首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Objective: To develop regression‐based equations that estimate physical activity ratios [energy expenditure (EE) per minute/sleeping metabolic rate] for low‐to‐moderate intensity activities using total acceleration obtained by triaxial accelerometry. Research Methods and Procedures: Twenty‐one Japanese adults were fitted with a triaxial accelerometer while also in a whole‐body human calorimeter for 22.5 hours. The protocol time was composed of sleep (8 hours), four structured activity periods totaling 4 hours (sitting, standing, housework, and walking on a treadmill at speeds of 71 and 95 m/min, 2 × 30 minutes for each activity), and residual time (10.5 hours). Acceleration data (milligausse) from the different periods and their relationship to physical activity ratio obtained from the human calorimeter allowed for the development of EE equations for each activity. The EE equations were validated on the residual times, and the percentage difference for the prediction errors was calculated as (predicted value ? measured value)/measured value × 100. Results: Using data from triaxial accelerations and the ratio of horizontal to vertical accelerations, there was relatively high accuracy in identifying the four different periods of activity. The predicted EE (882 ± 150 kcal/10.5 hours) was strongly correlated with the actual EE measured by human calorimetry (846 ± 146 kcal/10.5 hours, r = 0.94 p < 0.01), although the predicted EE was slightly higher than the measured EE. Discussion: Triaxial accelerometry, when total, vertical, and horizontal accelerations are utilized, can effectively evaluate different types of activities and estimate EE for low‐intensity physical activities associated with modern lifestyles.  相似文献   

2.
Recently, it was demonstrated that a uniaxial accelerometer worn at the hip could estimate resistance exercise energy expenditure. As resistance exercise takes place in more than 1 plane, the use of a triaxial accelerometer may be more effective in estimating resistance exercise energy expenditure. The aims of this study were to estimate the energy cost of resistance exercise using triaxial accelerometry and to determine the optimal location for wearing triaxial accelerometers during resistance exercise. Thirty subjects (15 men and 15 women; age = 21.7 ± 1.0 years) performed a resistance exercise protocol consisting of 2 sets of 8 exercises (10RM loads). During the resistance exercise protocol, subjects wore triaxial accelerometers on the wrist, waist, and ankle; a heart rate monitor; and a portable metabolic system. Net energy expenditure was significantly correlated with vertical (r = 0.67, p < 0.001), horizontal (r = 0.43, p = 0.02), third axis (r = 0.36, p = 0.048), and sum of 3 axes (r = 0.50, p = 0.005) counts at the waist, and horizontal counts at the wrist (r = -0.40, p = 0.03). Regression analysis using fat-free mass, sex, and the sum of accelerometer counts at the waist as variables was used to develop an equation that explained 73% of the variance of resistance exercise energy expenditure. A triaxial accelerometer worn at the waist can be used to estimate resistance exercise energy expenditure but appears to offer no benefit over uniaxial accelerometry. The use of accelerometers in estimating resistance exercise energy expenditure may prove useful for individuals and athletes who participate in resistance training and are focused on maintaining a tightly regulated energy balance.  相似文献   

3.
Objective: The purpose of the present study was to derive linear and non‐linear regression equations that estimate energy expenditure (EE) from triaxial accelerometer counts that can be used to quantitate activity in young children. We are unaware of any data regarding the validity of triaxial accelerometry for assessment of physical activity intensity in this age group. Research Methods and Procedures: EE for 27 girls and boys (6.0 ± 0.3 years) was assessed for nine activities (lying down, watching a video while sitting and standing, line drawing for coloring‐in, playing blocks, walking, stair climbing, ball toss, and running) using indirect calorimetry and was then estimated using a triaxial accelerometer (ActivTracer, GMS). Results: Significant correlations were observed between synthetic (synthesized tri‐axes as the vector), vertical, and horizontal accelerometer counts and EE for all activities (0.878 to 0.932 for EE). However, linear and non‐linear regression equations underestimated EE by >30% for stair climbing (up and down) and performing a ball toss. Therefore, linear and non‐linear regression equations were calculated for all activities except these two activities, and then evaluated for all activities. Linear and non‐linear regression equations using combined vertical and horizontal acceleration counts, synthetic counts, and horizontal counts demonstrated a better relationship between accelerometer counts and EE than did regression equations using vertical acceleration counts. Adjustment of the predicted value by the regression equations using the vertical/horizontal counts ratio improved the overestimation of EE for performing a ball toss. Discussion: The results suggest that triaxial accelerometry is a good tool for assessing daily EE in young children.  相似文献   

4.
Real-time gait assessment utilizing a new way of accelerometry   总被引:1,自引:0,他引:1  
Real-time registration of body segment angles is essential in artificial body position control. A new method is presented for the real-time calculation of the lower extremity angles using data obtained from pairs of two one-dimensional accelerometers. It is shown that, assuming rigid-body dynamics and simple hinge joints, relative angles (i.e. angles between segments) can be calculated without integration, thereby solving the problem of integration drift normally associated with accelerometry. During the stance phase of walking, the relative angles can be transformed to absolute angles (i.e. relative to the gravitational field direction) for the different leg segments. The feasibility of relative angle calculation is demonstrated by calculation of the knee angle of a healthy subject. Stability and resolution were demonstrated with measurements during standing. Measurements during standing up, sitting down and walking showed that shock (heel-strike) and skin movements, due to movements of the underlying muscle tissue, are the main error sources. Additional signal processing, e.g. low-pass filtering, can be used to diminish this error. The accuracy of the knee angle found is shown to be high enough to be used in a feedback controller for functional electrostimulation of the lower extremities.  相似文献   

5.
This study analyzes the movements of the hips, shoulders and of the body center of gravity before and at heel-off, when step execution begins to initiate gait from an upright posture. The heel-off movement was considered as a dynamic perturbation induced by the stepping movement. The experimental paradigm used for studying this perturbation was the single-step movement, in which the initial posture and voluntary movements are identical to those of gait initiation. Data were collected from accelerometer recordings of the triaxial accelerations at the joints of the upper part of the body, and by calculating the triaxial accelerations of the center of gravity using force plate measurements. The resultant vectors were used to establish and compare the magnitude and direction of the accelerations at different joints, and from them, the roles of the pelvis and the scapular girdles with respect to the objectives of the gait movement.  相似文献   

6.
Although mechanomyography (MMG) reflects local vibrations from contracting muscle fibers, it also includes bulk movement: deformation in global soft tissue around measuring points. To distinguish between them, we compared the multi-channel MMG of resting muscle, which dominantly reflected the bulk movement caused by arterial pulsations, to that of the contracting muscle. The MMG signals were measured at five points around the upper arms of 10 male subjects during resting and during isometric ramp contraction from 5% to 85% of maximal voluntary contraction (MVC) of the biceps brachii muscle. The characteristics of bulk movement were defined as the amplitude distribution and phase relation among the five MMG signals. The bulk movement characteristics during the rest state were not necessarily the same among the subjects. However, below 30 Hz, each subject’s characteristics remained the same from the rest state (0% MVC) to the contracting state (80% MVC), at which the bulk movement mainly originates from muscle contraction activity. Results show that the MMG of the low frequency domain (<30 Hz) includes bulk movement depending on the mechanical deformation characteristics of each subject’s body, for a wide range of muscle contraction intensities.  相似文献   

7.
The purpose of this investigation was to examine mechanomyographic (MMG) and electromyographic (EMG) amplitude responses of the superficial quadriceps femoris muscles during the Wingate Anaerobic Test (WAnT). Ten healthy adults (age 21 +/- 1.2 years) volunteered to perform the WAnT on a calibrated Monark 894E cycle ergometer while the EMG and MMG signals were recorded. The EMG and MMG amplitude and power output (W) values per 5-second segments of the test were averaged and normalized to the highest value found during the test, respectively. The statistical analysis indicated that EMG amplitude did not change significantly over the 30-second test, but W and MMG amplitude decreased significantly. There is dissociation between EMG and MMG amplitude over the 30-second anaerobic test, providing evidence that MMG amplitude could be used as a monitor of W during such a task. MMG amplitude could potentially be used as a direct monitor of mechanical activity, which could be of benefit to those who train athletes when a direct assessment of mechanical contribution from a given muscle to a fatiguing activity is desired (such as when monitoring an injury), but it must be studied under various conditions, such as the current study, before such applications are made.  相似文献   

8.

Background  

Falls in the elderly is nowadays a major concern because of their consequences on elderly general health and moral states. Moreover, the aging of the population and the increasing life expectancy make the prediction of falls more and more important. The analysis presented in this article makes a first step in this direction providing a way to analyze gait and classify hospitalized elderly fallers and non-faller. This tool, based on an accelerometer network and signal processing, gives objective informations about the gait and does not need any special gait laboratory as optical analysis do. The tool is also simple to use by a non expert and can therefore be widely used on a large set of patients.  相似文献   

9.
10.
The mechanomyography (MMG) signal reflects mechanical properties of limb muscles that undergo complex phenomena in different functional states. We undertook the study of the chaotic nature of MMG signals by referring to recent developments in the field of nonlinear dynamics. MMG signals were measured from the biceps brachii muscle of 5 subjects during fatigue of isometric contraction at 80% maximal voluntary contraction (MVC) level. Deterministic chaotic character was detected in all data by using the Volterra–Wiener–Korenberg model and noise titration approach. The noise limit, a power indicator of the chaos of fatigue MMG signals, was 22.20±8.73. Furthermore, we studied the nonlinear dynamic features of MMG signals by computing their correlation dimension D2, which was 3.35±0.36 across subjects. These results indicate that MMG is a high-dimensional chaotic signal and support the use of the theory of nonlinear dynamics for analysis and modeling of fatigue MMG signals.  相似文献   

11.
The purpose of this investigation was to determine the test-retest reliability and coefficient of variation of 2 novel physical performance tests. Ten healthy men (22.0 +/- 3.0 years, 87.0 +/- 8.0 kg, 20.0 +/- 5.0% body fat) performed 30 continuous and dynamic jump squats (JS) and bench throws (BT) on 4 separate occasions. The movements were performed under loaded conditions utilizing 30% of subject's predetermined 1 repetition maximum in the back squat and bench press. Mean power (MP; W), peak power (PP; W), mean velocity (MV; m.s(-1)), peak velocity (PV; m.s(-1)), and total work (TW; J) were assessed using a ballistic measurement system (Innervations Inc., Muncie, IN). Data were analyzed using repeated measures analysis of variance with Duncan's post hoc test when mean differences were p < or = 0.05. Intraclass correlation coefficient (ICC) and within-subject coefficient of variation (CV%) were also calculated. All values are presented as mean +/- SE. BT variables were statistically similar across the 4 sessions: MP (350.0 +/- 13.9 W), PP (431.4 +/- 18.5 W) MV (1.6 +/- 0.03 m.s(-1)), PV (2.0 +/- 0.03 m.s(-1)), and TW (199.1 +/- 7.2 J). For JS, session 3 PP (1,669.8 +/- 111.2 W) was significantly greater vs. sessions 1, 2, and 4 (1,601.2 +/- 58.4 W). Session 4 MP (1,403.2 +/- 88.6 W) and MV (1.9 +/- 0.1 m.s(-1)) for JS were significantly lower during sessions 1, 2, and 3 (MP: 1,479.4.5 +/- 44.8 W, MV: 2.0 +/- 0.05 m.s(-1)). TW (834.7 +/- 24.3 J) and PV (2.2 +/- 0.04 m.s(-1)) were statistically similar during all sessions for JS. The CVs ranged from 3.0 to 7.6% for the BT and 3.2 to 5.7% for the JS. ICCs for MP, PP, MV, PV, and TW were 0.92, 0.95, 0.94, 0.91, and 0.95, respectively, during BT. ICCs during JS for MP, PP, MV, PV, and TW were 0.96, 0.98, 0.94, 0.94, and 0.89, respectively. The results of the current study support the use of a 30 continuous and dynamic BT protocol as a reliable upper-body physical performance test, which can be administered with minimal practice. Slightly greater variability for JS was observed, although the test had high reliability.  相似文献   

12.
The purpose of this investigation was to determine the effect of hyperhydration on the electromyographic (EMG) and mechanomyographic (MMG) responses during isometric and isokinetic muscle actions of the biceps brachii. Eight (22.1 +/- 1.8 years, 79.5 +/- 22.8 kg) subjects were tested for maximal isometric, submaximal isometric, and maximal concentric isokinetic muscle strength in either a control (C) or hyperhydrated (H) state induced by glycerol ingestion while the EMG and MMG signals were recorded. Although fluid retention was significantly greater during the H protocol, the analyses indicated no change in torque, EMG amplitude, EMG mean power frequency (MPF), MMG amplitude, or MMG MPF with hyperhydration. These results indicated that glycerol-induced fluid retention does not affect the torque-producing capabilities of a muscle, the impulses (EMG) going to a muscle, or muscular vibrations (MMG). It has been suggested that EMG and MMG can be used as direct electrical/mechanical monitoring, which could be presented to trainers and athletes; however, before determining the utility of these signals, the MMG and EMG responses should be examined under a variety of conditions such as in the present study.  相似文献   

13.
14.
Reliability of assessment of protein structure prediction methods   总被引:11,自引:0,他引:11  
The reliability of ranking of protein structure modeling methods is assessed. The assessment is based on the parametric Student's t test and the nonparametric Wilcox signed rank test of statistical significance of the difference between paired samples. The approach is applied to the ranking of the comparative modeling methods tested at the fourth meeting on Critical Assessment of Techniques for Protein Structure Prediction (CASP). It is shown that the 14 CASP4 test sequences may not be sufficient to reliably distinguish between the top eight methods, given the model quality differences and their standard deviations. We suggest that CASP needs to be supplemented by an assessment of protein structure prediction methods that is automated, continuous in time, based on several criteria applied to a large number of models, and with quantitative statistical reliability assigned to each characterization.  相似文献   

15.
Transversus abdominis (TrA) has now been established as a key muscle for the stabilization of the lumbar spine and sacroiliac joints. Significantly, dysfunction of this muscle has also been implicated in low back pain. Real-time ultrasound (US) is a non-invasive procedure that has the potential to evaluate objectively the function of TrA. Objective: To investigate M-mode US as a reliable method of assessing TrA function. Method: M-mode US was used to measure the width of TrA as subjects drew in their lower abdominal wall at a controlled speed to a target depth. Eleven subjects were imaged. Results: the measures of TrA width were reliable and ranged between 3.14mm relaxed and 6.35mm contracted. The standard error of measurement ranged between 0.18mm and 0.57mm. Conclusion: M-mode US provides a reliable non-invasive measure of a controlled contraction of TrA.  相似文献   

16.
Membrane bilayer balance and erythrocyte shape: a quantitative assessment   总被引:5,自引:0,他引:5  
J E Ferrell  K J Lee  W H Huestis 《Biochemistry》1985,24(12):2849-2857
When human erythrocytes are incubated with certain phospholipids, the cells become spiculate echinocytes, resembling red cells subjected to metabolic starvation or Ca2+ loading. The present study examines (1) the mode of binding of saturated phosphatidylcholines and egg lysophosphatidylcholine to erythrocytes and (2) the quantitative relationship between phospholipid incorporation and red cell shape. We find that the phospholipids studied become intercalated into erythrocyte membranes, not simply adsorbed to the cell surface. Spin-labeling and radiolabeling data show that the incorporation of (4 +/- 1) X 10(6) molecules of exogenous phosphatidylcholine per cell converts discocytes to stage 3 echinocytes with about 35 conical spicules. This amount of lipid incorporation is estimated to expand the red cell membrane outer monolayer by 1.7% +/- 0.6%. Calculations of the inner and outer monolayer surface areas of model discocytes and stage 3 echinocytes yield an estimated difference of 0.7% +/- 0.2%.  相似文献   

17.
The National Weight Control Registry (NWCR) was established in 1993 to examine characteristics of successful weight‐loss maintainers. This group consistently self‐reports high levels of physical activity. The aims of this study were to obtain objective assessments of physical activity in NWCR subjects and compare this to physical activity in both normal‐weight and overweight controls. Individuals from the NWCR (n = 26) were compared to a never obese normal‐weight control group matched to the NWCR group's current BMI (n = 30), and an overweight control group matched to the NWCR group's self‐reported pre‐weight‐loss BMI (n = 34). Objective assessment of physical activity was obtained for a 1‐week period using a triaxial accelerometer. Bouts of moderate‐to‐vigorous physical activity (MVPA) ≥10 min in duration, as well as nonbout MVPA (bouts of MVPA 1–9 min in duration) were summed and characterized. NWCR subjects spent significantly (P = 0.004) more time per day in sustained bouts of MVPA than overweight controls (41.5 ± 35.1 min/day vs. 19.2 ± 18.6 min/day) and marginally (P = 0.080) more than normal controls (25.8 ± 23.4). There were no significant differences between the three groups in the amount of nonbout MVPA. These results provide further evidence that physical activity is important for long‐term maintenance of weight loss and suggest that sustained volitional activity (i.e., ≥10 min in duration) may play an important role. Interventions targeting increases in structured exercise may be needed to improve long‐term weight‐loss maintenance.  相似文献   

18.
A theoretically valid proxy of energy expenditure is the acceleration of an animal's mass due to the movement of its body parts. Acceleration can be measured by an accelerometer and recorded onto a data logging device. Relevant studies have usually derived a measure of acceleration from the raw data that represents acceleration purely due to movement of the animal. This is termed ‘overall dynamic body acceleration’ (ODBA) and to date has proved a robust derivation of acceleration for use as an energy expenditure proxy. Acceleration data loggers are generally easy to deploy and the measures recorded appear robust to slight variation in location and orientation. This review discusses important issues concerning the accelerometry technique for estimating energy expenditure and ODBA; deriving ODBA, calibrating ODBA, acceleration logger recording frequencies, scenarios where ODBA is less likely to be valid, and the power in recording acceleration and heart rate together. While present evidence suggests that ODBA may not quantify energy expenditure during diving by birds and mammals, several recent studies have assessed changes in mechanical work in such species qualitatively through variation in ODBA during periods of submergence. The use of ODBA in field metabolic studies is likely to continue growing, supported by its relative ease of use and range of applications.  相似文献   

19.
Controversies exist regarding objective documentation of fatigue development with low-force contractions. We hypothesized that non-exhaustive, low-force muscle contraction may induce prolonged low-frequency fatigue (LFF) that in the subsequent recovery period is detectable by electromyography (EMG) and in particular mechanomyography (MMG) during low-force rather than high-force test contractions. Seven subjects performed static wrist extension at 10% maximal voluntary contraction (MVC) for 10 min (10%MVC10 min). Wrist force response to electrical stimulation of extensor carpi radialis muscle (ECR) quantified LFF. EMG and MMG were recorded from ECR during static test contractions at 5% and 80% MVC. Electrical stimulation, MVC, and test contractions were performed before 10%MVC10 min and at 10, 30, 90 and 150 min recovery. In spite of no changes in MVC, LFF persisted up to 150 min recovery but did not develop in a control experiment omitting 10%MVC10 min. In 5% MVC tests significant increase was found in time domain of EMG from 0.067+/-0.028 mV before 10%MVC10 min to 0.107+/-0.049 and 0.087+/-0.05 mV at 10 and 30 min recovery, respectively, and of the MMG from 0.054+/-0.039 ms(-2) to 0.133+/-0.104 and 0.127+/-0.099 ms(-2), respectively. No consistent changes were found in 80% MVC tests. In conclusion, non-exhaustive low-force muscle contraction resulted in prolonged LFF that in part was identified by the EMG and MMG signals.  相似文献   

20.
Balance methods reveal changes in body energy, nitrogen, macro‐ and micronutrients as well as fluid in response to different feeding regimens. Under metabolic ward conditions, where physical activity is restricted and activity and food intake are controlled, the errors of estimates of energy intake, energy expenditure, and energy losses are about 2, 4, and 2%, respectively. Balance techniques can be used to validate techniques of in vivo body composition analysis (BCA). This is necessary since immediate and transient changes in body composition in response to a change in diet adversely affect the validity of techniques by violating the assumptions underlying standard methods (i.e., a constant composition or hydration of lean mass). Using two compartment reference methods, like densitometry, dual X‐ray absorptiometry (DXA) or deuterium dilution, changes in fat mass with caloric restriction and overfeeding can be measured with a minimal detectable change (MDC) of 1.0–2.0 kg. However, when compared against balance data, the validity of these techniques to measure short‐term changes in body composition is poor. The noninvasive and rapid new quantitative magnetic resonance (QMR) technique has a high precision with a MDC of 0.18 kg of fat mass. The validity of QMR to assess short‐term changes in fat mass is challenged by comparison to balance data. Today, techniques used for in vivo BCA should be related to steady state conditions only, while in the nonsteady state, the use of balance methods is recommended to assess short‐term changes in body composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号