as parameters of the mutational model. The new likelihood estimator provides a better estimator of θ in terms of the mean square error than previous approaches. Furthermore, it is demonstrated how the method may easily be applied to test models of microsatellite evolution. In particular it is shown how to compare a one-step model of microsatellite evolution to a multi-step model by a likelihood ratio test.  相似文献   

18.
De novo origin of coding sequence remains an obscure issue in molecular evolution. One of the possible paths for addition (subtraction) of DNA segments to (from) a gene is stop codon shift. Single nucleotide substitutions can destroy the existing stop codon, leading to uninterrupted translation up to the next stop codon in the gene’s reading frame, or create a premature stop codon via a nonsense mutation. Furthermore, short indels-caused frameshifts near gene’s end may lead to premature stop codons or to translation past the existing stop codon. Here, we describe the evolution of the length of coding sequence of prokaryotic genes by change of positions of stop codons. We observed cases of addition of regions of 3′UTR to genes due to mutations at the existing stop codon, and cases of subtraction of C-terminal coding segments due to nonsense mutations upstream of the stop codon. Many of the observed stop codon shifts cannot be attributed to sequencing errors or rare deleterious variants segregating within bacterial populations. The additions of regions of 3′UTR tend to occur in those genes in which they are facilitated by nearby downstream in-frame triplets which may serve as new stop codons. Conversely, subtractions of coding sequence often give rise to in-frame stop codons located nearby. The amino acid composition of the added region is significantly biased, compared to the overall amino acid composition of the genes. Our results show that in prokaryotes, shift of stop codon is an underappreciated contributor to functional evolution of gene length.  相似文献   

19.
Summary. Previous studies showed that the cellular amino acid composition obtained by amino acid analysis of whole cells, differs such as eubacteria, protozoa, fungi and mammalian cells. These results suggest that the difference in the cellular amino acid composition reflects biological changes as the result of evolution. However, the basic pattern of cellular amino acid composition was relatively constant in all organisms examined. In the present study, we examined archaeobacteria, because they are considered important in understanding the relationship between biological evolution and cellular amino acid composition. The cellular amino acid compositions of Archaeoglobus fulgidus, Pyrococcus horikoshii, Methanobacterium thermoautotrophicum and Methanococcus jannaschii differed slightly from each other, but were similar to those determined from codon usage data, based on the complete genomes. Thus, the cellular amino acid composition reflects biological evolution. We suggest that primitive forms of life appearing on earth at the end of prebiotic evolution had a similar-cellular amino acid composition. Received November 28, 2000 Accepted January 30, 2001  相似文献   

20.
Tempo and mode of synonymous substitutions in mitochondrial DNA of primates   总被引:3,自引:1,他引:2  
Nucleotide substitutions of the four-fold degenerate sites and the total third codon positions of mitochondrial DNA from human, common chimpanzee, bonobo, gorilla, and orangutan were examined in detail by three alternative Markov models; (1) Hasegawa, Kishino, and Yano's (1985) model, (2) Tamura and Nei's (1993) model, and (3) the general reversible Markov model. These sites are expected to be relatively free from constraint, and therefore their tempo and mode in evolution should reflect those of mutation. It turned out that, among the alternative models, the general reversible Markov model best approximates the nucleotide substitutions of the four-fold degenerate sites and the total third codon positions, while the maximum likelihood estimates of the numbers of nucleotide substitutions along each branch do not differ significantly among the three models. It was further shown that the transition rate of these sites during evolution, and therefore transitional mutation rate of mtDNA, are higher in humans than in chimpanzees and gorillas probably by about two times. However, transversional mutation rate and amino acid substitution rate do not differ significantly between humans and the African apes. These and additional observations suggest heterogeneity of the mutation rate as well as of the constraint operating on the mtDNA-encoded proteins among different lineages of Hominoidea.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号