首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
Domene C  Furini S 《Biochemistry》2012,51(8):1559-1565
TrkH is a transmembrane protein that mediates uptake of K(+) through the cell membrane. Despite the recent determination of its crystallographic structure, the nature of the permeation mechanism is still unknown, that is, whether K(+) ions move across TrkH by active transport or passive diffusion. Here, molecular dynamics simulations and the umbrella sampling technique have been employed to shed light on this question. The existence of binding site S3 and two alternative binding sites have been characterized. Analysis of the coordination number renders values that are almost constant, with a full contribution from the carbonyls of the protein only at S3. This observation contrasts with observations of K(+) channels, where the contribution of the protein to the coordination number is roughly constant in all four binding sites. An intramembrane loop is found immediately after the selectivity filter at the intracellular side of the protein, which obstructs the permeation pathway, and this is reflected in the magnitude of the energy barriers.  相似文献   

3.
Nuclear receptor (NR) ligands occupy a pocket that lies within the core of the NR ligand-binding domain (LBD), and most NR LBDs lack obvious entry/exit routes upon the protein surface. Thus, significant NR conformational rearrangements must accompany ligand binding and release. The precise nature of these processes, however, remains poorly understood. Here, we utilize locally enhanced sampling (LES) molecular dynamics computer simulations to predict molecular motions of x-ray structures of thyroid hormone receptor (TR) LBDs and determine events that permit ligand escape. We find that the natural ligand 3,5,3'-triiodo-L-thyronine (T(3)) dissociates from the TRalpha1 LBD along three competing pathways generated through i), opening of helix (H) 12; ii), separation of H8 and H11 and the Omega-loop between H2 and H3; and iii), opening of H2 and H3, and the intervening beta-strand. Similar pathways are involved in dissociation of T(3) and the TRbeta-selective ligand GC24 from TRbeta; the TR agonist IH5 from the alpha- and beta-TR forms; and Triac from two natural human TRbeta mutants, A317T and A234T, but are detected with different frequencies in simulations performed with the different structures. Path I was previously suggested to represent a major pathway for NR ligand dissociation. We propose here that Paths II and III are also likely ligand escape routes for TRs and other NRs. We also propose that different escape paths are preferred in different situations, implying that it will be possible to design NR ligands that only associate stably with their cognate receptors in specific cellular contexts.  相似文献   

4.
5.
Molecular dynamics simulations have been used to model the motions and conformational behavior of the whey protein bovine beta-lactoglobulin. Simulations were performed for the protein by itself and complexed to a single retinol ligand located in a putative interior binding pocket. In the absence of the retinol ligand, the backbone loops around the opening of this interior pocket shifted inward to partially close off this cavity, similar to the shifts observed in previously reported molecular dynamics simulations of the uncomplexed form of the homologous retinol binding protein. The protein complexed with retinol does not exhibit the same conformational shifts. Conformational changes of this type could serve as a recognition signal allowing in vivo discrimination between the free and retinol complexed forms of the beta-lactoglobulin molecule. The unusual bending of the single alpha-helix observed in the simulations of retinol binding protein were not observed in the present calculations.  相似文献   

6.
Kubiak K  Nowak W 《Biophysical journal》2008,94(10):3824-3838
Nitrile hydratase (NHase) is an enzyme used in the industrial biotechnological production of acrylamide. The active site, which contains nonheme iron or noncorrin cobalt, is buried in the protein core at the interface of two domains, α and β. Hydrogen bonds between βArg-56 and αCys-114 sulfenic acid (αCEA114) are important to maintain the enzymatic activity. The enzyme may be inactivated by endogenous nitric oxide (NO) and activated by absorption of photons of wavelength λ < 630 nm. To explain the photosensitivity and to propose structural determinants of catalytic activity, differences in the dynamics of light-active and dark-inactive forms of NHase were investigated using molecular dynamics (MD) modeling. To this end, a new set of force field parameters for nonstandard NHase active sites have been developed. The dynamics of the photodissociated NO ligand in the enzyme channel was analyzed using the locally enhanced sampling method, as implemented in the MOIL MD package. A series of 1 ns trajectories of NHases shows that the protonation state of the active site affects the dynamics of the catalytic water and NO ligand close to the metal center. MD simulations support the catalytic mechanism in which a water molecule bound to the metal ion directly attacks the nitrile carbon.  相似文献   

7.
Molecular dynamics (MD) simulations of N-terminal peptides from lactate dehydrogenase (LDH) with increasing length and individual secondary structure elements were used to study their stability in relation to folding. Ten simulations of 1–2 ns of different peptides in water starting from the coordinates of the crystal structure were performed. The stability of the peptides was compared qualitatively by analyzing the root mean square deviation (RMSD) from the crystal structure, radius of gyration, secondary and tertiary structure, and solvent accessible surface area. In agreement with earlier MD studies, relatively short (< 15 amino acids) peptides containing individual secondary structure elements were generally found to be unstable; the hydrophobic α1-helix of the nucleotide binding fold displayed a significantly higher stability, however. Our simulations further showed that the first βαβ supersecondary unit of the characteristic dinucleotide binding fold (Rossmann fold) of LDH is somewhat more stable than other units of similar length and that the α2-helix, which unfolds by itself, is stabilized by binding to this unit. This finding suggests that the first βαβ unit could function as an N-terminal folding nucleus, upon which the remainder of the polypeptide chain can be assembled. Indeed, simulations with longer units (βαβα and βαβαββ) showed that all structural elements of these units are rather stable. The outcome of our studies is in line with suggestions that folding of the N-terminal portion of LDH in vivo can be a cotranslational process that takes place during the ribosomal peptide synthesis.  相似文献   

8.
Although the cellular monomeric form of the benign prion protein is now well characterized, a model for the monomer of the misfolded conformation (PrP(Sc)) remains elusive. PrP(Sc) quickly aggregates into highly insoluble fibrils making experimental structural characterization very difficult. The tendency to aggregation of PrP(Sc) in aqueous solution implies that the monomer fold must be hydrophobic. Here, by using molecular dynamics simulations, we have studied the cellular mouse prion protein and its D178N pathogenic mutant immersed in a hydrophobic environment (solution of CCl4), to reveal conformational changes and/or local structural weaknesses of the prion protein fold in unfavorable structural and thermodynamic conditions. Simulations in water have been also performed. Although observing in general a rather limited conformation activity in the nanosecond timescale, we have detected a significant weakening of the antiparallel beta-sheet of the D178N mutant in CCl4 and to a less extent in water. No weakening is observed for the native prion protein. The increase of beta-structure in the monomer, recently claimed as evidence for misfolding to PrP(Sc), has been also observed in this study irrespective of the thermodynamic or structural conditions, showing that this behavior is very likely an intrinsic characteristic of the prion protein fold.  相似文献   

9.
Despite a growing repertoire of membrane protein structures (currently ∼120 unique structures), considerations of low resolution and crystallization in the absence of a lipid bilayer require the development of techniques to assess the global quality of membrane protein folds. This is also the case for assessment of, e.g. homology models of human membrane proteins based on structures of (distant) bacterial homologues. Molecular dynamics (MD) simulations may be used to help evaluate the quality of a membrane protein structure or model. We have used a structure of the bacterial ABC transporter MsbA which has the correct transmembrane helices but an incorrect handedness and topology of their packing to test simulation methods of quality assessment. An MD simulation of the MsbA model in a lipid bilayer is compared to a simulation of another bacterial ABC transporter, BtuCD. The latter structure has demonstrated good conformational stability in the same bilayer environment and over the same timescale (20 ns) as for the MsbA model simulation. A number of comparative analyses of the two simulations were performed to assess changes in the structural integrity of each protein. The results show a significant difference between the two simulations, chiefly due to the dramatic structural deformations of MsbA. We therefore propose that MD could become a useful quality control tool for membrane protein structural biology. In particular, it provides a way in which to explore the global conformational stability of a model membrane protein fold.  相似文献   

10.
Molecular dynamics simulations have become a standard tool for the investigation of biomolecules. Simulations are performed of ever bigger systems using more realistic boundary conditions and better sampling due to longer sampling times. Recently, realistic simulations of systems as complex as transmembrane channels have become feasible. Simulations aid our understanding of biochemical processes and give a dynamic dimension to structural data; for example, the transformation of harmless prion protein into the disease-causing agent has been modeled.  相似文献   

11.
Molecular simulations able to exactly represent solvated charged proteins are helpful in understanding protein dynamics, structure and function. In the present study we have used two different starting structures of papain (a typical, stable, globular protein of intermediate net charge) and different modeling procedures to evaluate some effects of counterions in simulations. A number of configurations have been generated and relaxed for each system by various combinations of constrained simulated annealing and molecular dynamics procedures, using the AMBER force field. The analysis of trajectories shows that the simulations of solvated proteins are moderately sensitive to the presence of counterions. However, this sensitivity is highly dependent on the starting model and different procedures of equilibration used. The neutralized systems tend to evince smaller root mean square deviations regardless of the system investigated and the simulation procedure used. The results of parameterized fitting of the simulated structures to the crystallographic data, giving quantitative measure of the total charge influence on the stability of various elements of the secondary structure, revealed a clear scatter of different reactions of various systems' secondary structures to counterions addition: some systems apparently were stabilized when neutralized, while the others were not. Thus, one cannot unequivocally state, despite consideration of specific simulation conditions, whether protein secondary structures are more stable when they have neutralized charges. This suggests that caution should be taken when claiming the stabilizing effect of counterions in simulations other than those involving small, unstable polypeptides or highly charged proteins.  相似文献   

12.
13.
K. Ueda  J. W. Brady 《Biopolymers》1997,41(3):323-330
Molecular mechanics calculations have been performed for the disaccharide carrabiose, one of the repeat units of β-carrageenan, as a general model for the (1→4)-linkage in the carrageenans. An adiabatic conformational energy map for this unsulfated molecule was prepared by constrained energy minimization and compared to a previously reported rigid-residue energy map for the sulfated molecule and to a similar adiabatic map for neocarrabiose, the related (1→3)-linked dimer repeat unit of β-carrageenan. Molecular dynamics simulations of this molecule in vacuo and in an aqueous (TIP3P) solution were calculated, and the observed motions were found to be generally consistent with the vacuum adiabatic energy map. Unlike the case observed in previous simulations of neocarrabiose, little salvation shift in the molecular conformation was observed for carrabiose. From the dynamics, the linkage was observed to be relatively flexible, as has been inferred from experiment on sulfated carrageenan polymers. © 1997 John Wiley & Sons, Inc.  相似文献   

14.
Molecular dynamics simulations as a tool for improving protein stability   总被引:1,自引:0,他引:1  
Haloalkane dehalogenase (DhlA) was used as a model protein to explore the possibility to use molecular dynamics (MD) simulations as a tool to identify flexible regions in proteins that can serve as a target for stability enhancement by introduction of a disulfide bond. DhlA consists of two domains: an alpha/beta-hydrolase fold main domain and a cap domain composed of five alpha-helices. MD simulations of DhlA showed high mobility in a helix-loop-helix region in the cap domain, involving residues 184-211. A disulfide cross-link was engineered between residue 201 of this flexible region and residue 16 of the main domain. The mutant enzyme showed substantial changes in both thermal and urea denaturation. The oxidized form of the mutant enzyme showed an increase of the apparent transition temperature from 47.5 to 52.5 degrees C, whereas the T(m,app) of the reduced mutant decreased by more than 8 degrees C compared to the wild-type enzyme. Urea denaturation results showed a similar trend. Measurement of the kinetic stability showed that the introduction of the disulfide bond caused a decrease in activation free energy of unfolding of 0.43 kcal mol(-1) compared to the wild-type enzyme and also indicated that the helix-loop-helix region was involved early in the unfolding process. The results show that MD simulations are capable of identifying mobile protein domains that can successfully be used as a target for stability enhancement by the introduction of a disulfide cross-link.  相似文献   

15.
Molecular dynamics simulations are now commonly applied to metalloproteins, despite the challenges introduced by the presence of metal ions. Force field parameters are nowadays available also for these 'exotic' atoms and several biological systems have been successfully studied. Some of the most relevant results and methodological advancements are reviewed.  相似文献   

16.
xDNA is a modified DNA, which contains natural as well as expanded bases. Expanded bases are generated by the addition of a benzene spacer to the natural bases. A set of AMBER force‐field parameters were derived for the expanded bases and the structural dynamics of the xDNA decamer ( xT5 ′ G xT A xC xG C xA xG T3′ ) · ( xA5′ C T xG C G xT A xC A3′) was explored using a 22 ns molecular dynamics simulation in explicit solvent. During the simulation, the duplex retained its Watson‐Crick base‐pairing and double helical structure, with deviations from the starting B‐form geometry towards A‐form; the deviations are mainly in the backbone torsion angles and in the helical parameters. The sugar pucker of the residues were distributed among a variety of modes; C2′ endo, C1′ exo, O4′ endo, C4′ exo, C2′ exo, and C3′ endo. The enhanced stacking interactions on account of the modification in the bases could help to retain the duplex nature of the helix with minor deviations from the ideal geometry. In our simulation, the xDNA showed a reduced minor groove width and an enlarged major groove width in comparison with the NMR structure. Both the grooves are larger than that of standard B‐DNA, but major groove width is larger than that of A‐DNA with almost equal minor groove width. The enlarged groove widths and the possibility of additional hydration in the grooves makes xDNA a potential molecule for various applications. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 351–360, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

17.
18.
Molecular dynamics simulations of biomolecules   总被引:13,自引:0,他引:13  
  相似文献   

19.
The recognition of carbohydrates by lectins plays key roles in diverse cellular processes such as cellular adhesion, proliferation, and apoptosis, which makes it a therapeutic target of significance against cancers. One of the most functionally active lectins, galectin-3 is distinctively known for its specific binding affinity toward β-galactoside. However, despite the prevalence of high-resolution crystallographic structures, the mechanistic basis and more significantly, the dynamic process underlying carbohydrate recognition by galectin-3 are currently elusive. To this end, we employed extensive Molecular Dynamics simulations to unravel the complete binding event of human galectin-3 with its native natural ligand N-acetyllactosamine (LacNAc) at atomic precision. The simulation trajectory demonstrates that the oligosaccharide diffuses around the protein and eventually identifies and binds to the biologically designated binding site of galectin-3 in real time. The simulated bound pose correlates with the crystallographic pose with atomic-level accuracy and recapitulates the signature stabilizing galectin-3/oligosaccharide interactions. The recognition pathway also reveals a set of transient non-native ligand poses in its course to the receptor. Interestingly, kinetic analysis in combination with a residue-level picture revealed that the key to the efficacy of a more active structural variant of the LacNAc lay in the ligand’s resilience against disassociation from galectin-3. By catching the ligand in the act of finding its target, our investigations elucidate the detailed recognition mechanism of the carbohydrate-binding domain of galectin-3 and underscore the importance of ligand–target binary complex residence time in understanding the structure–activity relationship of cognate ligands.  相似文献   

20.
Nitric oxide reductases (NORs) are membrane proteins that catalyze the reduction of nitric oxide (NO) to nitrous oxide (N(2)O), which is a critical step of the nitrate respiration process in denitrifying bacteria. Using the recently determined first crystal structure of the cytochrome c-dependent NOR (cNOR) [Hino T, Matsumoto Y, Nagano S, Sugimoto H, Fukumori Y, et al. (2010) Structural basis of biological N2O generation by bacterial nitric oxide reductase. Science 330: 1666-70.], we performed extensive all-atom molecular dynamics (MD) simulations of cNOR within an explicit membrane/solvent environment to fully characterize water distribution and dynamics as well as hydrogen-bonded networks inside the protein, yielding the atomic details of functionally important proton channels. Simulations reveal two possible proton transfer pathways leading from the periplasm to the active site, while no pathways from the cytoplasmic side were found, consistently with the experimental observations that cNOR is not a proton pump. One of the pathways, which was newly identified in the MD simulation, is blocked in the crystal structure and requires small structural rearrangements to allow for water channel formation. That pathway is equivalent to the functional periplasmic cavity postulated in cbb(3) oxidase, which illustrates that the two enzymes share some elements of the proton transfer mechanisms and confirms a close evolutionary relation between NORs and C-type oxidases. Several mechanisms of the critical proton transfer steps near the catalytic center are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号