首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of mouse major histocompatibility complex (MHC) class I molecules in different cell lines derived from Syrian hamsters has revealed antigen presentation deficiencies of some H2 allelic products in two cell lines (BHK and NIL-2) which were overcome by transient expression of the rat transporter associated with antigen processing (TAP; Lobigs et al. 1995). Here we show that in both cell lines the endogenous MHC class I cell surface expression was completely down-regulated. Lymphokine treatment induced endogenous and recombinant mouse MHC class I cell surface expression to levels similar to that in other Syrian hamster cell lines competent for antigen presentation through transduced H2 molecules. Accordingly, constitutive downregulation of expression of accessory molecules of the MHC class I pathway can reveal differences between H2 class I alleles in antigen presentation not encountered when the expression levels are augmented. In addition to the differential expression of MHC class I pathway genes, two cell lines representing competent (FF) and defective (BHK) antigen presentation phenotypes for mouse class I MHC restriction elements demonstrated substantial sequence polymorphism in Tap1 but not Tap2. Cytokine-treated FF or BHK cells and human TAP-deficient T2 cells transfected with FF or BHK TAP1 in combination with FF TAP2 differed in their preference for C-terminal peptide residues, as shown by an in vitro peptide transport assay. Thus, polymorphic residues in TAP1 can influence the substrate selectivity of the Syrian hamster peptide transporter.  相似文献   

2.
The loading of MHC class I molecules with peptides involves a variety of accessory proteins, including TAP-associated glycoprotein (tapasin), which tethers empty MHC class I molecules to the TAP peptide transporter. We have evaluated the role of tapasin for the assembly of peptides with the class Ib molecule Qa-1b. In normal cells, Qa-1b is predominantly bound by a peptide, the Qa-1 determinant modifier (Qdm), derived from the signal sequence of class Ia molecules. Our results show that tapasin links Qa-1b to the TAP peptide transporter, and that tapasin facilitates the delivery of Qa-1b molecules to the cell surface. Tapasin was also required for the presentation of endogenous Qdm peptides to Qdm-specific, Qa-1b-restricted CTLs. In sharp contrast, tapasin expression was dispensable for the presentation of an insulin peptide to insulin-specific, Qa-1b-restricted CTL isolated from TCR transgenic mice. However, tapasin deficiency significantly impaired the positive selection of these insulin-specific, Qa-1b-restricted transgenic CD8+ T cells. These findings reveal that tapasin plays a differential role in the loading of Qdm and insulin peptides onto Qa-1b molecules, and that tapasin is dispensable for retention of empty Qa-1b molecules in the endoplasmic reticulum, and are consistent with the proposed peptide-editing function of tapasin.  相似文献   

3.
Within the adaptive immune system the transporter associated with antigen processing (TAP) plays a pivotal role in loading of peptides onto major histocompatibility (MHC) class I molecules. As a central tool to investigate the structure and function of the TAP complex, we created cysteine-less human TAP subunits by de novo gene synthesis, replacing all 19 cysteines in TAP1 and TAP2. After expression in TAP-deficient human fibroblasts, cysteine-less TAP1 and TAP2 are functional with respect to adenosine triphosphate (ATP)-dependent peptide transport and inhibition by ICP47 from herpes simplex virus. Cysteine-less TAP1 and TAP2 restore maturation and intracellular trafficking of MHC class I molecules to the cell surface.  相似文献   

4.
BACKGROUND: The transporter associated with antigen processing (TAP), a member of the family of ABC transporters, plays a crucial role in the processing and presentation of the major histocompatibility complex (MHC) class I restricted antigens. TAP transports peptides from the cytosol into the endoplasmic reticulum, thereby selecting peptides matching in length and sequence to respective MHC class I molecules. Upon loading on MHC class I molecules, the trimeric MHC class I/beta2-microglobulin/ peptide complex is then transported to the cell surface and presented to CD8+ cytotoxic T cells. Abnormalities in MHC class I surface expression have been found in a number of different malignancies, including tumors of distinct histology, viral infections, and autoimmune diseases, and therefore represent an important mechanism of malignant or virus-infected cells to escape proper immune response. In many cases, this downregulation has been attributed to impaired TAP expression, which could be due to structural alterations or dysregulation. This review summarizes the physiology and pathophysiology of TAP, thereby focusing on its function in immune responses and its role in human diseases.  相似文献   

5.
Koch J  Guntrum R  Tampé R 《FEBS letters》2005,579(20):4413-4416
TAP, an ABC transporter in the ER membrane, provides antigenic peptides derived from proteasomal degradation to MHC class I molecules for inspection by cytotoxic T lymphocytes at the cell surface so as to trace malignant or infected cells. To investigate the minimal number of transmembrane segments (TMs) required for assembly of the TAP complex based on hydrophobicity algorithms and alignments with other ABC transporters we generated N-terminal truncation variants of human TAP1 and TAP2. As a result, a 6+6 TM core-TAP complex represents the minimal functional unit of the transporter, which is essential and sufficient for heterodimer assembly, peptide binding, and peptide translocation into the ER. The TM1 of both, core-TAP1 and core-TAP2 are critical for heterodimerization of the complex.  相似文献   

6.
It is generally accepted that as the result of positive thymic selection, CD8-expressing T cells recognize peptide antigens presented in the context of MHC class I molecules and CD4-expressing T cells interact with peptide antigens presented by MHC class II molecules. Here we report the generation of TCRalpha/beta(+), CD3(+), CD4(+), CD8(-), MHC class I-restricted alloreactive T-cell clones which were induced using peripheral blood mononuclear cells from healthy individuals following in vitro stimulation with transporter associated with antigen processing (TAP)-deficient cell lines T2. The CD4(+) T-cell clones showed an HLA-A2.1-specific proliferative response against T2 cells which was inhibited by anti-CD3 and anti-CD4 monoclonal antibodies. These results suggest that interaction of the TCR with peptide-bound HLA class I molecules contributes to antigen-specific activation of these co-receptor-mismatched T-cell clones. Antigen recognition by alloreactive MHC class I-restricted CD4(+) T cells was inhibited by removing peptides bound to HLA molecules on T2 cells suggesting that the alloreactive CD4(+) T cells recognize peptides that bind in a TAP-independent manner to HLA-A2 molecules. The existence of such MHC class I-restricted CD4(+) T cells which can recognize HLA-A2 molecules in the absence of TAP function may provide a basis for the development of immunotherapy against TAP-deficient tumor variants which would be tolerant to immunosurveillance by conventional MHC class I-restricted cytotoxic lymphocytes.  相似文献   

7.
Function of the transport complex TAP in cellular immune recognition   总被引:9,自引:0,他引:9  
The transporter associated with antigen processing (TAP) is essential for peptide loading onto major histocompatibility complex (MHC) class I molecules by translocating peptides into the endoplasmic reticulum. The MHC-encoded ABC transporter works in concert with the proteasome and MHC class I molecules for the antigen presentation on the cell surface for T cell recognition. TAP forms a heterodimer where each subunit consists of a hydrophilic nucleotide binding domain and a hydrophobic transmembrane domain. The transport mechanism is a multistep process composed of an ATP-independent peptide association step which induces a structural reorganization of the transport complex that may trigger the ATP-driven transport of the peptide into the endoplasmic reticulum lumen. By using combinatorial peptide libraries, the substrate selectivity and the recognition principle of TAP have been elucidated. TAP maximizes the degree of substrate diversity in combination with high substrate affinity. This ABC transporter is also unique as it is closely associated with chaperone-like proteins involved in bonding of the substrate onto MHC molecules. Most interestingly, virus-infected and malignant cells have developed strategies to escape immune surveillance by affecting TAP expression or function.  相似文献   

8.
CD1d molecules are structurally similar to MHC class I, but present lipid antigens as opposed to peptides. Here, we show that MHC class I molecules physically associate with (and regulate the functional expression of) mouse CD1d on the surface of cells. Low pH (3.0) acid stripping of MHC class I molecules resulted in increased surface expression of murine CD1d on antigen presenting cells as well as augmented CD1d-mediated antigen presentation to NKT cells. Consistent with the above results, TAP1-/- mice were found to have a higher percentage of type I NKT cells as compared to wild type mice. Moreover, bone marrow-derived dendritic cells from TAP1-/- mice showed increased antigen presentation by CD1d compared to wild type mice. Together, these results suggest that MHC class I molecules can regulate NKT cell function, in part, by masking CD1d.  相似文献   

9.
Virus-infected cells are eliminated by cytotoxic T lymphocytes, which recognize viral epitopes displayed on major histocompatibility complex class I molecules at the cell surface. Herpesviruses have evolved sophisticated strategies to escape this immune surveillance. During the lytic phase of EBV infection, the viral factor BNLF2a interferes with antigen processing by preventing peptide loading of major histocompatibility complex class I molecules. Here we reveal details of the inhibition mechanism of this EBV protein. We demonstrate that BNLF2a acts as a tail-anchored protein, exploiting the mammalian Asna-1/WRB (Get3/Get1) machinery for posttranslational insertion into the endoplasmic reticulum membrane, where it subsequently blocks antigen translocation by the transporter associated with antigen processing (TAP). BNLF2a binds directly to the core TAP complex arresting the ATP-binding cassette transporter in a transport-incompetent conformation. The inhibition mechanism of EBV BNLF2a is distinct and mutually exclusive of other viral TAP inhibitors.  相似文献   

10.
11.
Antigen processing and presentation by class I MHC molecules generally require assembly with peptide epitopes generated by the proteasome and transported into the ER by the transporters associated with antigen presentation (TAP). Recently, TAP-independent pathways supporting class I MHC-mediated presentation of exogenous antigens, as well as of endogenously synthesized viral antigens, were described. We now characterize a TAP-independent pathway that is operative in both TAP1- and TAP2-deficient Adenovirus (Ad)-transformed fibroblast cell lines. To the best of our knowledge, this is the first time that the existence of such a pathway has been described in non-infected cells that do not belong to the hematopoietic lineage. We show that this pathway is proteasome-independent and chloroquine-sensitive. Cell surface expression of these TAP-independent class I complexes is modulated by tapasin levels and is enhanced by IFN-gamma. The data imply that IFN-gamma increases the relative level of TAP-independent high affinity class I complexes that exit the ER on their way to the cell surface and to vacuolar compartments where peptide cleavage/exchange might take place before recycling to the cell surface. Since both TAP and tapasin expression are altered in numerous tumors and in virus-infected cells, TAP-independent class I complexes may be a valuable target source for immune responses.  相似文献   

12.
Antigen presenting cells (APC) have the ability to present both extra-cellular and intra-cellular antigens via MHC class I molecules to CD8(+) T cells. The cross presentation of extra-cellular antigens is reduced in mice with deficient Antigen Peptide Transporter 1 (TAP1)-dependent MHC class I antigen presentation, and these mice are characterized by a diminished CD8(+) T cell population. We have recently reported an increased activation of CD8(+) T cells in hypercholesterolemic Apoe(-/-) mice. Therefore, this study included TAP1-deficient Apoe(-/-) mice (Apoe(-/-)Tap1(-/-)) to test the atherogenicity of CD8(+) T cells and TAP1-dependent cross presentation in a hypercholesterolemic environment. As expected the CD8(+) T cell numbers were low in Apoe(-/-)Tap1(-/-) mice in comparison to Apoe(-/-) mice, constituting ~1% of the lymphocyte population. In spite of this there were no differences in the extent of atherosclerosis as assessed by en face Oil Red O staining of the aorta and cross-sections of the aortic root between Apoe(-/-)Tap1(-/-) and Apoe(-/-) mice. Moreover, no differences were detected in lesion infiltration of macrophages or CD3(+) T cells in Apoe(-/-)Tap1(-/-) compared to Apoe(-/-) mice. The CD3(+)CD4(+) T cell fraction was increased in Apoe(-/-)Tap1(-/-) mice, suggesting a compensation for the decreased CD8(+) T cell population. Interestingly, the fraction of CD8(+) effector memory T cells was increased but this appeared to have little impact on the atherosclerosis development.In conclusion, Apoe(-/-)Tap1(-/-) mice develop atherosclerosis equal to Apoe(-/-) mice, indicating a minor role for CD8(+) T cells and TAP1-dependent antigen presentation in the disease process.  相似文献   

13.
14.
Class I molecules of the major histocompatibility complex play a vital role in cellular immunity, reporting on the presence of viral or tumor-associated antigens by binding peptide fragments of these proteins and presenting them to cytotoxic T cells at the cell surface. The folding and assembly of class I molecules is assisted by molecular chaperones and folding catalysts that comprise the general ER quality control system which also monitors the integrity of the process, disposing of misfolded class I molecules through ER associated degradation (ERAD). Interwoven with general ER quality control are class I-specific components such as the peptide transporter TAP and the tapasin-ERp57 chaperone complex that supply peptides and monitor their loading onto class I molecules. This ensures that at the cell surface class I molecules will possess mainly optimal peptides with a long half-life. In this review we discuss these processes as well as a number of strategies that viruses have evolved to subvert normal class I assembly within the ER and thereby evade immune recognition by cytotoxic T cells.  相似文献   

15.
HLA class I molecules are recognized by CTL that eliminate virally infected and malignantly transformed cells presenting foreign peptide-a process termed immunosurveillance. Many tumors have reduced levels of membrane HLA class I. Tumor cells with mutations that reduce HLA class I avoid immunosurveillance and continue to proliferate. As tobacco use can induce tumors, we examined the effect of tobacco extracts on membrane HLA class I. These studies show that culture of cells in media containing tobacco extracts reduces membrane HLA class I, but not other proteins, on primary keratinocytes and other cell types. Culture in tobacco extracts, but not extracts of other substances, reduces TAP1 protein, but does not reduce expression of HLA class I H chain, L chain, or the housekeeping protein beta-actin. The reduction of TAP1 protein occurs within 4 h and is dose-dependent. Culture in tobacco extracts reduces TAP1 protein abundance, but not steady-state mRNA abundance. Tobacco-treated cells show defects in HLA class I biosynthesis similar to those found in TAP1-deficient cell lines. Transfection with TAP1 cDNA restores TAP1 protein abundance, HLA class I biosynthesis, and cell surface expression. Combined, these data show that culture in tobacco extracts reduces TAP1 protein abundance and membrane HLA class I levels. Reduction in membrane HLA class I could permit subsequent malignant transformation of cells to be undetected by the immune system.  相似文献   

16.
17.
Herpes simplex virus (HSV) has a number of genes devoted to immune evasion. One such gene, ICP47, binds to the transporter associated with antigen presentation (TAP) 1/2 thereby preventing transport of viral peptides into the endoplasmic reticulum, loading of peptides onto nascent major histocompatibility complex (MHC) class I molecules, and presentation of peptides to CD8 T cells. However, ICP47 binds poorly to murine TAP1/2 and so inhibits antigen presentation by MHC class I in mice much less efficiently than in humans, limiting the utility of murine models to address the importance of MHC class I inhibition in HSV immunopathogenesis. To address this limitation, we generated recombinant HSVs that efficiently inhibit antigen presentation by murine MHC class I. These recombinant viruses prevented cytotoxic T lymphocyte killing of infected cells in vitro, replicated to higher titers in the central nervous system, and induced paralysis more frequently than control HSV. This increase in virulence was due to inhibition of antigen presentation to CD8 T cells, since these differences were not evident in MHC class I-deficient mice or in mice in which CD8 T cells were depleted. Inhibition of MHC class I by the recombinant viruses did not impair the induction of the HSV-specific CD8 T-cell response, indicating that cross-presentation is the principal mechanism by which HSV-specific CD8 T cells are induced. This inhibition in turn facilitates greater viral entry, replication, and/or survival in the central nervous system, leading to an increased incidence of paralysis.  相似文献   

18.
Before exit from the endoplasmic reticulum (ER), MHC class I molecules transiently associate with the transporter associated with antigen processing (TAP1/TAP2) in an interaction that is bridged by tapasin. TAP1 and TAP2 belong to the ATP-binding cassette (ABC) transporter family, and are necessary and sufficient for peptide translocation across the ER membrane during loading of MHC class I molecules. Most ABC transporters comprise a transmembrane region with six membrane-spanning helices. TAP1 and TAP2, however, contain additional N-terminal sequences whose functions may be linked to interactions with tapasin and MHC class I molecules. Upon expression and purification of human TAP1/TAP2 complexes from insect cells, proteolytic fragments were identified that result from cleavage at residues 131 and 88 of TAP1 and TAP2, respectively. N-Terminally truncated TAP variants lacking these segments retained the ability to bind peptide and nucleotide substrates at a level comparable to that of wild-type TAP. The truncated constructs were also capable of peptide translocation in vitro, although with reduced efficiency. In an insect cell-based assay that reconstituted the class I loading pathway, the truncated TAP variants promoted HLA-B*2705 processing to similar levels as wild-type TAP. However, correlating with the observed reduction in tapasin binding, the tapasin-mediated increase in processing of HLA-B*2705 and HLA-B*4402 was lower for the truncated TAP constructs relative to the wild type. Together, these studies indicate that N-terminal domains of TAP1 and TAP2 are important for tapasin binding and for optimal peptide loading onto MHC class I molecules.  相似文献   

19.
Koch J  Guntrum R  Tampé R 《FEBS letters》2006,580(17):4091-4096
The heterodimeric ABC transporter TAP translocates proteasomal degradation products from the cytosol into the lumen of the endoplasmic reticulum, where these peptides are loaded onto MHC class I molecules by a macromolecular peptide-loading complex (PLC) and subsequently shuttled to the cell surface for inspection by cytotoxic T lymphocytes. Tapasin recruits, as a central adapter protein, other components of the PLC at the unique N-terminal domains of TAP. We found that the N-terminal domains of human TAP1 and TAP2 can independently bind to tapasin, thus providing two separate loading platforms for PLC assembly. Moreover, tapasin binding is dependent on the first N-terminal transmembrane helix of TAP1 and TAP2, demonstrating that these two helices contribute independently to the recruitment of tapasin and associated factors.  相似文献   

20.
Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class I-restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL 49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL 49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL 49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL 49.5 proteins block TAP as well, these data indicate that UL 49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL 49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL 49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL 49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL 49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL 49.5. Taken together, these results classify the UL 49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号