首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Attached twigs of young Pseudotsuga menziesii (Mirb.) Franco plants were subjected to variations in irradaince. Stomatal responsiveness to irradiance, measured in an open type gas exchange system, varied seasonally. During the autumn and winter, stomatal conductance was relatively unresponsive to changes in irradiance, but during the summer stomatal conductance decreased in response to reduced irradiance. The summer stomatal response to irradiance was such that a nearly constant ratio of stomatal conductance to net photosynthesis was maintained as irradiance was varied. This caused intercellular CO2 concentration (c i) and water use efficiency (net CO2 uptake/transpiration) to also remain relatively constant. At constant irradiance, stomatal conductance was relatively insensitive to experimentally-induced changes in c i. This, and the observation that c i remained relatively constant as irradiance was varied, suggest that changes in c i played a minor role in mediating the stomatal response to light.The ecological significance of the seasonal changes in stomatal response to light is discussed.  相似文献   

2.
Summary Three-dimensional empirical models were constructed, depicting the response surface of water use efficiency (WUE) of Pseudotsuga menziesii saplings in relation to different levels of both irradiance and leaf-to-air vapor pressure difference (VPD). The two models developed depict responses of (1) previous season needles during autumn, winter, and early spring and (2) current year needles during the summer. The steady-state stomatal and gas exchange responses to irradiance and VPD suggest that factors determining adaptive stomatal performance in Douglas fir are complex and may differ according to needle age, developmental stage, and season. Stomatal response to light varied seasonally, with the stomata being responsive during the summer and unresponsive during the autumn, winter, and early spring. Previous season needles exhibit higher maximum WUE, but can be less conservative in their total use of water than the more VPD-sensitive maturing needles.Observations of dynamic stomatal responses to step changes in VPD and irradiance were used to propose a simple model depicting a combined stomatal response to sudden changes in both VPD and irradiance similar to those that would occur with the passage of sunflecks in a forest canopy. Step changes in VPD caused transient stomatal movements opposite in direction to that of the final response, while step changes in irradiance resulted in movements only in the direction of the expected final response. On the basis of the model, it was hypothesized that the dynamic response to changes in VPD may serve to enhance the speed of stomatal opening and closing when changes in irradiance are rapid.  相似文献   

3.
4.
Extracts of Douglas fir ( Pseudotsuga menziesii [Mirb.] Franco) shoots were purified by reversed and normal phase HPLC; gibberellin (GA)-like compounds detected by radioimmunoassay with antibodies against GA4 and the Tan-ginbozu dwarf rice micro-drop biossay were analyzed by GC-MS. Three major components were identified as GA4, GA7, and GA9 while smaller amounts of GA1, GA3 and putative GA9-glucosyl ester were also present.  相似文献   

5.
The identification of nucleolar proteins and immunocytochemical localization of small nuclear ribonucleoprotein (snRNP) elements revealed the presence of three types of nuclear bodies in Douglas fir microspore nuclei. One type consists of structures resembling Cajal bodies (CBs) and contains nucleolar proteins as well as snRNPs and U2 snRNA. The second type is bizonal bodies, which are nuclear bodies also linked with the splicing system. The bizonal body comprises two parts: the first contains Sm proteins and stains strongly with silver stain, and the second resembles CBs in terms of the degree of silver staining and molecular composition. Douglas fir is the second species after larch where the presence of bizonal bodies has been demonstrated. Pseudotsuga menziesii Mirb and Larix decidua Mill are species with one of the longest microsporogenesis processes known in plants. The presence of bizonal bodies in both species may be linked to the intensification of the splicing processes in microspores with an exceptionally long cell cycle. The third type of structure is dense bodies, whose morphology and degree of silver staining strongly indicate their functional and spatial relationship to the dense part of bizonal bodies.  相似文献   

6.
In the microgravity environment of the Space Shuttle Columbia (Life and Microgravity Mission STS-78), were grown 1-year-old Douglas fir and loblolly pine plants in a NASA plant growth facility. Several plants were harnessed (at 45 degrees ) to establish if compression wood biosynthesis, involving altered cellulose and lignin deposition and cell wall structure would occur under those conditions of induced mechanical stress. Selected plants were harnessed at day 2 in orbit, with stem sections of specific plants harvested and fixed for subsequent microscopic analyses on days 8, 10 and 15. At the end of the total space mission period (17 days), the remaining healthy harnessed plants and their vertical (upright) controls were harvested and fixed on earth. All harnessed (at 45 degrees ) plant specimens, whether grown at 1 g or in microgravity, formed compression wood. Moreover, not only the cambial cells but also the developing tracheid cells underwent significant morphological changes. This indicated that the developing tracheids from the primary cell wall expansion stage to the fully lignified maturation stage are involved in the perception and transduction of the stimuli stipulating the need for alteration of cell wall architecture. It is thus apparent that, even in a microgravity environment, woody plants can make appropriate corrections to compensate for stress gradients introduced by mechanical bending, thereby enabling compression wood to be formed. The evolutionary implications of these findings are discussed in terms of "variability" in cell wall biosynthesis.  相似文献   

7.
Experiments were conducted on 1-year-old Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] and 2- to 3-month-old alder [Alnus rubra (Bong)] seedlings growing in drying soils to determine the relative influence of root and leaf water status on stomatal conductance (gc). The water status of shoots was manipulated independently of that of the roots using a pressure chamber that enclosed the root system. Pressurizing the chamber increases the turgor of cells in the shoot but not in the roots. Seedling shoots were enclosed in a whole-plant cuvette and transpiration and net photosynthesis rates measured continuously. In both species, stomatal closure in response to soil drying was progressively reversed with increasing pressurization. Responses occurred within minutes of pressurization and measurements almost immediately returned to pre-pressurization levels when the pressure was released. Even in wet soils there was a significant increase in gc with pressurization. In Douglas fir, the stomatal response to pressurization was the same for seedlings grown in dry soils for up to 120 d as for those subjected to drought stress over 40 to 60 d. The stomatal conductance of both Douglas fir and alder seedlings was less sensitive to root chamber pressure at higher vapour pressure deficits (D), and stomatal closure in response to increasing D from 1.04 to 2.06 kPa was only partially reversed by pressurization. Our results are in contrast to those of other studies on herbaceous species, even though we followed the same experimental approach. They suggest that it is not always appropriate to invoke a ‘feedforward’ model of short-term stomatal response to soil drying, whereby chemical messengers from the roots bring about stomatal closure.  相似文献   

8.
 Pollen tube and female gametophyte interactions in Douglas fir (Pseudotsuga menziesii) were examined in vitro. Formation of pollen tubes in Douglas fir occurred on a modified Murashige and Skoog medium in which concentrations of H3BO3 and Ca(NO3)2 were altered and supplemented with sucrose and polyethylene glycol. Addition of 100 μg/ml H3BO3 and 300 μg/ml Ca(NO3)2 resulted in optimum pollen viability. Lack of H3BO3 inhibited pollen tube formation. Addition of H3BO3 and Ca(NO3)2 significantly increased pollen tube formation within one week in culture. Using a medium supplemented with mannitol, viability of Douglas fir pollen can be sustained for 7 weeks in culture, about the same length of time as in vivo. However, pollen tubes are not formed. This suggests that the factors responsible for tube formation reside in the external environment of the pollen. Culture of female gametophytes to examine egg viability and longevity had not been done previously. We found that egg viability in culture is short-lived, and therefore the window to study and manipulate events of fertilization in Douglas fir is very limited. In spite of this, about 7% of the female gametophytes that were co-cultured became penetrated by pollen tubes. In vitro archegonial penetration has been repeatedly achieved, but pollen tubes also penetrated other parts of the female gametophytes. Pollen tubes also penetrated non-viable eggs. Most female gametophytes were not penetrated because of pollen tube branching and swelling, failure of tubes to orient towards the female gametophytes, or premature pollen tube death due to plasmolysis. This report outlines the first attempt towards in vitro fertilization in conifers. Received: 13 March 1997 / Revision accepted: 6 June 1997  相似文献   

9.
10.
 Our previous attempt on in vitro fertilization (IVF) in conifers resulted in pollen tube penetration of female gametophytes, but because of the rapid decline in egg viability, no further interaction occurred. In this report, we describe for the first time that IVF has been achieved in conifers. Using Douglas fir (Pseudotsuga menziesii), we describe a two-step process which involved induction of pollen tubes in culture followed by introduction of isolated female gametophytes at the tips of growing pollen tubes. Pollen tubes penetrated the introduced isolated female gametophytes at various places, but a number of tubes entered the egg cell through the neck cells similar to the in vivo condition. Under our current culture conditions, longevity of pollen tubes and eggs has been improved resulting in the release of sperms, fusion of gametes, and initial formation of the proembryo. Continued plasmolysis of the egg limited the number of successful gametic interactions. IVF has been accomplished in flowering plants in several ways, but the gametophyte-gametophyte IVF system described in this paper is unique. IVF offers a novel breeding technology that takes advantage of the sexual reproductive route. When coupled with hybridization and genetic transformation, IVF could result in the development of stable novel genotypes of economically superior trees. Received: 28 October 1997 / Accepted: 9 December 1997  相似文献   

11.
Sundström  Erik  Keane  Michael 《Plant and Soil》1999,217(1-2):65-78
Seedlings grown in containers often have deformed, spiralling, kinking root systems (reported especially in pine growing in colder climates like Fenno-Scandinavia). The current study examines the effect of containers on the root systems of Douglas fir planted in Ireland. A sample of sixteen 10-year-old Douglas fir trees, planted as either bare-rooted transplants (2/1) or containerized seedlings (Paperpot 610 (2/0)) on an acid brown earth site in Ireland, were excavated for root achitectural studies. In addition to thorough above-ground measurements, an assessment of basal sweep was also carried out. Root systems were systematically described and horizontal angles, cross-sectional areas (CSA), and maximum depths of all roots>5 mm in diameter were recorded. Various biomass ratios and estimates for dominant roots were also calculated. Symmetry of the root systems, max. and min. numbers, and CSA of roots for sectors of various sizes were compared for the two plant types. The initially (when planted) bigger bare-rooted transplants were still larger than the container-planted trees after ten years. Of the total above-ground fresh weight, the container stock had allocated more to the crown and less to the stem compared to bare-roots. The difference in root weights between stock types was small. Basal sweep occurred on average in 50% of the bare-roots and 35% of the container trees. The direction of the basal sweep leaning was concentrated to the NE, which coincided with the direction of the slope and the prevailing wind direction. No effect of planting position in relation to the direction of site preparation was found for basal sweep. The size of the root system, fresh weight and total cross-sectional area was on average for all trees correlated to both DBH and shoot fresh weights. For containers separately, however, only root area was correlated to DBH and stem fresh weight. In spite of the difference in the above-ground size, there were no significant differences in root numbers and root area (CSA) between the two plant types. No difference in rooting depth between plant types was found. When splitting the root system into 120° horizontal sectors (1/3 of the root system) the highest numbers of roots were concentrated in the NW direction. The highest amount of root area tended to be concentrated along a NW-SE diagonal, with a dominance for the latter (SE). Sectors without dominant roots (expected to be the future main structural, stabilizing roots), varied in size (94–178°) but were on average wider in bare-roots and on average concentrated in the NE direction and the downhill side of the slope. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.

Key message

Proxies of adaptive traits for resistance to drought were discovered among original annual ring density variables in Douglas fir.

Abstract

A comparison of dead and surviving Douglas fir trees following the 2003 drought was made to define proxies of adaptive traits for resistance to drought. Increment cores were sampled from trees from three French regions: Centre, Midi-Pyrénées and Burgundy. Original tree-ring variables were calculated, based on a sliding density criterion dividing the microdensity profile into high- and low-density segments. Tree rings were analysed at each site in a number of consecutive annual rings before the 2003 drought event. Comparison between pairs of surviving and dead trees and between pairs of randomly selected trees (whether dead or alive) supports the evidence of systematic dissimilarities between surviving and dead trees in a number of original density variables. Correlation analysis between original and conventional ring density variables indicates a weak association. We found that the surviving trees were denser than the dead trees in all three sites, but that the denser part of the ring varied from region to region. We identified several original density variables intended to be used as proxies of adaptive traits in future studies of genetic determinism of Douglas fir resistance to drought.  相似文献   

13.
We studied the effect of ectomycorrhizal fungi on bacterial communities colonizing roots of Douglas fir (Pseudotsuga menziesii). Mycorrhizal tips were cleaned of soil and separated based on gross morphological characteristics. Sequencing of the internal transcribed spacers of the nuclear rRNA gene cluster indicated that the majority of the tips were colonized by fungi in the Russulaceae, with the genera Russula and Lactarius comprising 70% of the tips. Because coamplification of organellar 16S rRNA genes can interfere with bacterial community analysis of root tips, we developed and tested a new primer pair that permits amplification of bacterial 16S rRNA genes but discriminates more effectively against organellar sequences than commonly used bacterial primer sets. We then used terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of the 16S rRNA gene to examine differences in bacterial communities associated with the mycorrhizal tips. Cluster analysis of T-RFLP profiles indicated that there were different bacterial communities among the root tips; however, the communities did not seem to be affected by the taxonomic identity of the ectomycorrhizal fungi. Terminal restriction fragment profiling and sequencing of cloned partial 16S rRNA genes indicated that most bacteria on the ectomycorrhizal tips were related to the Alphaproteobacteria and the Bacteroidetes group.  相似文献   

14.
Douglas fir (Pseudotsuga menziesii) variety glauca (DFG) but not the variety viridis (DFV) showed symptoms of manganese (Mn) toxicity in some field sites. We hypothesized that these two varieties differed in Mn metabolism. To test this hypothesis, biomass partitioning, Mn concentrations, subcellular localization and 54Mn-transport were investigated. Total Mn uptake was three-times higher in DFG than in DFV. DFV retained > 90% of 54Mn in roots, whereas > 60% was transported to the shoot in DFG. The epidermis was probably the most efficient Mn barrier since DFV contained lower Mn concentrations in cortical cells and vacuoles of roots than DFG. In both varieties, xylem loading was restricted and phloem transport was low. However, sieve cells still contained high Mn concentrations. DFV displayed higher biomass production and higher shoot : root ratios than DFG. Our results clearly show that both varieties of Douglas fir differ significantly in Mn-uptake and allocation patterns rendering DFG more vulnerable to Mn toxicity.  相似文献   

15.
Patterns of genetic variation in gas-exchange physiology were analyzed in a 15-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) plantation that contains 25 populations grown from seed collected from across the natural distribution of the species. Seed was collected from 33°30 to 53°12 north latitude and from 170 m to 2930 m above sea level, and from the coastal and interior (Rocky Mountain) varieties of the species. Carbon isotope discrimination () ranged from 19.70() to 22.43() and was closely related to geographic location of the seed source. The coastal variety (20.50 (SE=0.21)) was not significantly different from the interior variety (20.91 (0.15)). Instead, most variation was found within the interior variety; populations from the southern Rockies had the highest discrimination (21.53 (0.20)) (lowest water-use efficiency). Carbon isotope discrimination (), stomatal conductance to water vapor (g), the ratio of intercellular to ambient CO2 concentration (ci/ca), and intrinsic water-use efficiency (A/g) were all correlated with altitude of origin (r=0.76, 0.73, 0.74, and –0.63 respectively); all were statistically significant at the 0.01 level. The same variables were correlated with both height and diameter at age 15 (all at P0.0005). Observed patterns in the common garden did not conform to our expectation of higher WUE, measured by both A/g and , in trees from the drier habitats of the interior, nor did they agree with published in situ observations of decreasing g and with altitude. The genetic effect opposes the altitudinal one, leading to some degree of homeostasis in physiological characteri tics in situ.  相似文献   

16.

Douglas fir (Pseudotsuga menziesii) is one of Europe’s most important non-native tree species due to its drought tolerance as well as timber quality and yield. To obtain superior seed from selected parental trees, breeding programs had been established in seed orchards. Douglas fir seed is used as source material for somatic embryogenesis with the aim to select elite genotypes invaluable for clonal mass propagation. To improve given protocols for somatic embryo initiation, we used immature Douglas fir zygotic embryos as explants and abscisic acid (ABA) as plant growth regulator in contrast to the application of auxins and cytokinins. With ABA supplementation, induction frequencies were slightly but in mean higher than with auxin/cytokinin, showing also a strong genotype effect. This offered the possibility to capture SE cultures from otherwise recalcitrant crosses. Furthermore, we observed remarkable differences between the two sets of plant growth regulators concerning the morphological development of the explants, including the absence of non-embryogenic callus by using ABA as inducer. This simplifies the detection of events and the handling of the obtained cultures. Nevertheless, a histological approach suggested, that the same competent cells are addressed by the different hormonal stimulation. Besides, we studied the influence of different points in time of cone harvest, two different basal media and different genetic backgrounds of the explants as well as the maturation ability of the induced embryogenic cultures. In sum, we were able to improve the first steps of somatic embryogenesis and to maintain a significantly higher number of high-value genotypes.

  相似文献   

17.
Urszula Zajączkowska 《Planta》2014,240(6):1203-1211

Main conclusion

Stump overgrowth may serve as a unique model for studying cellular reorganization and mechanisms responsible for cell polarity changes during the process of vascular tissue differentiation from initially unorganized parenchymatous cells. Cellular ordering and tissue reorganization during the overgrowth process of the transverse surfaces of Douglas fir stumps in forest stand was studied. At the beginning of stump overgrowth, the produced parenchymatous cells form an unorganized tissue. Particular parenchyma cells start arranging into more ordered structures which resemble rays. Application of digital image analysis software based on structure tensor was used. The analysis showed that at this stage of tissue development, cellular elements display a wide range of angular orientation values and attain very low coherency coefficients. The progress of the tissue differentiation process is associated with the formation of local regions with tracheids oriented circularly around the rays. This coincides with an increase in the range of angular orientations and greater values of coherency coefficients. At the most advanced stage of tissue development, with tracheids arranged parallelly in longitudinal strands, the degree of cell ordering is the highest what is manifested by the greatest values attained by coherency coefficients, and the narrow range of angular orientations. It is suggested that the ray-like structures could act as organizing centers in the morphogenetic field responsible for differentiation of the overgrowth tissue. The circular pattern of tracheids around rays in the initial phase of tissue development can be interpreted in terms of local rotation of the morphogenetic field which afterward is transformed into irrotational field. This transformation is noted by the presence of tracheids arranged parallelly in longitudinal strands. The possible involvement of a mechanism controlling cell polarity with respect to auxin transport is discussed.  相似文献   

18.
A method of two-dimensional gel electrophoresis of proteins from Douglas fir needles is described. Extraction in the presence of sodium dodecyl sulfate (SDS) and 2-mercaptoethanol followed by heating at 100°C produces reliable two-dimensional gels which are convenient for genetic studies. Three genotypes from different geographical origins have been compared: among 225 loci expressed, 22 display regulatory variations and 7 show allelic variations. Thus it is now possible to undertake the genetic study of Douglas fir using this powerful technique.This work was supported in part by Grant ATP PIRDES 508 444 from the INRA-CNRS.  相似文献   

19.
Mycorrhizas alter the acquisition of carbon and nutrients, thereby affecting numerous plant and ecosystem processes. It is important, therefore, to determine how mycorrhizal populations will change under possible future climate conditions. Individual and interactive effects of elevated atmospheric CO2 concentration and atmospheric temperature were assessed in a 2×2 factorial design [ambient and elevated (200 ppm above ambient) CO2 concentrations, and ambient and elevated (4°C above ambient) temperatures]. In June 1993, 2-year-old Douglas fir (Pseudotsuga menziesii Mirb. Franco) seedlings were planted in 12 environment-tracking chambers (n=3) containing reconstructed, low-nitrogen, native forest soil. Climate treatments were imposed shortly thereafter, and the seedlings grew until June 1997. Soil cores were taken twice per year during the exposure period. We present findings on changes in the community structure of ectomycorrhizal (ECM) root tips, categorized into morphotypes using gross morphological traits. A diverse and stable community of morphotypes (a total of 40) was encountered; no more than 30 of which were seen at any sampling time. In the first sample, there were only 15 morphotypes found in the 12 chambers. Morphotype numbers increased during the first half of the experiment, remaining fairly constant thereafter. Near the end of the exposure, elevated-temperature treatments maintained more morphotypes than ambient treatments. However, overall, absolute measures (number of ECM tips) were affected primarily by CO2 treatment, whereas proportional measures (e.g., Simpson’s index) were affected primarily by temperature. While some morphotypes were negatively affected seasonally by higher temperatures (putative Rhizopogon group), others (Cenococcum) seemed to thrive. Underlying the dominant patterns of change in diversity, driven by the Rhizopogon group, subdominant populations responded slightly differently. Community diversity through time tended to increase at a greater rate for all subdominant populations compared with the rate when dominant populations were included. Received: 16 August 1999 / Accepted: 2 March 2000  相似文献   

20.
The ectomycorrhizal fungal associations of Douglas fir ( Pseudotsuga menziesii D. Don) and bishop pine ( Pinus muricata D. Don) were investigated in a mixed forest stand. We identified fungi directly from field-collected ectomycorrhizal (ECM) root tips using PCR-based methods. Sixteen species of fungi were found, of which twelve associated with both hosts. Rhizopogon parksii Smith was specific to Douglas fir. Three other species colonized only one of the hosts, but were too infrequent to draw conclusions about specificity. Seventy-four percent of the biomass of ECM root tips sampled in the stand were colonized by members of the Thelephoraceae and Russulaceae. All 12 species of fungi that associated with both tree species did so within a 10×40 cm soil volume, suggesting that individual fungal genotypes linked the putatively competing tree hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号