首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Epithelial ovarian cancer (EOC) has the highest mortality among various types of gynecological malignancies. Most patients die of metastasis and recurrence due to cisplatin resistance. Thus, it is urgent to develop novel therapies to cure this disease. CCK-8 assay showed that nigericin exhibited strong cytotoxicity on A2780 and SKOV3 cell lines. Flow cytometry indicated that nigericin could induce cell cycle arrest at G0/G1 phase and promote cell apoptosis. Boyden chamber assay revealed that nigericin could inhibit migration and invasion in a dose-dependent manner by suppressing epithelial–mesenchymal transition (EMT) in EOC cells. These effects were mediated, at least partly, by the Wnt/β-catenin signaling pathway. Our results demonstrated that nigericin could inhibit EMT during cell invasion and metastasis through the canonical Wnt/β-catenin signaling pathway. Nigericin may prove to be a novel therapeutic strategy that is effective in patients with metastatic EOC.  相似文献   

3.
An epithelial–mesenchymal transformation (EMT) involves alterations in cell–cell and cell–matrix adhesion, the detachment of epithelial cells from their neighbors, the degradation of the basal lamina and acquisition of mesenchymal phenotype. Here we present Monte Carlo simulations for a specific EMT in early heart development: the formation of cardiac cushions. Cell rearrangements are described in accordance with Steinberg's differential adhesion hypothesis, which states that cells possess a type-dependent adhesion apparatus and are sufficiently motile to give rise to the tissue conformation with the largest number of strong bonds. We also implement epithelial and mesenchymal cell proliferation, cell type change and extracellular matrix production by mesenchymal cells. Our results show that an EMT is promoted more efficiently by an increase in cell–substrate adhesion than by a decrease in cell–cell adhesion. In addition to cushion tissue formation, the model also accounts for the phenomena of matrix invasion and mesenchymal condensation. We conclude that in order to maintain epithelial integrity during EMT the number of epithelial cells must increase at a controlled rate. Our model predictions are in qualitative agreement with available experimental data.  相似文献   

4.
At the time of implantation, uterine luminal epithelial cells undergo a dramatic change in all plasma membrane domains. Changes in the basolateral plasma membrane at the time of implantation include progression from smooth to highly tortuous, as well as a loss of integrin-based focal adhesions. Another aspect of the basolateral plasma membrane that has not been studied in uterine epithelial cells are caveolae, which are omega-shaped invaginations of the plasma membrane known to be involved in endocytosis and contribute to membrane curvature. The current study investigated caveolin, a major protein of caveolae, to explore the possible roles that they play in the remodelling of the basolateral plasma membrane of uterine epithelial cells during early pregnancy in the rat. Morphological caveolae were found at the time of implantation and were significantly increased compared to day 1 of pregnancy. Caveolins 1 and 2 were found to shift to the basolateral plasma membrane of uterine epithelial cells at the time of implantation as well as when treated with progesterone alone, and in combination with oestrogen. A statistically significant increase in the amount of caveolin-1 and a decrease in caveolin-2 protein in uterine epithelial cells was observed at the time of implantation. Caveolin-1 also co-immunoprecipitated with integrin β1 on day 1 of pregnancy, which is a protein that has been reported to be found in integrin-based focal adhesions at the basolateral membrane on day 1 of pregnancy. The localisation and expression of caveolin-1 at the time of implantation is consistent with the presence and increase of morphological caveolae seen at this time. The localisation and expression of caveolins 1 and 2 in luminal uterine epithelium at the time of implantation suggest a role in trafficking proteins and the maintenance of a polarised epithelium.  相似文献   

5.
The terminal respiratory units of the gas exchange tissue of the avian lung, the air capillaries (ACs) and the blood capillaries (BCs), are small and rigid: the basis of this mechanical feature has been highly contentious. Because the strength of the blood-gas barrier (BGB) of the mammalian lung has been attributed to the presence of type-IV collagen (T-IVc), localization of T-IVc in the basement membranes (BM) of the BGB and the epithelial–epithelial cell connections (E-ECCs) of the exchange tissue of the lung of the avian (chicken) lung was performed in order to determine whether it may likewise contribute to the strength of the BGB. T-IVc was localized in both the BM and the E-ECCs. As part of an integrated fibroskeletal scaffold on the lung, T-IVc may directly contribute to the strengths of the ACs and the BCs.  相似文献   

6.
The epithelial to mesenchymal transition (EMT) is a crucial event for renal fibrosis that can be elicited by TGF-β1/Smads signaling and its downstream mediator connective tissue growth factor (CTGF). As a distinct member of the TGF-β superfamily, Lefty A has been shown to be significantly downregulated in the kidneys of patients with severe ureteral obstruction, suggesting its role in renal fibrosis induced by obstructive nephropathy. In order to determine whether Lefty A prevents TGF-β1-induced EMT, human proximal tubule epithelial cells (HK-2) were stably transfected with Lefty A or control vectors and stimulated with 10 ng/ml TGF-β1 for 48 h. The results show that stimulation with TGF-β1 led to EMT including cell morphology changes, Smad2/3 signaling pathway activation, increased α-SMA, collagen type I, and CTGF expression, and decreased E-cadherin expression in mock-transfected HK-2 cells. Overexpression of Lefty A efficiently blocked p-Smad2/3 activation and attenuated all these EMT changes induced by TGF-β1. This finding suggests that Lefty A may serve as a potential new therapeutic target to inhibit or even reverse EMT during the process of renal fibrosis.  相似文献   

7.
Ligand-of-Numb protein X (LNX) was initially characterized as a RING finger type E3 ubiquitin ligase that targeted the intrinsic cell fate determinant Numb for ubiquitination dependent degradation. However, the physiological function of LNX remains largely unknown. In the present study, we demonstrate that ectopic expression of LNX in human proximal tubular epithelial cells (HK-2 cells) significantly enhanced TGF-β1 induced epithelial to mesenchymal transition (EMT). The EMT-promoting effect of LNX manifested as strong inhibition of E-cadherin expression, enhanced expression of vimentin, fibronectin or PAI-1, and increased cell migration. This function of LNX was shown to be independent of its ligase activity because ectopic expression of a mutant form of LNX (C48ALNX) that lacks E3 ligase activity had the similar effect as the wild-type LNX. Overexpression of E-cadherin could inhibit LNX augmented EMT. This study suggests a potential role for LNX in promoting EMT in human proximal tubular epithelial cells.  相似文献   

8.
9.
High glucose (HG) has been reported to be associated with renal dysfunction. And one potential mechanism underlining the dysfunction is the epithelial–mesenchymal transition (EMT) of renal tubular epithelial cells. Present study showed that EMT was induced in the HG-treated renal tubular epithelial cells by promoting the expression of mesenchymal phenotype molecules, such as α-SMA and collagen I, and down-regulating the expression of epithelial phenotype molecule E-cadherin. Moreover, we have identified the down-regulation of miR-15a which was accompanied with the HG-induced EMT. And the miR-15a overexpression inhibited the α-SMA, collagen I expression, and the promotion of E-cadherin expression by targeting and down-regulating AP4 which was also significantly promoted by the HG in the renal tubular epithelial cells. Thus, this study revealed that the weakening regulation on the AP4 expression by miR-15a might contribute to the HG-induced EMT in the renal tubular epithelial cells.  相似文献   

10.

Background

The progression of cancer through stages that guide a benign hyperplastic epithelial tissue towards a fully malignant and metastatic carcinoma, is driven by genetic and microenvironmental factors that remodel the tissue architecture. The concept of epithelial–mesenchymal transition (EMT) has evolved to emphasize the importance of plastic changes in tissue architecture, and the cross-communication of tumor cells with various cells in the stroma and with specific molecules in the extracellular matrix (ECM).

Scope of the review

Among the multitude of ECM-embedded cytokines and the regulatory potential of ECM molecules, this article focuses on the cytokine transforming growth factor β (TGFβ) and the glycosaminoglycan hyaluronan, and their roles in cancer biology and EMT. For brevity, we concentrate our effort on breast cancer.

Major conclusions

Both normal and abnormal TGFβ signaling can be detected in carcinoma and stromal cells, and TGFβ-induced EMT requires the expression of hyaluronan synthase 2 (HAS2). Correspondingly, hyaluronan is a major constituent of tumor ECM and aberrant levels of both hyaluronan and TGFβ are thought to promote a wounding reaction to the local tissue homeostasis. The link between EMT and metastasis also involves the mesenchymal–epithelial transition (MET). ECM components, signaling networks, regulatory non-coding RNAs and epigenetic mechanisms form the network of regulation during EMT-MET.

General significance

Understanding the mechanism that controls epithelial plasticity in the mammary gland promises the development of valuable biomarkers for the prognosis of breast cancer progression and even provides new ideas for a more integrative therapeutic approach against disease. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

11.
Impaired epithelial barrier function and estrogens are recognized as factors influencing inflammatory bowel disease (IBD) pathology and disease course. Estrogen receptor-β (ERβ) is the most abundant estrogen receptor in the colon and a complete absence of ERβ expression is associated with disrupted tight-junction formation and abnormal colonic architecture. The aim of this study was to determine whether ERβ signaling has a role in the maintenance of epithelial permeability in the colon. ERβ mRNA levels and colonic permeability were assessed in IL-10-deficient mice and HLA-B27 rats by RT-PCR and Ussing chambers. ERβ expression and monolayer resistance were measured in HT-29 and T84 colonic epithelial monolayers by RT-PCR and electric cell-substrate impedance sensing. The effect of 17β-estradiol and an estrogen agonist [diarylpropionitrile (DPN)] and antagonist (ICI 182780) on epithelial resistance in T84 cells was measured. Expression of ERβ and proinflammatory cytokines was investigated in colonic biopsies from IBD patients. Levels of ERβ mRNA were decreased, whereas colonic permeability was increased, in IL-10-deficient mice and HLA-B27 transgenic rats prior to the onset of colitis. T84 cells demonstrated higher resistance and increased levels of ERβ mRNA compared with HT-29 cells. 17β-estradiol and DPN induced increased epithelial resistance in T84 cells, whereas an ERβ blocker prevented the increased resistance. Decreased ERβ mRNA levels were observed in colonic biopsies from IBD patients. This study suggests a potential role for ERβ signaling in the modulation of epithelial permeability and demonstrates reduced ERβ mRNA in animal models of colitis and colon of patients with inflammatory bowel disease.  相似文献   

12.
Airway epithelial cells transport electrolytes and are central to the disease cystic fibrosis (CF), which is an inherited transport defect affecting smaller airways and a number of other epithelial organs. Clinically, CF is dominated by a chronic lung disease, the main cause of morbidity and mortality. Airway obstruction by thick mucus and chronic infection by Pseudomonas aeruginosa eventually lead to loss of pulmonary function. Loss of function of CFTR Cl? channels was found to be the cause for CF. However, intensive research on the detailed mechanism of CF lung disease for more than 25 years produced a bewildering number of hypotheses and an endless discussion whether reduced Cl? secretion, primarily located in airway submucosal glands, or dehydration of the airways, driven by a hyperabsorption of Na+ ions, is the primary cause of the disease. Recent results suggest a fine-tuned regulation of the airway fluid layer, but how significant really are Cl? and Na+ transport?  相似文献   

13.
The epithelial–mesenchymal transition (EMT) of tubular epithelial cells to myofibroblast-like cells plays a substantial role in renal tubulointerstitial fibrosis, which is a common pathological character of end-stage renal disease (ESRD). Fibroblast growth factor-2 (FGF-2) triggers EMT in tubular epithelial cells and increases Bcl-2-associated athanogene 3 (BAG3) expression in neural progenitor and neuroblastoma cells. In addition, a novel role of regulation of EMT has been ascribed to BAG3 recently. These previous reports urged us to study the potential involvement of BAG3 in EMT triggered by FGF-2 in renal tubular epithelial cells. The current study found that FGF-2 induced EMT, simultaneously increased BAG3 expression in human kidney 2 (HK2) cells. Although FGF-2 induced EMT in nontransfected or scramble short hairpin RNA (shRNA) transfected HK2 cells, it was ineffective in BAG3-silenced cells, indicating a favorable role of BAG3 in EMT of tubular cells induced by FGF-2. Knockdown of BAG3 also significantly suppressed motion and invasion of HK2 cells mediated by FGF-2. Furthermore, we confirmed that BAG3 was upregulated in kidney of unilateral ureteral obstruction (UUO) rats, a well-established renal fibrosis model, in which EMT is supposed to exert a substantial influence on renal fibrosis. Importantly, upregulation of BAG3 was limited to tubular epithelial cells. Results of the current study identify BAG3 as a potential player in EMT of tubular epithelial cells, as well as renal fibrosis.  相似文献   

14.
15.
Proliferation and epithelial–mesenchymal transition (EMT) of lens epithelium cells (LECs) may contribute to anterior subcapsular cataract (ASC) and posterior capsule opacification (PCO), which are important causes of visual impairment. Histone deacetylases (HDACs)-mediated epigenetic mechanism has a central role in controlling cell cycle regulation, cell proliferation and differentiation in a variety of cells and the pathogenesis of some diseases. However, whether HDACs are involved in the regulation of proliferation and EMT in LECs remain unknown. In this study, we evaluated the expression profile of HDAC family (18 genes) and found that class I and II HDACs were upregulated in transforming growth factor β2 (TGFβ2)-induced EMT in human LEC lines SRA01/04 and HLEB3. Tricostatin A (TSA), a class I and II HDAC inhibitor, suppressed the proliferation of LECs by G1 phase cell cycle arrest not only through inhibition of cyclin/CDK complexes and induction of p21 and p27, but also inactivation of the phosphatidylinositol-3-kinase/Akt, p38MAPK and ERK1/2 pathways. Meanwhile, TSA strongly prevented TGFβ2-induced upregulation of fibronectin, collagen type I, collagen type IV, N-cadherin, Snail and Slug. We also demonstrated that the underlying mechanism of TSA affects EMT in LECs through inhibiting the canonical TGFβ/Smad2 and the Jagged/Notch signaling pathways. Finally, we found that TSA completely prevented TGFβ2-induced ASC in the whole lens culture semi-in vivo model. Therefore, this study may provide a new insight into the pathogenesis of ASC and PCO, and suggests that epigenetic treatment with HDAC inhibitors may be a novel therapeutic approach for the prevention and treatment of ASC, PCO and other fibrotic diseases.  相似文献   

16.
17.
Reepithelialization of remodeled air spaces with bronchial epithelial cells is a prominent pathological finding in idiopathic pulmonary fibrosis (IPF) and is implicated in IPF pathogenesis. Recent studies suggest that epithelial senescence is a risk factor for development of IPF, indicating such reepithelialization may be influenced by the acceleration of cellular senescence. Among the sirtuin (SIRT) family, SIRT6, a class III histone deacetylase, has been demonstrated to antagonize senescence. We evaluated the senescence of bronchiolization in association with SIRT6 expression in IPF lung. Senescence-associated β-galactosidase staining and immunohistochemical detection of p21 were performed to evaluate cellular senescence. As a model for transforming growth factor (TGF)-β-induced senescence of abnormal reepithelialization, we used primary human bronchial epithelial cells (HBEC). The changes of SIRT6, p21, and interleukin (IL)-1β expression levels in HBEC, as well as type I collagen expression levels in fibroblasts, were evaluated. In IPF lung samples, an increase in markers of senescence and SIRT6 expression was found in the bronchial epithelial cells lining cystically remodeled air spaces. We found that TGF-β induced senescence in primary HBEC by increasing p21 expression, and, whereas TGF-β also induced SIRT6, it was not sufficient to inhibit cellular senescence. However, overexpression of SIRT6 efficiently inhibited TGF-β-induced senescence via proteasomal degradation of p21. TGF-β-induced senescent HBEC secreted increased amounts of IL-1β, which was sufficient to induce myofibroblast differentiation in fibroblasts. These findings suggest that accelerated epithelial senescence plays a role in IPF pathogenesis through perpetuating abnormal epithelial-mesenchymal interactions, which can be antagonized by SIRT6.  相似文献   

18.
A rat liver epithelial cell line designated LW 13 was established using a sequential sedimentation method.The cell line retained many normal proerties of liver epithelial cells and showed some structural and functional features resembling those of liver parenchymal cells,LW13 cells became malignant after the intrduction of exogenous transforming EJ Ha ras gene,Tumors produced by inoculation of the transformed cells into baby rats contained areas of poorly differentialted hepatocellular carcinoma,In situ hybridization analysis confirmed the random rather than specific integration of exogenous ras gene into host chromosomes.Furthermore,an at least tenfold increase in the expression of the endogenous c mys gene was detected among transformed cell lines,suggesting the involvement of the c myc proto oncogene in the in vitro transformation of rat liver epithelial cells by EJ Ha ras oncogene.  相似文献   

19.
20.
The magnitude and kinetics of β-glucuronidase induction in mouse kidney are determined by a cis-acting regulatory gene, Gus-r, that is closely linked to the enzyme structural gene. The accumulation of β-glucuronidase mRNA during induction is much slower than the turnover time of the mRNA, suggesting progressive acquisition of mRNA synthesizing capacity during induction. Counts of the numbers of induced cells present at various times of induction in strains carrying three different alleles of Gus-r show that all potentially responsive cells respond immediately. The level of induction is progressive in individual cells and does not involve continued recruitment of new cells into the induced population. It appears that during induction each chromosome becomes progressively more active in directing the synthesis of β-glucuronidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号