首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Norepinephrine-stimulated skin secretions of the Tyrrhenian painted frog Discoglossus sardus Tschudi, 1837 (Alytidae) did not contain any peptide with antimicrobial or hemolytic activity. However, peptidomic analysis of the secretions revealed the presence of an abundant peptide with structural similarity to frenatin 2, previously isolated from the Australian frog Litoria infrafrenata (Hylidae). The primary structure of the peptide, termed frenatin 2D, was established as DLLGTLGNLPLPFI.NH2 by automated Edman degradation and mass spectrometry with electron-transfer dissociation (ETD)-based fragmentation and confirmed by chemical synthesis. The structure of a second frenatin 2-related peptide, termed frenatin 2.1D, that was present in much lower abundance was established as GTLGNLPAPFPG. Frenatin 2D (20 μg/ml) significantly stimulated production of the proinflammatory cytokines TNF-α (P < 0.05) and IL-1β (P < 0.01) by mouse peritoneal macrophages but the peptide did not potentiate the stimulation produced by lipopolysaccharide (LPS). The peptide increased IL-12 production in both unstimulated (P < 0.01) and LPS-stimulated (P < 0.05) cells but stimulatory effects on IL-6 production were not significant. The biological role of frenatin 2D is unknown but it is speculated that the peptide acts on skin macrophages to produce a cytokine-mediated stimulation of the adaptive immune system in response to invasion by microorganisms.  相似文献   

2.
Naïve sea bass juveniles (38.4 ± 4.5 g) were intramuscularly infected with a sublethal dose of betanodavirus isolate 378/I03, followed after 43 days by a similar boosting. This infection resulted in an overall mortality of 7.6%. At various intervals, sampling of fish tissues was performed to investigate: i) B and T lymphocyte content in organs and tissues; ii), proliferation of leucocytes re-stimulated in vitro with inactivated virus; iii) presence of serum antibody specific for betanodavirus; iv) expression of genes coding for the following immunoregulatory molecules involved in innate and acquired responses: type I IFN, Mx, IL-1, Cox-2; IL-10, TGF-β, TCRβ, CD4, CD8α, IgM, by using a quantitative PCR array system developed for sea bass.The obtained results showed a detectable increase of T cells and B cells in PBL during betanodavirus infection. Furthermore, leucocytes obtained from blood, head kidney, and gills showed a detectable “in vitro” increase in viability upon addition of inactivated viral particles, as determined by measuring intracellular ATP concentration. ELISA analysis of sera showed that exposure to nodavirus induced a low, but specific antibody titer measured 43 days after infection, despite the presence of measurable levels of natural antibody. Finally, a strong upregulation of genes coding for type I IFN, Mx, and IgM was identified after both infection and boosting. Interestingly, an upregulation of Cox-2 until boosting, and of TGF-β and IL-10 after boosting was also observed, while the other tested genes did not show any significant variations with respect to mock-treated fish. Overall, our work represents a first comprehensive analysis of cellular and molecular immune parameters in a fish species exposed to a pathogenic virus.  相似文献   

3.
B1 cells, a subset of B lymphocytes whose developmental origin, phenotype, and function differ from that of conventional B2 cells, are the main source of “natural” IgM but can also respond to infection by rapidly producing pathogen-specific IgM directed against T-independent antigens. Francisella tularensis (Ft) is a Gram-negative bacterium that causes tularemia. Infection with Ft Live Vaccine Strain activates B1 cells for production of IgM directed against the bacterial LPS in a process incompletely understood. Here we show that immunization with purified Ft LPS elicits production of LPS-specific IgM and IgG3 by B1 cells independently of TLR2 or MyD88. Immunization, but not infection, generated peritoneum-resident memory B1 cells that differentiated into LPS-specific antibody secreting cells (ASC) upon secondary challenge. IL-5 was rapidly induced by immunization with Ft LPS and was required for production of LPS-specific IgM. Antibody-mediated depletion of ILC2 indicated that these cells were the source of IL-5 and were required for IgM production. IL-25, an alarmin that strongly activates ILC2, was rapidly secreted in response to immunization or infection and its administration to mice significantly increased IgM production and B1 cell differentiation to ASC. Conversely, mice lacking IL-17RB, the IL-25 receptor, showed impaired IL-5 induction, IgM production, and B1 ASC differentiation in response to immunization. Administration of IL-5 to Il17rb-/- mice rescued these B1 cells-mediated responses. Il17rb-/- mice were more susceptible to infection with Ft LVS and failed to develop immunity upon secondary challenge suggesting that LPS-specific IgM is one of the protective adaptive immune mechanisms against tularemia. Our results indicated that immunization with Ft LPS triggers production of IL-25 that, through stimulation of IL-5 release by ILC2, promotes B1 cells activation and differentiation into IgM secreting cells. By revealing the existence of an IL-25-ILC2-IL-5 axis our results suggest novel strategies to improve vaccination against T-independent bacterial antigens.  相似文献   

4.
Prostaglandin E2 (PGE2) plays an important role in a broad spectrum of physiological and pathological processes by interacting with E-type prostanoid receptors (EPs). EP4 is one of four EP subtypes known to mediate the immune response in mammalian monocytes/macrophages. However, the precise function and characteristics of EP4 in fish remain unclear. In this study, we characterized a novel EP4-like (PaEP4L) gene from ayu, Plecoglossus altivelis. The cDNA sequence of PaEP4L is 2781 nucleotides (nts) in length, encoding a polypeptide of 459 amino acid residues with a calculated molecular weight of 51.17 kDa. Sequence comparison and phylogenetic tree analysis showed that PaEP4L shared 76% amino acid identity with that of the Atlantic salmon (Salmo salar). PaEP4L mRNA was detected by real-time quantitative PCR (QPCR) in all tested tissues and head kidney-derived monocytes/macrophages (MO/MФ). It varied greatly in liver, spleen and MO/MФ upon Vibrio anguillarum infection. Western blot analysis revealed a significant increase of PaEP4L in cell homogenates from ayu MO/MФ upon V. anguillarum infection. Moreover, anti-PaEP4L IgG reversed the down-regulation of interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) mRNA expression as well as phagocytosis in ayu MO/MФ caused by PGE2. There were no significant differences in the respiratory burst response between PGE2 treated and untreated cells. We further found that cAMP mediated PGE2/PaEP4L signal in ayu MO/MФ. In conclusion, our results indicate that PaEP4L mediates PGE2 effects on ayu MO/MФ function, revealing that EP4 also plays a role in the modulation of cells of the fish’s innate immune system.  相似文献   

5.
6.
We determine that OmpA of Shigella flexneri 2a is recognized by TLR2 and consequently mediates the release of proinflammatory cytokines and activates NF-κB in HEK 293 cells transfected with TLR2. We also observe that in RAW macrophages TLR2 is essential to instigate the early immune response to OmpA via NF-κB activation and secretion of cytokines and NO. Consistent with these results, TLR2 knockdown using siRNA abolishes the initiation of immune responses. Processing and presentation of OmpA depend on TLR2; MHCII presentation of the processed antigen and expression of CD80 significantly attenuated in TLR2 knockdown macrophages. The optimum production of IFN-γ by the macrophages:CD4(+) T cells co-culture depends on both TLR2 activation and antigen presentation. So, TLR2 is clearly recognized as a decisive factor in initiating host innate immune response to OmpA for the development of CD4(+) T cell adaptive response. Furthermore, we demonstrate in vivo that intranasal immunization of mice with OmpA selectively enhances the release of IFN-γ and IL-2 by CD4(+) T cells. Importantly, OmpA increases the level of IFN-γ production in Ag-primed splenocytes. The addition of neutralizing anti-IL-12p70 mAb to cell cultures results in the decreased release of OmpA-enhanced IFN-γ by Ag-primed splenocytes. Moreover, coincubation with OmpA-pretreated macrophages enhances the production of IFN-γ by OmpA-primed CD4(+) T cells, representing that OmpA may enhance IFN-γ expression in CD4(+) T cells through the induction of IL-12 production in macrophages. These results demonstrate that S. flexneri 2a OmpA may play a critical role in the development of Th1 skewed adaptive immune response.  相似文献   

7.
Leishmania amazonensis, the causal agent of diffuse cutaneous leishmaniasis, is known for its ability to modulate the host immune response. Because a relationship between ectonucleotidase activity and the ability of Leishmania to generate injury in C57BL/6 mice has been demonstrated, in this study we evaluated the involvement of ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) activity of L. amazonensis in the process of infection of J774-macrophages. Our results show that high-activity parasites show increased survival rate in LPS/IFN-γ-activated cells, by inhibiting the host-cell NO production. Conversely, inhibition of E-NTPDase activity reduces the parasite survival rates, an effect associated with increased macrophage NO production. E-NTPDase activity generates substrate for the production of extracellular adenosine, which binds to A2B receptors and reduces IL-12 and TNF-α produced by activated macrophages, thus inhibiting NO production. These results indicate that E-NTPDase activity is important for survival of L. amazonensis within macrophages, showing the role of the enzyme in modulating macrophage response and lower NO production, which ultimately favors infection. Our results point to a new mechanism of L. amazonensis infection that may pave the way for the development of new treatments for this neglected disease.  相似文献   

8.
9.
 The nicotine-derived N-nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is one of the most abundant and potent carcinogens found in tobacco smoke. NNK induces lung tumors in rodents and is most likely involved in lung carcinogenesis in humans. Studies on the metabolism and carcinogenicity of NNK have been extensive. However, its effects on the immune system have not been investigated thoroughly. Considering that tobacco smoking partially suppresses the immune response in humans, and that immune surveillance plays a critical role in cancer development, we examined the effects of NNK on the production of selected cytokines. In a previous study, we observed an inhibition of NK cell activity and IgM secretory cell number in NNK-treated A/J mice [Rioux and Castonguay (1997) J Natl Cancer Inst 89: 874]. In this study, we demonstrate that U937 human macrophages activate NNK to alkylating intermediates by α-carbon hydroxylation and detoxify NNK by N-oxidation. We observed that NNK, following activation, induces the release of soluble tumor necrosis factor (TNF), but inhibits interleukin(IL)-10 synthesis. We also report that 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone, and nitroso(acetoxymethyl)methylamine, which generate the same alkylating intermediates as NNK, have similar effects on TNF and IL-10. This suggests that pyridyloxobutylating and methylating intermediates generated from NNK are potent modulators of the immune response. The levels of IL-6, granulocyte/macrophage-colony-stimulating factor and macrophage chemotactic protein 1 were also decreased in supernatants of NNK-treated U937 macrophages. In contrast, IL-2 synthesis in Jurkat cells was inhibited by NNK treatment. This is the first study demonstrating that NNK, via its alkylating intermediates, alters the cytokine synthesis profile in human cells. Modulation of cytokine synthesis by NNK might partially explain the immunosuppresion observed in smokers. Inhibition of immune functions, resulting from NNK activation to alkylating agents, may facilitate lung tumor development. Received: 3 February 2000 / Accepted: 15 September 2000  相似文献   

10.
15-Deoxy-Delta(12,14)-prostaglandin J(2) (dPGJ(2)) is a metabolite of prostaglandin D(2), that binds to peroxisome proliferator-activated receptor gamma (PPARgamma). PPARgamma and prostaglandin D(2) synthase, which is required for dPGJ(2) synthesis, are predominantly expressed in macrophages. In contrast, IL-10 and IL-12 produced by macrophages stimulate Th1 and Th2 immune response, respectively. This study investigated the effect of dPGJ(2) on IL-10 and IL-12 production by macrophages in response to lipopolysaccharide (LPS). Our data clearly demonstrated that dPGJ(2) inhibits LPS-induced IL-10 and IL-12 production by macrophages. A different agonist of PPARgamma, 13-hydroxyoctadecadienoic acid, similarly inhibited the production of IL-10 and IL-12 in response to LPS. Further, dPGJ(2) did not appear to act through the PGD(2) receptor. These results suggest that dPGJ(2) may inhibit LPS-induced IL-10 and IL-12 production by macrophages through PPARgamma.  相似文献   

11.
12.
At hatching, the immune system of the rainbow trout larva is not fully developed. The larva emerges from the egg and is exposed to the aquatic freshwater environment containing pathogenic organisms. At this early stage, protection from disease causing organisms is thought to depend on innate immune mechanisms. Here, we studied the ability of young post-hatch rainbow trout larvae to respond immunologically to an infection with Ichthyophthirius multifiliis and also report on the localization of 5 different immune relevant molecules in the tissue of infected and uninfected larvae. Quantitative RT-PCR (qPCR) was used to analyze the genetic regulation of IL-1β, IL-8, IL-6, TNF-α, iNOS, SAA, cathelicidin-2, hepcidin, IL-10, IL-22, IgM and IgT. Also, a panel of 5 monoclonal antibodies was used to investigate the presence and localization of the proteins CD8, SAA, MHCII, IgM and IgT. At 10 days (84 degree days) post-hatching, larvae were infected with I. multifiliis and sampled for qPCR at 3, 6, 12, 24, 48 and 72 h post-infection (p.i.). At 72 h p.i. samples were taken for antibody staining. The first of the examined genes to be up-regulated was IL-1β. Subsequently, IL-8 and cathelicidin-2 were up-regulated and later TNF-α, hepcidin, IL-6, iNOS and SAA. Immunohistochemical staining showed presence of CD8 and MHCII in the thymus of both infected and non-infected larvae. Staining of MHCII and SAA was seen at sites of parasite localization and weak staining of SAA was seen in the liver of infected larvae. Staining of IgT was seen at site of infection in the gills which may be one of the earliest adaptive factors seen. No positive staining was seen for IgM. The study illustrates that rainbow trout larvae as young as 10 days (84 degree days) post-hatch are able to regulate important immune relevant cytokines, chemokines and acute phase proteins in response to infection with a skin parasitizing protozoan parasite.  相似文献   

13.
14.
15.
Peptidomic analysis of norepinephrine-stimulated skin secretions of the Orinoco lime tree frog Sphaenorhynchus lacteus (Hylidae, Hylinae) revealed the presence of three structurally related host-defense peptides with limited sequence similarity to frenatin 2 from Litoria infrafrenata (Hylidae, Pelodryadinae) and frenatin 2D from Discoglossus sardus (Alytidae). Frenatin 2.1S (GLVGTLLGHIGKAILG.NH2) and frenatin 2.2S (GLVGTLLGHIGKAILS.NH2) are C-terminally α-amidated but frenatin 2.3S (GLVGTLLGHIGKAILG) is not. Frenatin 2.1S and 2.2S show potent bactericidal activity against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MIC ≤16 μM) but are less active against a range of Gram-negative bacteria. Frenatin 2.1S (LC50 = 80 ± 6 μM) and 2.2S (LC50 = 75 ± 5 μM) are cytotoxic against non-small cell lung adenocarcinoma A549 cells but are less hemolytic against human erythrocytes (LC50 = 167 ± 8 μM for frenatin 2.1S and 169 ± 7 μM for 2.2S). Weak antimicrobial and cytotoxic potencies of frenatin 2.3S demonstrate the importance of C-terminal α-amidation for activity. Frenatin 2.1S and 2.2S significantly (P < 0.05) increased production of proinflammatory cytokines IL-1β and IL-23 by lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophages and frenatin 2.1S also enhanced production of TNF-α. Effects on IL-6 production were not significant. Frenatin 2.2S significantly downregulated production of the anti-inflammatory cytokine IL-10 by LPS-stimulated cells. The data support speculation that frenatins act on skin macrophages to produce a cytokine-mediated stimulation of the adaptive immune system in response to invasion by microorganisms. They may represent a template for the design of peptides with therapeutic applications as immunostimulatory agents.  相似文献   

16.
Cerebral malaria (CM) is a complex parasitic disease caused by Plasmodium sp. Failure to establish an appropriate balance between pro- and anti-inflammatory immune responses is believed to contribute to the development of cerebral pathology. Using the blood-stage PbA (Plasmodium berghei ANKA) model of infection, we show here that administration of the pro-Th2 cytokine, IL-33, prevents the development of experimental cerebral malaria (ECM) in C57BL/6 mice and reduces the production of inflammatory mediators IFN-γ, IL-12 and TNF-α. IL-33 drives the expansion of type-2 innate lymphoid cells (ILC2) that produce Type-2 cytokines (IL-4, IL-5 and IL-13), leading to the polarization of the anti-inflammatory M2 macrophages, which in turn expand Foxp3 regulatory T cells (Tregs). PbA-infected mice adoptively transferred with ILC2 have elevated frequency of M2 and Tregs and are protected from ECM. Importantly, IL-33-treated mice deleted of Tregs (DEREG mice) are no longer able to resist ECM. Our data therefore provide evidence that IL-33 can prevent the development of ECM by orchestrating a protective immune response via ILC2, M2 macrophages and Tregs.  相似文献   

17.
In schistosomiasis, the current control strategy does not prevent reinfection, therefore, vaccine strategies are essential to combat the Schistosoma mansoni. The efficacy vaccine depends on parasite stage and effective adjuvant. We have recently demonstrated that S. mansoni schistosomula tegument (Smteg) is able to activate dendritic cells up regulate CD40 and CD86 molecules and induce a partial protection in mice (43–48%) when formulated with Freund's adjuvant. In this study we evaluated the ability of Smteg + alum or Smteg + alum + CpG-ODN to induce protection in mice. Our results demonstrate that Smteg + alum + CpG-ODN induced a partial reduction in worm burden (43.1%), reduction in the number of eggs eliminated in the feces. The protective response was associated with a predominant Th1 type of immune response, with increased production of specific IgG2c, IFN-γ and TNF-α, B cells proliferation and CD4 cells and macrophages activation.  相似文献   

18.
Type 2 diabetes mellitus is an established risk factor for tuberculosis but the underlying mechanisms are largely unknown. We examined the effects of hyperglycaemia, a hallmark of diabetes, on the cytokine response to and macrophage infection with Mycobacterium tuberculosis. Increasing in vitro glucose concentrations from 5 to 25 mmol/L had marginal effects on cytokine production following stimulation of peripheral blood mononuclear cells (PBMCs) with M. tuberculosis lysate, LPS or Candida albicans, while 40 mmol/L glucose increased production of TNF-α, IL-1β, IL-6 and IL-10, but not of IFN-γ, IL-17A and IL-22. Macrophage differentiation under hyperglycaemic conditions of 25 mmol/L glucose was also associated with increased cytokine production upon stimulation with M. tuberculosis lysate and LPS but in infection experiments no differences in M. tuberculosis killing or outgrowth was observed. The phagocytic capacity of these hyperglycaemic macrophages also remained unaltered. The fact that only very high glucose concentrations were able to significantly influence cytokine production by macrophages suggests that hyperglycaemia alone cannot fully explain the increased susceptibility of diabetes mellitus patients to tuberculosis.  相似文献   

19.
We report on the regulation of pro-inflammatory functions of goldfish macrophages and induction of gene expression by recombinant goldfish CSF-1 (rgCSF-1). Recombinant goldfish TNFα-2 (rg TNFα-2), rgIFNγ but not rgTGFβ induced time-dependent increase of CSF-1 expression in macrophages. Treatment of goldfish macrophages with rgCSF-1 increased expression of several immune genes including CXCL-8 (= IL-8), CCL-1, TNFα-1, TNFα-2, IL-1β-1, IL-1β-2, IL-12-p35, IL-12-p40, IFN, IL-10 and iNOS A and B. The rgCSF-1 treatment did not significantly alter the mRNA levels of TGFβ and NRAMP in macrophages up to 48 h post treatment. However, at 72 h post treatment, the expression of TGFβ increased whereas that of NRAMP decreased. The treatment of macrophages with rgCSF-1 enhanced their respiratory burst and nitric oxide responses that were abrogated after addition of soluble CSF-1 receptor (sCSF-1R) to cell cultures. Macrophages exhibited a concentration-dependent chemotactic response toward rgCSF-1 as well as an increase in phagocytic activity that was abrogated after addition of sCSF-1R to cell cultures. Our results indicate that in addition to being an important growth factor of goldfish macrophages, rgCSF-1 also plays a central role in the regulation of their pro-inflammatory responses.  相似文献   

20.
Toll-like receptors (TLRs) are one of the key components of innate immunity. Among various TLR types, TLR2 is involved in recognizing specific microbial structures such as peptidoglycan (PGN), lipoteichoic acid (LTA), zymosan etc., and after binding them it triggers myeloid differentiation primary response gene 88 (MyD88)-dependent signaling pathway to induce various cytokines. In this report, TLR2 gene was cloned and characterized in rohu (Labeo rohita), which is highly commercially important fish species in the farming-industry of Indian subcontinent. Full-length rohu TLR2 (rTLR2) cDNA comprised of 2691 bp with a single open reading frame (ORF) of 2379 bp encoding a polypeptide of 792 amino acids (aa) with an estimated molecular mass of 90.74 kDa. Structurally, it comprised of one leucine-rich repeat region (LRR) each at N-terminal (LRR-NT; 44-55 aa) and C-terminal (LRR-CT; 574-590 aa), 21 LRRs in between C and N-terminal, one trans-membrane (TM) domain (595-612 aa), and one TIR domain (645-790 aa). Phylogenetically, rohu TLR2 was closely related to common carp and exhibited significant similarity (93.1%) and identity (88.1%) in their amino acids. During embryogenesis, rTLR2 expression was detected as early as ∼7 h post fertilization indicating its importance in embryonic innate immune defense system in fish. Basal expression analysis of rTLR2 showed its constitutive expression in all the tissues examined, highest was in the spleen and the lowest was in the eye. Inductive expression of TLR2 was observed following zymosan, PGN and LTA exposure and Streptococcus uberis and Edwardsiella tarda infections. Expression of immunoregulatory cytokine interleukin (IL)-8, in various organs was significantly enhanced by ligands exposure and bacterial infections, and was correlated with inductive expression of TLR2. In vitro studies showed that PGN treatment induced TLR2, MyD88 and TRAF6 (TNF receptor associated factor 6) expression, NF-κB (nuclear factor kappa B) activation and IL-8 expression. Blocking NF-κB resulted in down-regulation of PGN mediated IL-8 expression indicating the involvement of NF-κB in IL-8 induction. Together, these findings highlighted the important role of TLR2 in immune surveillance of various organs, and in augmenting innate immunity in fish in response to pathogenic invasion. This study will be helpful in developing preventive measures against infectious diseases in fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号