首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Epoxide hydrolases are vital to many organisms by virtue of their roles in detoxification, metabolism and processing of signaling molecules. The Mycobacterium tuberculosis genome encodes an unusually large number of epoxide hydrolases, suggesting that they might be of particular importance to these bacteria. We report here the first structure of an epoxide hydrolase from M.tuberculosis, solved to a resolution of 2.5 A using single-wavelength anomalous dispersion (SAD) from a selenomethionine-substituted protein. The enzyme features a deep active-site pocket created by the packing of three helices onto a curved six-stranded beta-sheet. This structure is similar to a previously described limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis and unlike the alpha/beta-hydrolase fold typical of mammalian epoxide hydrolases (EH). A number of changes in the mycobacterial enzyme create a wider and deeper substrate-binding pocket than is found in its Rhodococcus homologue. Interestingly, each structure contains a different type of endogenous ligand of unknown origin bound in its active site. As a consequence of its wider substrate-binding pocket, the mycobacterial EH is capable of hydrolyzing long or bulky lipophilic epoxides such as 10,11-epoxystearic acid and cholesterol 5,6-oxide at appreciable rates, suggesting that similar compound(s) will serve as its physiological substrate(s).  相似文献   

2.
Prolyl aminopeptidase from Serratia marcescens specifically catalyzes the removal of N-terminal proline residues from peptides. We have solved its three-dimensional structure at 2.3 A resolution by the multiple isomorphous replacement method. The enzyme consists of two contiguous domains. The larger domain shows the general topology of the alpha/beta hydrolase fold, with a central eight-stranded beta-sheet and six helices. The smaller domain consists of six helices. The catalytic triad (Ser113, His296, and Asp268) is located near the large cavity at the interface between the two domains. Cys271, which is sensitive to SH reagents, is located near the catalytic residues, in spite of the fact that the enzyme is a serine peptidase. The specific residues which make up the hydrophobic pocket line the smaller domain, and the specificity of the exo-type enzyme originates from this smaller domain, which blocks the N-terminal of P1 proline.  相似文献   

3.
Acylpeptide hydrolases (APH; also known as acylamino acid releasing enzyme) catalyze the removal of an N-acylated amino acid from blocked peptides. The crystal structure of an APH from the thermophilic archaeon Aeropyrum pernix K1 to 2.1 A resolution confirms it to be a member of the prolyl oligopeptidase family of serine proteases. The structure of apAPH is a symmetric homodimer with each subunit comprised of two domains. The N-terminal domain is a regular seven-bladed beta-propeller, while the C-terminal domain has a canonical alpha/beta hydrolase fold and includes the active site and a conserved Ser445-Asp524-His556 catalytic triad. The complex structure of apAPH with an organophosphorus substrate, p-nitrophenyl phosphate, has also been determined. The complex structure unambiguously maps out the substrate binding pocket and provides a basis for substrate recognition by apAPH. A conserved mechanism for protein degradation from archaea to mammals is suggested by the structural features of apAPH.  相似文献   

4.
As a component of the array of enzymes produced by micro-organisms to deconstruct plant cell walls, feruloyl esterases hydrolyze phenolic groups involved in the cross-linking of arabinoxylan to other polymeric structures. This is important for opening the cell wall structure, making material more accessible to glycosyl hydrolases. Here, we describe the first crystal structure of the non-modular type-A feruloyl esterase from Aspergillus niger (AnFaeA) solved at 2.5A resolution. AnFaeA displays an alpha/beta hydrolase fold similar to that found in fungal lipases and different from that reported for other feruloyl esterases. Crystallographic and site-directed mutagenesis studies allow us to identify the catalytic triad (Ser133-His247-Asp194) that forms the catalytic machinery of this enzyme. The active-site cavity is confined by a lid (residues 68-80), on the analogy of lipases, and by a loop (residues 226-244) that confers plasticity to the substrate-binding site. The lid presents a high ratio of polar residues, which in addition to a unique N-glycosylation site stabilises the lid in an open conformation, conferring the esterase character to this enzyme. A putative model for bound 5,5'-diferulic acid-linked arabinoxylan has been built, pointing to the more relevant residues involved in substrate recognition. Comparison with structurally related lipases reveals that subtle amino acid and conformational changes within a highly conserved protein fold may produce protein variants endowed with new enzymatic properties, while comparison with functionally related proteins points to a functional convergence after evolutionary divergence within the feruloyl esterases family.  相似文献   

5.
Background: Epoxide hydrolases have important roles in the defense of cells against potentially harmful epoxides. Conversion of epoxides into less toxic and more easily excreted diols is a universally successful strategy. A number of microorganisms employ the same chemistry to process epoxides for use as carbon sources. Results: The X-ray structure of the epoxide hydrolase from Aspergillus niger was determined at 3.5 A resolution using the multiwavelength anomalous dispersion (MAD) method, and then refined at 1.8 A resolution. There is a dimer consisting of two 44 kDa subunits in the asymmetric unit. Each subunit consists of an alpha/beta hydrolase fold, and a primarily helical lid over the active site. The dimer interface includes lid-lid interactions as well as contributions from an N-terminal meander. The active site contains a classical catalytic triad, and two tyrosines and a glutamic acid residue that are likely to assist in catalysis. Conclusions: The Aspergillus enzyme provides the first structure of an epoxide hydrolase with strong relationships to the most important enzyme of human epoxide metabolism, the microsomal epoxide hydrolase. Differences in active-site residues, especially in components that assist in epoxide ring opening and hydrolysis of the enzyme-substrate intermediate, might explain why the fungal enzyme attains the greater speeds necessary for an effective metabolic enzyme. The N-terminal domain that is characteristic of microsomal epoxide hydrolases corresponds to a meander that is critical for dimer formation in the Aspergillus enzyme.  相似文献   

6.
The proline iminopeptidase from Xanthomonas campestris pv. citri is a serine peptidase that catalyses the removal of N-terminal proline residues from peptides with high specificity. We have solved its three-dimensional structure by multiple isomorphous replacement and refined it to a crystallographic R-factor of 19.2% using X-ray data to 2.7 A resolution. The protein is folded into two contiguous domains. The larger domain shows the general topology of the alpha/beta hydrolase fold, with a central eight-stranded beta-sheet flanked by two helices and the 11 N-terminal residues on one side, and by four helices on the other side. The smaller domain is placed on top of the larger domain and essentially consists of six helices. The active site, located at the end of a deep pocket at the interface between both domains, includes a catalytic triad of Ser110, Asp266 and His294. Cys269, located at the bottom of the active site very close to the catalytic triad, presumably accounts for the inhibition by thiol-specific reagents. The overall topology of this iminopeptidase is very similar to that of yeast serine carboxypeptidase. The striking secondary structure similarity to human lymphocytic prolyl oligopeptidase and dipeptidyl peptidase IV makes this proline iminopeptidase structure a suitable model for the three-dimensional structure of other peptidases of this family.  相似文献   

7.
The Mycobacterium tuberculosis genome contains an unusually high number of proteins involved in the metabolism of lipids belonging to the Lip family, including various nonlipolytic and lipolytic hydrolases. Driven by a structural genomic approach, we have biochemically characterized the Rv1399c gene product, LipH, previously annotated as a putative lipase. Rv1399c was overexpressed in E. coli as inclusion bodies and refolded. Rv1399c efficiently hydrolyzes soluble triacylglycerols and vinyl esters. It is inactive against emulsified substrate and its catalytic activity is strongly inhibited by the diethyl paranitrophenyl phosphate (E600). These kinetic behaviors unambiguously classify Rv1399c as a nonlipolytic rather than a lipolytic hydrolase. Sequence alignment reveals that this enzyme belongs to the alpha/beta hydrolase fold family and shares 30-40% amino acid sequence identity with members of the hormone-sensitive lipase subfamily. A model of Rv1399c derived from homologous three-dimensional structures reveals a canonical catalytic triad (Ser162, His290 and Asp260) located at the bottom of a solvent accessible pocket lined by neutral or charged residues. Based on this model, kinetic data of the Arg213Ala mutant partially explain the role of the guanidinium moiety, located close to His290, to confer an unusual low pH shift of the catalytic histidine in the wild type enzyme. Overall, these data identify Rv1399c as a new nonlipolytic hydrolase from M. tuberculosis and we thus propose to reannotate its gene product as NLH-H.  相似文献   

8.
Shaw E  McCue LA  Lawrence CE  Dordick JS 《Proteins》2002,47(2):163-168
The alpha/beta hydrolases constitute a large protein superfamily that mainly consists of enzymes that catalyze a diverse range of reactions. These proteins exhibit the alpha/beta hydrolase fold, the essential features of which have recently been delineated: the presence of at least five parallel beta-strands, a catalytic triad in a specific order (nucleophile-acid-histidine), and a nucleophilic elbow. Because of the difficulties experimentally in identifying protein structures, we have used a Bayesian computational algorithm (PROBE) to identify the members of this superfamily based on distant sequence relationships. We found that the presence of five sequence motifs, which contain residues important for substrate binding and stabilization of the fold, are required for membership in this superfamily. The superfamily consists of at least 909 members, including the N-myc downstream regulated proteins, which are believed to be involved in cell differentiation. Unlike most of the other superfamily members, the N-myc downstream regulated proteins have never been proposed to possess the alpha/beta hydrolase fold and do not appear to be hydrolases.  相似文献   

9.
The x-ray structure of the lipase from Pseudomonas aeruginosa PAO1 has been determined at 2.54 A resolution. It is the first structure of a member of homology family I.1 of bacterial lipases. The structure shows a variant of the alpha/beta hydrolase fold, with Ser(82), Asp(229), and His(251) as the catalytic triad residues. Compared with the "canonical" alpha/beta hydrolase fold, the first two beta-strands and one alpha-helix (alphaE) are not present. The absence of helix alphaE allows the formation of a stabilizing intramolecular disulfide bridge. The loop containing His(251) is stabilized by an octahedrally coordinated calcium ion. On top of the active site a lid subdomain is in an open conformation, making the catalytic cleft accessible from the solvent region. A triacylglycerol analogue is covalently bound to Ser(82) in the active site, demonstrating the position of the oxyanion hole and of the three pockets that accommodate the sn-1, sn-2, and sn-3 fatty acid chains. The inhibited enzyme can be thought to mimic the structure of the tetrahedral intermediate that occurs during the acylation step of the reaction. Analysis of the binding mode of the inhibitor suggests that the size of the acyl pocket and the size and interactions of the sn-2 binding pocket are the predominant determinants of the regio- and enantio-preference of the enzyme.  相似文献   

10.
Background: The L-aminopeptidase D-Ala-esterase/amidase from Ochrobactrum anthropi (DmpA) releases the N-terminal L and/or D-Ala residues from peptide substrates. This is the only known enzyme to liberate N-terminal amino acids with both D and L stereospecificity. The DmpA active form is an alphabeta heterodimer, which results from a putative autocatalytic cleavage of an inactive precursor polypeptide. Results: The crystal structure of the enzyme has been determined to 1.82 A resolution using the multiple isomorphous replacement method. The heterodimer folds into a single domain organised as an alphabetabetaalpha sandwich in which two mixed beta sheets are flanked on both sides by two alpha helices. Conclusions: DmpA shows no similarity to other known aminopeptidases in either fold or catalytic mechanism, and thus represents the first example of a novel family of aminopeptidases. The protein fold of DmpA does, however, show structural homology to members of the N-terminal nucleophile (Ntn) hydrolase superfamily. DmpA presents functionally equivalent residues in the catalytic centre when compared with other Ntn hydrolases, and is therefore likely to use the same catalytic mechanism. In spite of this homology, the direction and connectivity of the secondary structure elements differ significantly from the consensus Ntn hydrolase topology. The DmpA structure thus characterises a new subfamily, but supports the common catalytic mechanism for these enzymes suggesting an evolutionary relationship.  相似文献   

11.
The beta-galactosidase from an extreme thermophile, Thermus thermophilus A4 (A4-beta-Gal), is thermostable and belongs to the glycoside hydrolase family 42 (GH-42). As the first known structures of a GH-42 enzyme, we determined the crystal structures of free and galactose-bound A4-beta-Gal at 1.6A and 2.2A resolution, respectively. A4-beta-Gal forms a homotrimeric structure resembling a flowerpot. Each monomer has an active site located inside a large central tunnel. The N-terminal domain of A4-beta-Gal has a TIM barrel fold, as predicted from hydrophobic cluster analysis. The putative catalytic residues of A4-beta-Gal (Glu141 and Glu312) superimpose well with the catalytic residues of Escherichia coli beta-galactosidase. The environment around the catalytic nucleophile (Glu312) is similar to that in the case of E.coli beta-galactosidase, but the recognition mechanism for a substrate is different. Trp182 of the next subunit of the trimer constitutes a part of the active-site pocket, indicating that the trimeric structure is essential for the enzyme activity. Structural comparison with other glycoside hydrolases revealed that many features of the 4/7 superfamily are conserved in the A4-beta-Gal structure. On the basis of the results of 1H NMR spectroscopy, A4-beta-Gal was determined to be a "retaining" enzyme. Interestingly, the active site was similar with those of retaining enzymes, but the overall fold of the TIM barrel domain was very similar to that of an inverting enzyme, beta-amylase.  相似文献   

12.
Maltosyltransferase (MTase) from the hyperthermophile Thermotoga maritima represents a novel maltodextrin glycosyltransferase acting on starch and malto-oligosaccharides. It catalyzes the transfer of maltosyl units from alpha-1,4-linked glucans or malto-oligosaccharides to other alpha-1,4-linked glucans, malto-oligosaccharides or glucose. It belongs to the glycoside hydrolase family 13, which represents a large group of (beta/alpha)(8) barrel proteins sharing a similar active site structure. The crystal structures of MTase and its complex with maltose have been determined at 2.4 A and 2.1 A resolution, respectively. MTase is a homodimer, each subunit of which consists of four domains, two of which are structurally homologous to those of other family 13 enzymes. The catalytic core domain has the (beta/alpha)(8) barrel fold with the active-site cleft formed at the C-terminal end of the barrel. Substrate binding experiments have led to the location of two distinct maltose-binding sites; one lies in the active-site cleft, covering subsites -2 and -1; the other is located in a pocket adjacent to the active-site cleft. The structure of MTase, together with the conservation of active-site residues among family 13 glycoside hydrolases, are consistent with a common double-displacement catalytic mechanism for this enzyme. Analysis of maltose binding in the active site reveals that the transfer of dextrinyl residues longer than a maltosyl unit is prevented by termination of the active-site cleft after the -2 subsite by the side-chain of Lys151 and the stretch of residues 314-317, providing an explanation for the strict transfer specificity of MTase.  相似文献   

13.
Feruloyl esterase (FAE) catalyzes the hydrolysis of the ferulic and diferulic acids present in plant cell wall polysaccharides, and tannase catalyzes the hydrolysis of tannins to release gallic acid. The fungal tannase family in the ESTHER database contains various enzymes, including FAEs and tannases. Despite the importance of FAEs and tannases in bioindustrial applications, three‐dimensional structures of the fungal tannase family members have been unknown. Here, we determined the crystal structure of FAE B from Aspergillus oryzae (AoFaeB), which belongs to the fungal tannase family, at 1.5 Å resolution. AoFaeB consists of a catalytic α/β‐hydrolase fold domain and a large lid domain, and the latter has a novel fold. To estimate probable binding models of substrates in AoFaeB, an automated docking analysis was performed. In the active site pocket of AoFaeB, residues responsible for the substrate specificity of the FAE activity were identified. The catalytic triad of AoFaeB comprises Ser203, Asp417, and His457, and the serine and histidine residues are directly connected by a disulfide bond of the neighboring cysteine residues, Cys202 and Cys458. This structural feature, the “CS‐D‐HC motif,” is unprecedented in serine hydrolases. A mutational analysis indicated that the novel structural motif plays essential roles in the function of the active site. Proteins 2014; 82:2857–2867. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
The enzyme 2,6-dihydroxy-pseudo-oxynicotine hydrolase from the nicotine-degradation pathway of Arthrobacter nicotinovorans was crystallized and the structure was determined by an X-ray diffraction analysis at 2.1 A resolution. The enzyme belongs to the alpha/beta-hydrolase family as derived from the chain-fold and from the presence of a catalytic triad with its oxyanion hole at the common position. This relationship assigns a pocket lined by the catalytic triad as the active center. The asymmetric unit contains two C(2)-symmetric dimer molecules, each adopting a specific conformation. One dimer forms a more spacious active center pocket and the other a smaller one, suggesting an induced-fit. All of the currently established C-C bond cleaving alpha/beta-hydrolases are from bacterial meta-cleavage pathways for the degradation of aromatic compounds and cover their active center with a 40 residue lid placed between two adjacent strands of the beta-sheet. In contrast, the reported enzyme shields its active center with a 110 residue N-terminal domain, which is absent in the meta-cleavage hydrolases. Since neither the substrate nor an analogue could be bound in the crystals, the substrate was modeled into the active center using the oxyanion hole as a geometric constraint. The model was supported by enzymatic activity data of 11 point mutants and by the two dimer conformations suggesting an induced-fit. Moreover, the model assigned a major role for the large N-terminal domain that is specific to the reported enzyme. The proposal is consistent with the known data for the meta-cleavage hydrolases although it differs in that the reaction does not release alkenes but a hetero-aromatic compound in a retro-Friedel-Crafts acylation. Because the hydrolytic water molecule can be assigned to a geometrically suitable site that can be occupied in the presence of the substrate, the catalytic triad may not form a covalent acyl-enzyme intermediate but merely support a direct hydrolysis.  相似文献   

15.

Dienelactone hydrolase, an α/β hydrolase enzyme, catalyzes the hydrolysis of dienelactone to maleylacetate, an intermediate for the Krebs cycle. Genome sequencing of the psychrophilic yeast, Glaciozyma antarctica predicted a putative open reading frame (ORF) for dienelactone hydrolase (GaDlh) with 52% sequence similarity to that from Coniophora puteana. Phylogenetic tree analysis showed that GaDlh is closely related to other reported dienelactone hydrolases, and distantly related to other α/β hydrolases. Structural prediction using MODELLER 9.14 showed that GaDlh has the same α/β hydrolase fold as other dienelactone hydrolases and esterase/lipase enzymes, with a catalytic triad consisting of Cys–His–Asp and a G–x–C–x–G–G motif. Based on the predicted structure, GaDlh exhibits several characteristics of cold-adapted proteins such as glycine clustering in the binding pocket, reduced protein core hydrophobicity, and the absence of proline residues in loops. The putative ORF was amplified, cloned, and overexpressed in an Escherichia coli expression system. The recombinant protein was overexpressed as soluble proteins and was purified via Ni–NTA affinity chromatography. Biochemical characterization of GaDlh revealed that it has an optimal temperature at 10 °C and that it retained almost 90% of its residual activity when incubated for 90 min at 10 °C. The optimal pH was at pH 8.0 and it was stable between pH 5–9 when incubated for 60 min (more than 50% residual activity). Its Km value was 256 μM and its catalytic efficiency was 81.7 s−1. To our knowledge, this is the first report describing a novel cold-active dienelactone hydrolase-like protein.

  相似文献   

16.
Unsaturated glucuronyl hydrolase (UGL) is a novel glycosaminoglycan hydrolase that releases unsaturated d-glucuronic acid from oligosaccharides produced by polysaccharide lyases. The x-ray crystallographic structure of UGL from Bacillus sp. GL1 was first determined by multiple isomorphous replacement (mir) and refined at 1.8 A resolution with a final R-factor of 16.8% for 25 to 1.8 A resolution data. The refined UGL structure consists of 377 amino acid residues and 478 water molecules, four glycine molecules, two dithiothreitol (DTT) molecules, and one 2-methyl-2,4-pentanediol (MPD) molecule. UGL includes an alpha(6)/alpha(6)-barrel, whose structure is found in the six-hairpin enzyme superfamily of an alpha/alpha-toroidal fold. One side of the UGL alpha(6)/alpha(6)-barrel structure consists of long loops containing three short beta-sheets and contributes to the formation of a deep pocket. One glycine molecule and two DTT molecules surrounded by highly conserved amino acid residues in UGLs were found in the pocket, suggesting that catalytic and substrate-binding sites are located in this pocket. The overall UGL structure, with the exception of some loops, very much resembled that of the Bacillus subtilis hypothetical protein Yter, whose function is unknown and which exhibits little amino acid sequence identity with UGL. In the active pocket, residues possibly involved in substrate recognition and catalysis by UGL are conserved in UGLs and Yter. The most likely candidate catalytic residues for glycosyl hydrolysis are Asp(88) and Asp(149). This was supported by site-directed mutagenesis studies in Asp(88) and Asp(149).  相似文献   

17.
The Escherichia coli genes frmB (yaiM) and yeiG encode two uncharacterized proteins that share 54% sequence identity and contain a serine esterase motif. We demonstrated that purified FrmB and YeiG have high carboxylesterase activity against the model substrates, p-nitrophenyl esters of fatty acids (C2-C6) and alpha-naphthyl acetate. However, both proteins had the highest hydrolytic activity toward S-formylglutathione, an intermediate of the glutathione-dependent pathway of formaldehyde detoxification. With this substrate, both proteins had similar affinity (Km = 0.41-0.43 mM), but FrmB was almost 5 times more active. Alanine replacement mutagenesis of YeiG demonstrated that Ser145, Asp233, and His256 are absolutely required for activity, indicating that these residues represent a serine hydrolase catalytic triad in this protein and in other S-formylglutathione hydrolases. This was confirmed by inspecting the crystal structure of the Saccharomyces cerevisiae S-formylglutathione hydrolase YJG8 (Protein Data Bank code 1pv1), which has 45% sequence identity to YeiG. The structure revealed a canonical alpha/beta-hydrolase fold and a classical serine hydrolase catalytic triad (Ser161, His276, Asp241). In E. coli cells, the expression of frmB was stimulated 45-75 times by the addition of formaldehyde to the growth medium, whereas YeiG was found to be a constitutive enzyme. The simultaneous deletion of both frmB and yeiG genes was required to increase the sensitivity of the growth of E. coli cells to formaldehyde, suggesting that both FrmB and YeiG contribute to the detoxification of formaldehyde. Thus, FrmB and YeiG are S-formylglutathione hydrolases with a Ser-His-Asp catalytic triad involved in the detoxification of formaldehyde in E. coli.  相似文献   

18.
Ap(4)A hydrolases are Nudix enzymes that regulate intracellular dinucleoside polyphosphate concentrations, implicating them in a range of biological events, including heat shock and metabolic stress. We have demonstrated that ATP x MgF(x) can be used to mimic substrates in the binding site of Ap(4)A hydrolase from Lupinus angustifolius and that, unlike previous substrate analogs, it is in slow exchange with the enzyme. The three-dimensional structure of the enzyme complexed with ATP x MgF(x) was solved and shows significant conformational changes. The substrate binding site of L. angustifolius Ap(4)A hydrolase differs markedly from the two previously published Nudix enzymes, ADP-ribose pyrophosphatase and MutT, despite their common fold and the conservation of active site residues. The majority of residues involved in substrate binding are conserved in asymmetrical Ap(4)A hydrolases from pathogenic bacteria, but are absent in their human counterparts, suggesting that it might be possible to generate compounds that target bacterial, but not human, Ap(4)A hydrolases.  相似文献   

19.
Pfam family DUF1023 consists entirely of uncharacterized proteins generated by sequencing the genomes of Actinobacteria (Bateman A., et al., Nucleic Acids Res. 2004;32 Database issue:D138-141.) Utilizing sequence similarity detection methods, we infer homology between DUF1023 and alpha/beta hydrolases. DUF1023 proteins conserve the core secondary structures in alpha/beta hydrolase fold, and share similar catalytic machinery as that of alpha/beta hydrolases. We predict DUF1023 spatial structure and deduce that they function as hydrolases utilizing catalytic Ser-His-Asp triad with the serine as a nucleophile.  相似文献   

20.
Bile-salt activated lipase (BAL) is a pancreatic enzyme that digests a variety of lipids in the small intestine. A distinct property of BAL is its dependency on bile salts in hydrolyzing substrates of long acyl chains or bulky alcoholic motifs. A crystal structure of the catalytic domain of human BAL (residues 1-538) with two surface mutations (N186D and A298D), which were introduced in attempting to facilitate crystallization, has been determined at 2.3 A resolution. The crystal form belongs to space group P2(1)2(1)2(1) with one monomer per asymmetric unit, and the protein shows an alpha/beta hydrolase fold. In the absence of bound bile salt molecules, the protein possesses a preformed catalytic triad and a functional oxyanion hole. Several surface loops around the active site are mobile, including two loops potentially involved in substrate binding (residues 115-125 and 270-285).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号