首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RGS2: a multifunctional regulator of G-protein signaling   总被引:5,自引:0,他引:5  
Regulators of G-protein signaling (RGS) proteins enhance the intrinsic rate at which certain heterotrimeric G-protein alpha-subunits hydrolyze GTP to GDP, thereby limiting the duration that alpha-subunits activate downstream effectors. This activity defines them as GTPase activating proteins (GAPs). As do other RGS proteins RGS2 possesses a 120 amino acid RGS domain, which mediates its GAP activity. In addition, RGS2 shares an N-terminal membrane targeting domain with RGS4 and RGS16. Found in many cell types, RGS2 expression is highly regulated. Functionally, RGS2 blocks Gq alpha-mediated signaling, a finding consistent with its potent Gq alpha GAP activity. Surprisingly, RGS2 inhibits Gs signaling to certain adenylyl cyclases. Like other RGS proteins, RGS2 lacks Gs alpha GAP activity, however it directly inhibits the activity of several adenylyl cyclase isoforms. Targeted mutation of RGS2 in mice impairs anti-viral immunity, increases anxiety levels, and alters synaptic development in hippocampal CA1 neurons. RGS2 has emerged as a multifunctional RGS protein that regulates multiple G-protein linked signaling pathways.  相似文献   

2.
3.
4.
Ovulatory effects of histamine and specific antagonists were studied in isolated perfused ovaries from immature rats treated with 10 i.u. PMSG to stimulate follicular growth and maturation. Histamine alone, like LH, induced ovulation in all ovaries tested, but the number of follicular ruptures was lower after histamine (7.0 and 2.2 ruptures, respectively, per ovary). The histamine-induced ovulations could be inhibited dose-dependently by the H1-receptor antagonist, pyrilamine, or the H2-antagonists, cimetidine and ranitidine. At the concentrations tested, these antagonists did not, when given separately, reduce the LH-induced ovulations significantly, but pyrilamine and cimetidine in combination lowered the ovulation frequency by 65%. The prostaglandin synthesis inhibitor, indomethacin, was not able to block the histamine-induced ovulations.  相似文献   

5.
Cardiac hypertrophy is a well-established risk factor for cardiovascular morbidity and mortality. Activation of G(q/11)-mediated signaling is required for pressure overload-induced cardiomyocyte (CM) hypertrophy to develop. We previously showed that among Regulators of G protein Signaling, RGS2 selectively inhibits G(q/11) signaling and its hypertrophic effects in isolated CM. In this study, we generated transgenic mice with CM-specific, conditional RGS2 expression (dTG) to investigate whether RGS2 overexpression can be used to attenuate G(q/11)-mediated signaling and hypertrophy in vivo. Transverse aortic constriction (TAC) induced a comparable rise in ventricular mass and ANF expression and corresponding hemodynamic changes in dTG compared to wild types (WT), regardless of the TAC duration (1-8 wks) and timing of RGS2 expression (from birth or adulthood). Inhibition of endothelin-1-induced G(q/11)-mediated phospholipase C β activity in ventricles and atrial appendages indicated functionality of transgenic RGS2. However, the inhibitory effect of transgenic RGS2 on G(q/11)-mediated PLCβ activation differed between ventricles and atria: (i) in sham-operated dTG mice the magnitude of the inhibitory effect was less pronounced in ventricles than in atria, and (ii) after TAC, negative regulation of G(q/11) signaling was absent in ventricles but fully preserved in atria. Neither difference could be explained by differences in expression levels, including marked RGS2 downregulation after TAC in left ventricle and atrium. Counter-regulatory changes in other G(q/11)-regulating RGS proteins (RGS4, RGS5, RGS6) and random insertion were also excluded as potential causes. Taken together, despite ample evidence for a role of RGS2 in negatively regulating G(q/11) signaling and hypertrophy in CM, CM-specific RGS2 overexpression in transgenic mice in vivo did not lead to attenuate ventricular G(q/11)-mediated signaling and hypertrophy in response to pressure overload. Furthermore, our study suggests chamber-specific differences in the regulation of RGS2 functionality and potential future utility of the new transgenic model in mitigating G(q/11) signaling in the atria in vivo.  相似文献   

6.
Lin YR  Kim K  Yang Y  Ivessa A  Sadoshima J  Park Y 《Aging cell》2011,10(3):438-447
Regulator of G-protein signaling (RGS) proteins contribute to G-protein signaling pathways as activators or repressors with GTPase-activating protein (GAP) activity. To characterize whether regulation of RGS proteins influences longevity in several species, we measured stress responses and lifespan of RGS-overexpressing and RGS-lacking mutants. Reduced expression of Loco, a RGS protein of Drosophila melanogaster, resulted in a longer lifespan for both male and female flies, also exhibiting stronger resistance to three different stressors (starvation, oxidation, and heat) and higher manganese-containing superoxide dismutase (MnSOD) activity. In addition, this reduction in Loco expression increased fat content and diminished cAMP levels. In contrast, overexpression of both genomic and cDNA loco gene significantly shortened the lifespan with weaker stress resistance and lower fat content. Deletion analysis of the Loco demonstrated that its RGS domain is required for the regulation of longevity. Consistently, when expression of RGS14, mammalian homologue of Loco, was reduced in rat fibroblast cells, the resistance to oxidative stress increased with higher MnSOD expression. The changes of yeast Rgs2 expression, which shares a conserved RGS domain with the fly Loco protein, also altered lifespan and stress resistance in Saccharomyces cerevisiae. Here, we provide the first evidence that RGS proteins with GAP activity affect both stress resistance and longevity in several species.  相似文献   

7.
Regulators of G-protein signaling (RGS) proteins are potent negative modulators of signal transduction through G-protein-coupled receptors. They function by binding to activated (GTP-bound) Gα subunits and accelerating the rate of GTP hydrolysis. Modulation of RGS activity by small molecules is an attractive mechanism for fine-tuning GPCR signaling for therapeutic and research purposes. Here we describe the pharmacologic properties and mechanism of action of CCG-50014, the most potent small molecule RGS inhibitor to date. It has an IC(50) for RGS4 of 30 nM and is >20-fold selective for RGS4 over other RGS proteins. CCG-50014 binds covalently to the RGS, forming an adduct on two cysteine residues located in an allosteric regulatory site. It is not a general cysteine alkylator as it does not inhibit activity of the cysteine protease papain at concentrations >3000-fold higher than those required to inhibit RGS4 function. It is also >1000-fold more potent as an RGS4 inhibitor than are the cysteine alkylators N-ethylmaleimide and iodoacetamide. Analysis of the cysteine reactivity of the compound shows that compound binding to Cys(107) in RGS8 inhibits Gα binding in a manner that can be reversed by cleavage of the compound-RGS disulfide bond. If the compound reacts with Cys(160) in RGS8, the adduct induces RGS denaturation, and activity cannot be restored by removal of the compound. The high potency and good selectivity of CCG-50014 make it a useful tool for studying the functional roles of RGS4.  相似文献   

8.
Mechanical stress is thought to regulate the expression of genes in the periodontal ligament (PDL) cells. Using a microarray approach, we recently identified a regulator of G-protein signaling 2 (RGS2) as an up-regulated gene in the PDL cells under compressive force. The RGS protein family is known to turn off G-protein signaling. G-protein signaling involves the production of cAMP, which is thought to be one of the biological mediators in response to mechanical stress. Here, we investigated the role of RGS2 in the PDL cells under mechanical stress. PDL cells derived from the ligament tissues of human premolar teeth were cultured in collagen gels and subjected to static compressive force. Compressive force application time-dependently enhanced RGS2 expression and intracellular cAMP levels. To examine the interrelationship between RGS2 and cAMP, the PDL cells were treated with 2',5'-dideoxyadenosine (DDA), an inhibitor of adenyl cyclase, or antisense S-oligonucleotide (S-ODN) to RGS2 under compressive force. DDA dose-dependently inhibited RGS2 stimulated by compressive force. Blockage of RGS2 by antisense S-ODN elevated the cAMP levels compared with controls. These results indicate that cAMP stimulates RGS2 expression, which in turn leads to a decrease in the cAMP production by inactivating the G-protein signaling in the mechanically stressed PDL cells.  相似文献   

9.
There is an increasing interest towards the mechanism by which regulators of G-protein signaling regulate signals of G-protein-coupled receptors. RGS2 is a regulator of Gq protein signaling (RGS), the N-terminal region of which is known to contain determinants for G protein-coupled receptor recognition, but its structure is still unknown. To understand the molecular basis for this recognition, the three-dimensional model of RGS2, including N-terminal region and RGS box, was modeled. For this, RGS4 box structure and data from circular dichroism study of RGS2 N-terminal region were used. Then, membrane-targeting activity of the RGS2 amphipathic helix contained in the N-terminal region was investigated. Furthermore, in cellulo study provided first evidence that an internal sequence within the N-terminal region of RGS2 is involved in RGS2 regulation of cholecystokinin receptor-2 signal. RGS2 modeled structure can now serve to study molecular recognition of RGS2 by signaling molecules.  相似文献   

10.
11.
12.
Chen Y  Ji F  Xie H  Liang J  Zhang J 《Plant physiology》2006,140(1):302-310
The regulator of G-protein signaling (RGS) proteins, recently identified in Arabidopsis (Arabidopsis thaliana; named as AtRGS1), has a predicted seven-transmembrane structure as well as an RGS box with GTPase-accelerating activity and thus desensitizes the G-protein-mediated signaling. The roles of AtRGS1 proteins in Arabidopsis seed germination and their possible interactions with sugars and abscisic acid (ABA) were investigated in this study. Using seeds that carry a null mutation in the genes encoding RGS protein (AtRGS1) and the alpha-subunit (AtGPA1) of the G protein in Arabidopsis (named rgs1-2 and gpa1-3, respectively), our genetic evidence proved the involvement of the AtRGS1 protein in the modulation of seed germination. In contrast to wild-type Columbia-0 and gpa1-3, stratification was found not to be required and the after-ripening process had no effect on the rgs1-2 seed germination. In addition, rgs1-2 seed germination was insensitive to glucose (Glc) and sucrose. The insensitivities of rgs1-2 to Glc and sucrose were not due to a possible osmotic stress because the germination of rgs1-2 mutant seeds showed the same response as those of gpa1-3 mutants and wild type when treated with the same concentrations of mannitol and sorbitol. The gpa1-3 seed germination was hypersensitive while rgs1-2 was less sensitive to exogenous ABA. The different responses to ABA largely diminished and the inhibitory effects on seed germination by exogenous ABA and Glc were markedly alleviated when endogenous ABA biosynthesis was inhibited. Hypersensitive responses of seed germination to both Glc and ABA were also observed in the overexpressor of AtRGS1. Analysis of the active endogenous ABA levels and the expression of NCED3 and ABA2 genes showed that Glc significantly stimulated the ABA biosynthesis and increased the expression of NCED3 and ABA2 genes in germinating Columbia seeds, but not in rgs1-2 mutant seeds. These data suggest that AtRGS1 proteins are involved in the regulation of seed germination. The hyposensitivity of rgs1-2 mutant seed germination to Glc might be the result of the impairment of ABA biosynthesis during seed germination.  相似文献   

13.
Wang J  Xie Y  Wolff DW  Abel PW  Tu Y 《FEBS letters》2010,584(22):4570-4574
Regulator of G-protein signaling 4 (RGS4), an intracellular modulator of G-protein coupled receptor (GPCR)-mediated signaling, is regulated by multiple processes including palmitoylation and proteasome degradation. We found that co-expression of DHHC acyltransferases (DHHC3 or DHHC7), but not their acyltransferase-inactive mutants, increased expression levels of RGS4 but not its Cys2 to Ser mutant (RGS4C2S). DHHC3 interacts with and palmitoylates RGS4 but not RGS4C2S in vivo. Palmitoylation prolongs the half-life of RGS4 by over 8-fold and palmitoylated RGS4 blocked α1A-adrenergic receptor-stimulated intracellular Ca2+ mobilization. Together, our findings revealed that DHHC proteins could regulate GPCR-mediated signaling by increasing RGS4 stability.

Structured summary

MINT-8049215: Rgs4 (uniprotkb:P49799) physically interacts (MI:0915) with DHHC3 (uniprotkb:Q8R173) by anti-tag coimmunoprecipitation (MI:0007)  相似文献   

14.
Quantitative changes in the total number and distribution of ovarian mast cells have been studied after administration of histamine and pentobarbitone sodium to rats at pro-oestrous stage. No significant differences in the total cell counts per section and percentage distribution in the hilar and stromal regions of the ovary were observed after blockade of ovulation with pentobarbitone as compared to control. However, after 24 hr of histamine treatment the number of cells was significantly less than that of oestrous stage but no change was seen relative to the pro-oestrous stage. The results suggest that the number of cells increases late in the pro-oestrous stage by invasion or differentiation in the stroma to maintain the requisite levels of histamine during ovulation.  相似文献   

15.
16.
In isolated, perfused ovaries of rats treated with pregnant mare's serum gonadotropin (PMSG), purified preparations of ovine follicle-stimulating hormone (FSH) (oFSH-211B) and rat FSH (rFSH-I-6), 100 ng/ml, were found to induce ovulations (4.8 +/- 0.9, n = 4, and 6.4 +/- 2.0, n = 5, ovulations per ovary, respectively). Indomethacin (5 micrograms/ml) added to the perfusate inhibited this ovulatory effect and exogenous prostaglandin F2 alpha (PGF2 alpha) (1 microgram/ml), or prostaglandin E2 (PGE2) (0.5 microgram/ml), reversed the blockade. Ovine FSH and rFSH had only a weak stimulatory effect on estradiol release, and only rFSH caused a significant increase in progesterone accumulation. Indomethacin reduced the stimulatory effect of rFSH on progesterone release, and this effect was reversed by PGE2 but not by PGF2 alpha. In a 6-h incubation experiment with preovulatory rat follicles, we tested the biological activity of gonadotropins used to induce oocyte maturation. The concentration of FSH used in the perfusion experiments induced oocyte maturation in more than 88% of the oocytes studied. The data confirm earlier findings that FSH can induce ovulations and show that prostaglandins are involved in this process. The data also indicate that prostaglandins might be involved in the FSH-induced increase of progesterone levels.  相似文献   

17.
J H Yu  S Rosén  T H Adams 《Genetics》1999,151(1):97-105
We showed previously that two genes, fl bA and fadA, have a major role in determining the balance between growth, sporulation, and mycotoxin (sterigmatocystin; ST) production by the filamentous fungus Aspergillus nidulans. fadA encodes the alpha subunit for a heterotrimeric G-protein, and continuous activation of FadA blocks sporulation and ST production while stimulating growth. fl bA encodes an A. nidulans regulator of G-protein signaling (RGS) domain protein that antagonizes FadA-mediated signaling to allow development. To better understand FlbA function and other aspects of FadA-mediated growth control, we have isolated and characterized mutations in four previously undefined genes designated as sfaA, sfaC, sfaD, and sfaE (suppressors of flbA), and a new allele of fadA (fadAR205H), all of which suppress a fl bA loss-of-function mutation ( fl bA98). These suppressors overcome fl bA losses of function in both sporulation and ST biosynthesis. fadAR205H, sfaC67, sfaD82, and sfaE83 mutations are dominant to wild type whereas sfaA1 is semidominant. sfaA1 also differs from other suppressor mutations in that it cannot suppress a fl bA deletion mutation (and is therefore allele specific) whereas all the dominant suppressors can bypass complete loss of fl bA. Only sfaE83 suppressed dominant activating mutations in fadA, indicating that sfaE may have a unique role in fadA- fl bA interactions. Finally, none of these suppressor mutations bypassed fl uG loss-of-function mutations in development-specific activation.  相似文献   

18.
We have previously established the presence of a functional bone morphogenetic protein (BMP) system in the ovary by demonstrating the expression of BMP ligands and receptors as well as novel cellular functions. Specifically, BMP-4 and BMP-7 are expressed in theca cells, and their receptors by granulosa cells. These BMPs enhanced and attenuated the stimulatory action of FSH on estradiol and progesterone production, respectively. To investigate the underlying mechanism of the differential regulation, we analyzed mRNA levels for key regulators in the steroid biosynthetic pathways by RNase protection assay. BMP-7 enhanced P450 aromatase (P450(arom)) but suppressed steroidogenic acute regulatory protein (StAR) mRNAs induced by FSH, whereas mRNAs encoding further-downstream steroidogenic enzymes, including P450 side-chain cleavage enzyme and 3beta-hydroxysteroid dehydrogenase, were not significantly altered. These findings suggest that BMP-7 stimulation and inhibition of P450(arom) and StAR mRNA expression, respectively, may play a role in the mechanisms underlying the differential regulation of estradiol and progesterone production. To establish the physiological relevance of BMP functions, we investigated the in vivo effects of injections of recombinant BMP-7 into the ovarian bursa of rats. Ovaries treated with BMP-7 had decreased numbers of primordial follicles, yet had increased numbers of primary, preantral, and antral follicles, suggesting that BMP-7 may act to facilitate the transition of follicles from the primordial stage to the pool of primary, preantral, and antral follicles. In this regard, we have also found that BMP-7 caused an increase in DNA synthesis and proliferation of granulosa cells from small antral follicles in vitro. In contrast to the stimulatory activity, BMP-7 exhibited pronounced inhibitory effects on ovulation rate and serum progesterone levels. These findings establish important new biological activities of BMP-7 in the context of ovarian physiology, including folliculogenesis and ovulation.  相似文献   

19.
Ovulation has been noted for some time to bear a remarkable similarity to an inflammatory response. One of the principal components that is activated and helps mediate the events during an inflammatory response is the kinin system. Therefore, the purpose of the present study was to examine whether this system could be similarly activated and involved in the cascade of events that leads to ovulation. To answer this question, immature 23-day-old female rats were primed with eCG (10 IU) and ovulation was induced by administration of hCG (10 IU) 48 h later. Groups of rats were killed at 0 h, 10 h, 20 h, and 30 h after hCG for determination of ovulation, ovarian steroid levels, and changes in the levels of kinin system components. Plasma total kininogen levels did not change during the entire period studied. In contrast, ovarian total kininogen levels rose from 0 h to reach a peak at 10 h--a time immediately preceding the beginning of ovulation--after which the levels fell at 20 h, only to rise again at 30 h. Three species of kininogens, high molecular weight (HMW), low molecular weight (LMW), and T-kininogen, were shown to be present in the ovary. T-kininogen was the major kininogen present in the ovary, accounting for 60-92% of the total kininogen at any given time point during the ovulatory process. HMW kininogen levels accounted for only 1.2% of the total ovarian kininogen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号