共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
为了研究膜生物反应器的短程硝化性能以及氧对短程硝化的影响,通过对比耗氧率和供氧率,提出了膜生物反应器短程硝化的控制优化建议。在膜生物反应器硝化过程中,DO小于1 mg/L开始出现亚硝氮积累;DO降到0.5 mg/L,出水氨氮浓度与亚硝氮浓度之比接近1∶1;DO调控在0.5-1 mg/L范围内,有利于前置硝化反应器与后续厌氧氨氧化反应器衔接。膜生物反应器中污泥浓度可达20 g/L,耗氧能力可达19.86 mg O2/(L·s),但最大供氧能力仅为0.369 mg O2/(L·s),供氧成为反应器运行的制约瓶颈,\"低DO高流量\"曝气是继续提高短程硝化效能的控制策略。 相似文献
3.
随着分子生物学和植物基因工程的迅猛发展以及分子医药和现代农业等学科的交叉融合,植物生物反应器已成为分子医药农业的核心内容。利用植物生物反应器生产抗体、疫苗和功能性食品,具有规模化、成本低、安全性高、周期短等优势。2022年2月,加拿大卫生部批准了新型冠状病毒疫苗Covifenz®,这是世界首款植物源人体疫苗,标志着以植物生物反应器为代表的分子医药农业时代的来临。综述植物叶片和种子等代表性的植物生物反应器类型,分析瞬时表达系统和稳定表达系统的构建原理和应用,探讨通过启动子和密码子优化、糖基化过程“人源化”、基因沉默抑制和蛋白酶作用抑制等优化植物生物反应器的策略,总结国内外抗体、疫苗和功能性食品等植物源产品的开发进展,以期为我国植物生物反应器的研究及其在分子医药领域的应用提供参考。 相似文献
4.
5.
将经过驯化的酒精酵母,用海藻酸钙凝胶包埋法固定化,再用硫酸钴处理。在形成的凝胶中含有微量的甾醇和不饱和脂肪酸,以提高细胞的存活率。反应器系统由三个10m3稍加改造的普通发酵罐组成。用经过酸化处理的甜菜糖蜜为原料,采用逐步提高糖浓度的方法连续生产高浓度酒精,酒精含量为10%(V/V)以上。发酵过程中通入微量无菌空气。酒精生产能力为51.75kg/m3凝胶·h-1,停留时间为1.8h。反应器内形成的大量CO2通畅排出。反应器具有良好的操作稳定性。反应器容积生产强度为8.3kg/m3·h 相似文献
6.
微藻光生物反应器具有脱除空气中CO2能力。从光生物反应器构型、进气流速、混合传质,及微藻光合/呼吸速率等方面,探讨气升式光生物反应器脱除空气中CO2效果,提出了时间离散化和集中参数法两种分析方法。运用集中参数法建立了气升式柱型光生物反应器脱除CO2的数学模型,模拟了藻液中溶氧浓度(DO)、pH随时间的变化情况,及进气CO2浓度影响,预测并验证了光照条件下出气CO2、O2浓度的变化趋势。模拟结果和实验数据基本吻合,所提出的模型对光生物反应器的优化设计、微藻的高密度培养,及CO2去除能力预测具有参考意义。 相似文献
7.
厌氧生物处理技术因其具有有机负荷高、污泥产量低、能耗低等优点被广泛应用于各种废水处理中。厌氧颗粒污泥具有沉降性能好、微生物浓度高、有机负荷高等优点,极大地提高了废水处理效率。尤其在处理含高氨氮废水中,厌氧颗粒污泥的形成对反应器的高效生物脱氮至关重要。但到目前为止,厌氧反应器中的颗粒污泥形成及废水处理效果还缺乏系统的认识。鉴于此,总结了厌氧反应器中颗粒污泥的形成机制,分析了影响厌氧反应器中颗粒污泥形成的因素,论述了厌氧反应器中厌氧颗粒污泥生长的模拟,最后介绍了厌氧颗粒污泥在国内外的主流应用。厌氧反应器中颗粒污泥的形成是综合因素影响的结果,对影响厌氧颗粒污泥形成的每个因素都需要认真对待,可为在厌氧反应器中颗粒污泥的培育和应用提供理论指导和技术支撑。 相似文献
8.
9.
麸皮为谷物加工副产物,麸皮酚类物质具有重要的营养特性和药理效应,但麸皮酚类物质大多以结合态形式存在,生物可及性较低,如何实现麸皮中酚类物质有效释放,提高生物利用度存在挑战。综述了麸皮酚类化合物营养特性及其存在形式,以及酶促降解法、微生物发酵法等生物处理策略在提高酚类生物可及性的研究进展;并指出,麸皮预处理技术耦合混菌发酵技术是驱动麸皮酚类物质高效释放的有效途径。探究混合菌种体系的互作关系及其作用机制,关联预处理麸皮的结构变化与降解增效之间的关系,为麸皮高附加值利用以及相关功能性食品开发提供理论依据。 相似文献
10.
【背景】焦化废水O/H/O生物处理工艺的二级好氧生物反应器O2具有剩余污染物矿化和完全硝化功能,对废水的达标排放有重要作用。【目的】阐明O2生物反应器的微生物结构和功能。【方法】利用16S rRNA基因测序,研究O2生物反应器的微生物多样性和组成并进行功能预测,揭示其共现性特征和环境影响因子。【结果】O2的优势菌门以变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、绿菌门(Chlorobi)为主。主要菌属中红游动菌属(Rhodoplanes)、溶杆菌属(Lysobacter)、硫杆菌属(Thiobacillus)等参与化学需氧量(chemical oxygen demand,COD)、酚类(phenols)和硫氰酸盐(thiocyanate,SCN-)等剩余污染物的去除,亚硝化弧菌属(Nitrosovibrio)和硝化螺菌属(Nitrospira)分别作为氨氧化细菌(ammonia-oxidizing bacteria,AOB)和主要的亚硝酸盐氧化细菌(nitrite-oxidizing bacteria,NOB)。功能预测结果显示苯甲酸酯降解、氨基苯甲酸酯降解、氯烷烃和氯烯烃的降解、氟代苯甲酸酯降解和硝基甲苯降解是外源物质生物降解和代谢的前五大通路,广泛分布在主要菌属中,验证了微生物降解剩余污染物的作用。基因pmoA/B/C-amoA/B/C、hao和nxrA/B编码相关的酶,组成了完整的硝化途径。共现网络结果揭示溶杆菌属、Candidatus Solibacter和红游动菌属在O2生态中的重要地位。通过冗余分析(redundancy analysis,RDA)表明COD和NH3是影响O2微生物群落的主要因素。【结论】红游动菌属和溶杆菌属是O2中最核心的功能菌属,在污染物矿化和维持群落生态稳定上有重要作用。亚硝化弧菌属和硝化螺菌属是硝化作用的核心菌属。O2中的代谢通路以剩余污染物矿化和完全硝化为主,微生物群落主要受COD和NH3的影响。本研究阐明了O2的微生物结构与功能,为焦化废水O/H/O生物处理工艺的改进提供了微生物学上的依据。 相似文献
11.
Behavior of several pseudomonas putida strains growth under different agitation and oxygen supply conditions
下载免费PDF全文

Alberto Rodriguez Sebastian Escobar Emilio Gomez Victoria E. Santos Felix Garcia‐Ochoa 《Biotechnology progress》2018,34(4):900-909
The growth rate of four strains of Pseudomonas putida, KT2440, KT2442, KTH2, and KTH2 (pESOX3), under different fluid dynamic conditions has been studied. The cultures were conducted in a stirred tank bioreactor by changing the stirrer speed. Several process variables, such as biomass concentration, dissolved oxygen concentration, oxygen mass transfer rate and oxygen uptake rate, have been measured or calculated. Also cell viability was determined by viable colony counting in Petri dishes and culture samples were subjected into a transmission electron microscopy analysis, in order to describe the integrity of the individual cells. The experimental results show that the genetically modified organisms, the strains KTH2 and KTH2 (pESOX3), present a different growth under low agitation conditions, and low oxygen supply level, while the growth of the wild type strains, KT2440 and KT2442, followed the typical sigmoidal evolution that could be described by the logistic equation. The presence of outer membrane vesicles has been observed in the GMO strains. When the cultures were conducted at low stirrer speed, and so at low oxygen transfer rate, these vesicles were detected, indicating the bacterial response to oxidative stress, caused by the catalytic activity of the HpaC enzyme. For all of the strains tested, no hydrodynamic stress has been detected, even at very high agitation levels. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:900–909, 2018 相似文献
12.
The concept of "design space" plays an integral part in implementation of quality by design for pharmaceutical products. ICH Q8 defines design space as "the multidimensional combination and interaction of input variables (e.g., material attributes) and process parameters that have been demonstrated to provide assurance of quality. Working within the design space is not considered as a change. Movement out of the design space is considered to be a change and would normally initiate a regulatory post-approval change process. Design space is proposed by the applicant and is subject to regulatory assessment and approval." Computational fluid dynamics (CFD) is increasingly being used as a tool for modeling of hydrodynamics and mass transfer. In this study, a laboratory-scale aerated bioreactor is modeled using CFD. Eulerian-Eulerian multiphase model is used along with dispersed k-ε turbulent model. Population balance model is incorporated to account for bubble breakage and coalescence. Multiple reference frame model is used for the rotating region. We demonstrate the usefulness of CFD modeling for evaluating the effects of typical process parameters like impeller speed, gas flow rate, and liquid height on the mass transfer coefficient (k(L)a). Design of experiments is utilized to establish a design space for the above mentioned parameters for a given permissible range of k(L)a. 相似文献
13.
Recently, cichoric acid production from hairy roots of Echinacea purpurea was significantly improved by ultrasound stimulation in an airlift bioreactor. In this article, the possible mechanism on ultrasound-intensified hairy root culture of E. purpurea in the bioreactor was elucidated with the help of computational fluid dynamics (CFD) simulation, membrane permeability detection, dissolved oxygen concentration detection, confocal laser-scanning microscopy (LSM) observation, and phenylalanine ammonium lyase (PAL) activity analysis. The CFD model developed in Part I was used to simulate the hydrodynamics and oxygen mass transfer in hairy root bioreactor culture stimulated by ultrasound. A dynamic mesh model combined with a changing Schmidt number method was used for the simulation of the ultrasound field. Simulation results and experimental data illustrated that ultrasound intensified oxygen mass transfer in the hairy root clump, which subsequently stimulated root growth and cichoric acid biosynthesis. Ultrasound increased the hairy root membrane permeability, and a high root membrane permeability of 0.359 h(-1) was observed at the bottom region in the bioreactor. LSM observation showed that the change in the membrane permeability recovered to normal in the further culture after ultrasound stimulation. PAL activity in the hairy roots was stimulated by ultrasound increase and was correlated well to cichoric acid accumulation in the hairy roots of E. purpurea. 相似文献
14.
We have developed a bioreactor vessel design which has the advantages of simplicity and ease of assembly and disassembly, and with the appropriately determined flow rate, even allows for a scaffold to be suspended freely regardless of its weight. This article reports our experimental and numerical investigations to evaluate the performance of a newly developed non-perfusion conical bioreactor by visualizing the flow through scaffolds with 45 degrees and 90 degrees fiber lay down patterns. The experiments were conducted at the Reynolds numbers (Re) 121, 170, and 218 based on the local velocity and width of scaffolds. The flow fields were captured using short-time exposures of 60 microm particles suspended in the bioreactor and illuminated using a thin laser sheet. The effects of scaffold fiber lay down pattern and Reynolds number were obtained and correspondingly compared to results obtained from a computational fluid dynamics (CFD) software package. The objectives of this article are twofold: to investigate the hypothesis that there may be an insufficient exchange of medium within the interior of the scaffold when using our non-perfusion bioreactor, and second, to compare the flows within and around scaffolds of 45 degrees and 90 degrees fiber lay down patterns. Scaffold porosity was also found to influence flow patterns. It was therefore shown that fluidic transport could be achieved within scaffolds with our bioreactor design, being a non-perfusion vessel. Fluid velocities were generally same of the same or one order lower in magnitude as compared to the inlet flow velocity. Additionally, the 90 degrees fiber lay down pattern scaffold was found to allow for slightly higher fluid velocities within, as compared to the 45 degrees fiber lay down pattern scaffold. This was due to the architecture and pore arrangement of the 90 degrees fiber lay down pattern scaffold, which allows for fluid to flow directly through (channel-like flow). 相似文献
15.
Wu B 《Biotechnology and bioengineering》2012,109(11):2864-2874
An extensive investigation of anaerobic methane fermentation requires identifying the relationship between the physical environment and biological process. In this study, a computational fluid dynamics (CFD) technique was used to characterize bacterial fermentation mechanisms intertwined with mixing and heat transfer in anaerobic digesters. The results demonstrate that the methane yield remains almost unchanged while the energy efficiency decreases with increasing mixing power in a complete‐mix digester, and that the energy output increases nonlinearly with the increase in heating energy in a plug‐flow digester. The CFD method can be applied to other bioreactors to gain valuable insights into their behavior as well. Integrating flow and temperature with kinetic behavior for anaerobic digestion not only solves the controversy about how mixing influences the digestive process, but also assists in optimizing the digester design and increasing the efficiency of energy conversion, and additionally, provides a reference for improving the mixing guidelines recommended by the U.S. Environmental Protection Agency. Biotechnol. Bioeng. 2012; 109: 2864–2874. © 2012 Wiley Periodicals, Inc. 相似文献
16.
Natural cartilage remodels both in vivo and in vitro in response to mechanical stresses, hence mechanical stimulation is believed to be a potential tool to modulate extra-cellular matrix synthesis in tissue-engineered cartilage. Fluid-induced shear is known to enhance chondrogenesis in engineered cartilage constructs. The quantification of the hydrodynamic environment is a condition required to study the biochemical response to shear of 3D engineered cell systems. We developed a computational model of culture medium flow through the microstructure of a porous scaffold, during direct- perfused culture. The 3D solid model of the scaffold micro-geometry was reconstructed from 250 micro-computed tomography (micro-CT) images. The results of the fluid dynamic simulations were analyzed at the central portions of the fluid domain, to avoid boundary effects. The average, median and mode shear stress values calculated at the scaffold walls were 3.48, 2.90, and 2.45 mPa respectively, at a flow rate of 0.5 cm(3)/min, perfused through a 15 mm diameter scaffold, at an inlet fluid velocity of 53 microm/s. These results were compared to results estimated using a simplified micro-scale model and to results estimated using an analytical macro-scale porous model. The predictions given by the CT-based model are being used in conjunction with an experimental bioreactor model, in order to quantify the effects of fluid-dynamic shear on the growth modulation of tissue-engineered cartilage constructs, to potentially enhance tissue growth in vitro. 相似文献
17.
In this paper we report the regulation of Aspergillus niger growth rate during citric acid fermentation in a stirred tank bioreactor. For this, the influence of dissolved oxygen concentration in a medium on intracellular pH values and consequently on overall microbial metabolism was emphasized. Intracellular pH of mycelium grown under different concentrations of dissolved oxygen in the medium was determined. Sensitivity of proteins toward proton concentration is well recognized, therefore pH influences on the activities of key regulatory enzymes of Aspergillus niger were determined at pH values similar to those detected in the cells grown under lower dissolved oxygen concentrations. The results have shown significantly reduced specific activities of hexokinase, 6-phosphofructokinase and glucose-6-phosphate dehydrogenase in more acidic environment, while pyruvate kinase was found to be relatively insensitive towards higher proton concentration. As expected, due to the reduced specific activities of regulatory enzymes under more acidic conditions, overall metabolism should be hindered in the medium with lower dissolved oxygen concentration which was confirmed by detecting the reduced specific growth rates. From the studies, we conclude that dissolved oxygen concentration affects the intracellular pH and thus growth rate of Aspergillus niger during the fermentation process. 相似文献
18.
Jing Wui Yeoh Sudhaghar S/O Jayaraman Sean Guo‐Dong Tan Premkumar Jayaraman Maciej B. Holowko Jingyun Zhang Chang‐Wei Kang Hwa Liang Leo Chueh Loo Poh 《Biotechnology and bioengineering》2021,118(1):305-318
Due to sustainability concerns, bio‐based production capitalizing on microbes as cell factories is in demand to synthesize valuable products. Nevertheless, the nonhomogenous variations of the extracellular environment in bioprocesses often challenge the biomass growth and the bioproduction yield. To enable a more rational bioprocess optimization, we have established a model‐driven approach that systematically integrates experiments with modeling, executed from flask to bioreactor scale, and using ferulic acid to vanillin bioconversion as a case study. The impacts of mass transfer and aeration on the biomass growth and bioproduction performances were examined using minimal small‐scale experiments. An integrated model coupling the cell factory kinetics with the three‐dimensional computational hydrodynamics of bioreactor was developed to better capture the spatiotemporal distributions of bioproduction. Full‐factorial predictions were then performed to identify the desired operating conditions. A bioconversion yield of 94% was achieved, which is one of the highest for recombinant Escherichia coli using ferulic acid as the precursor. 相似文献
19.
Zahra Farzaneh Saeed Abbasalizadeh Mohammad-Hassan Asghari-Vostikolaee Mehdi Alikhani Joaquim M. S. Cabral Hossein Baharvand 《Biotechnology and bioengineering》2020,117(12):3739-3756
Developing technologies for scalable production of human organoids has gained increased attention for “organoid medicine” and drug discovery. We developed a scalable and integrated differentiation process for generation of hepatic organoid from human pluripotent stem cells (hPSCs) in a fully controlled stirred tank bioreactor with 150 ml working volume by application of physiological oxygen concentrations in different liver tissue zones. We found that the 20–40% dissolved oxygen concentration [DO] (corresponded to 30–60 mmHg pO2 within the liver tissue) significantly influences the process outcome via regulating the differentiation fate of hPSC aggregates by enhancing mesoderm induction. Regulation of the [DO] at 30% DO resulted in efficient generation of human fetal-like hepatic organoids that had a uniform size distribution and were comprised of red blood cells and functional hepatocytes, which exhibited improved liver-specific marker gene expressions, key liver metabolic functions, and, more important, higher inducible cytochrome P450 activity compared to the other trials. These hepatic organoids were successfully engrafted in an acute liver injury mouse model and produced albumin after implantation. These results demonstrated the significant impact of the dissolved oxygen concentration on hPSC hepatic differentiation fate and differentiation efficacy that should be considered ascritical translational aspect of established scalable liver organoid generation protocols for potential clinical and drug discovery applications. 相似文献