首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An inability to perform tasks involving reaching is a common problem for stroke patients. Knowledge of normal muscle activation patterns during these tasks is essential to the identification of abnormal patterns in post-stroke hemiplegia. Findings will provide insight into changes in muscle activation patterns associated with recovery of upper limb function.In this study with neurologically intact participants the co-ordination of shoulder and elbow muscle activity during two dimensional reaching tasks is explored. Eight participants undertook nine tracking tasks in which trajectory (orientation and length), duration, speed and resistance to movement were varied. The participants’ forearm was supported using a hinged arm-holder, which constrained their hand to move in a two dimensional plane. EMG signals were recorded from triceps, biceps, anterior deltoid, upper, middle and lower trapezius and pectoralis major.A wide variation in muscle activation patterns, in terms of timing and amplitude, was observed between participants performing the same task. EMG amplitude increased significantly with length, duration and resistance of the task for all muscles except anterior deltoid. Co-activation between biceps and triceps was significantly dependent on both task and trajectory orientation. Activation pattern of pectoralis major was dependent on trajectory. Neither trajectory orientation nor task condition affected the activation pattern of anterior deltoid. Normal ranges of timing of muscle activity during the tasks were identified.  相似文献   

2.
Overhead work is a major cause of upper extremity work-related musculoskeletal disorders (WMSD). In this paper, the potential effects of a Passive Upper-Limb Exoskeleton (PULE) were evaluated in the tasks of overhead works. This proposed PULE has a higher degree of freedom and does not impede the user's upper limb movements. Fifteen male volunteers participated in the study by performing the repeated overhead bolt installation tasks. The electromyographic (EMG) values of anterior deltoid (AD), mid deltoid (MD), descending trapezius (TR), and triceps (TB) of the left and right arms of the participants were measured at three different overhead task heights with Intervention (with/without the PULE). Moreover, the rankings of perceived discomfort (RPD) obtained on the neck, shoulders, upper arms, forearms, upper back, waists, and legs were rated for each participant. The preliminary experiment results show that the initial nEMG of right anterior deltoid (AD) decreased by 38.5%, median nEMG values decreased by 45.1%, and total RPD decreased by 52.4%. The use of the PULE could bring the benefits of less upper extremity muscle contraction and lower RPD compared to the non-use, which may potentially reduce or slow down the level of upper extremity WMSD across the overhead work.  相似文献   

3.

Background

Abnormal upper arm-forearm muscle synergies after stroke are poorly understood. We investigated whether upper arm function primes paralyzed forearm muscles in chronic stroke patients after Brain-Machine Interface (BMI)-based rehabilitation. Shaping upper arm-forearm muscle synergies may support individualized motor rehabilitation strategies.

Methods

Thirty-two chronic stroke patients with no active finger extensions were randomly assigned to experimental or sham groups and underwent daily BMI training followed by physiotherapy during four weeks. BMI sessions included desynchronization of ipsilesional brain activity and a robotic orthosis to move the paretic limb (experimental group, n = 16). In the sham group (n = 16) orthosis movements were random. Motor function was evaluated with electromyography (EMG) of forearm extensors, and upper arm and hand Fugl-Meyer assessment (FMA) scores. Patients performed distinct upper arm (e.g., shoulder flexion) and hand movements (finger extensions). Forearm EMG activity significantly higher during upper arm movements as compared to finger extensions was considered facilitation of forearm EMG activity. Intraclass correlation coefficient (ICC) was used to test inter-session reliability of facilitation of forearm EMG activity.

Results

Facilitation of forearm EMG activity ICC ranges from 0.52 to 0.83, indicating fair to high reliability before intervention in both limbs. Facilitation of forearm muscles is higher in the paretic as compared to the healthy limb (p<0.001). Upper arm FMA scores predict facilitation of forearm muscles after intervention in both groups (significant correlations ranged from R = 0.752, p = 0.002 to R = 0.779, p = 0.001), but only in the experimental group upper arm FMA scores predict changes in facilitation of forearm muscles after intervention (R = 0.709, p = 0.002; R = 0.827, p<0.001).

Conclusions

Residual upper arm motor function primes recruitment of paralyzed forearm muscles in chronic stroke patients and predicts changes in their recruitment after BMI training. This study suggests that changes in upper arm-forearm synergies contribute to stroke motor recovery, and provides candidacy guidelines for similar BMI-based clinical practice.  相似文献   

4.
This study aimed at investigating the relationship between trunk and upper limb muscle coordination and stroke velocity during tennis forehand drive. The electromyographic (EMG) activity of ten trunk and dominant upper limb muscles was recorded in 21 male tennis players while performing five series of ten crosscourt forehand drives. The forehand drive velocity ranged from 60% to 100% of individual maximal velocity. The onset, offset and activation level were calculated for each muscle and each player. The analysis of muscle activation order showed no modification in the recruitment pattern regardless of the velocity. However, the increased velocity resulted in earlier activation of the erector spinae, latissimus dorsi and triceps brachii muscles, as well as later deactivation of the erector spinae, biceps brachii and flexor carpi radialis muscles. Finally, a higher level of activation was observed with the velocity increase in the external oblique, latissimus dorsi, middle deltoid, biceps brachii and triceps brachii. These results might bring new knowledge for strength and tennis coaches to improve resistance training protocols in a performance and prophylactic perspective.  相似文献   

5.
Maximum voluntary isometric contractions (MVCs) are commonly used to normalize electromyography (EMG) data and must be reliable even if the individual has no prior experience performing MVCs. This study explored the effect of familiarization over three testing sessions on MVC performance and reliability by comparing muscle activation during standardized maximal and sub-maximal muscle contractions. Participants were recruited into two groups: (1) individuals who regularly engaged in upper body resistance training; (2) individuals with little or no prior experience in upper body resistance training. EMG was collected from two pairs of muscles; biceps brachii and triceps brachii from the arm, and erector spinae and external oblique from the trunk. The trunk muscles were chosen as muscles that are less frequently activated in isolation in day-to-day life. It was found that there were no significant improvements in MVC performance or within-day reliability over the three testing sessions for both resistance trained and non-resistance trained groups. Resistance-trained individuals showed a trend to be more reliable within-day than non-resistance trained participants. Day-to-day MVC reliability, particularly of the erector spinae muscle, was limited in some participants. This suggests that further efforts are needed to improve our capability of reliably eliciting muscle activation MVCs for EMG normalization, especially for muscles that are less frequently activated in isolation.  相似文献   

6.
An electromyography (EMG)-driven electromechanical robot system integrated with neuromuscular electrical stimulation (NMES) was developed for wrist training after stroke. The performance of the system in assisting wrist flexion/extension tracking was evaluated on five chronic stroke subjects, when the system provided five different schemes with or without NMES and robot assistance. The tracking performances were measured by range of motion (ROM) of the wrist and root mean squared error (RMSE). The performance is better when both NMES and robot assisted in the tracking than those with either NMES or robot only (P<0.05). The muscle co-contractions in the upper limb measured by EMG were reduced when NMES provided assistance (P<0.05). All subjects also attended a 20-session wrist training for evaluating the training effects (3-5 times/week). The results showed improvements on the voluntary motor functions in the hand, wrist and elbow functions after the training, as indicated by the clinical scores of Fugl-Meyer Assessment, Action Research Arm Test, Wolf Motor Function Test; and also showed reduced spasticity in the wrist and the elbow as measured by the Modified Ashworth Score of each subject. After the training, the co-contractions were reduced between the flexor carpi radialis and extensor carpi radialis, and between the biceps brachii and triceps brachii. Assistance from the robot helped improve the movement accuracy; and the NMES helped increase the muscle activation for the wrist joint and suppress the excessive muscular activities from the elbow joint. The NMES-robot assisted wrist training could improve the hand, wrist, and elbow functions.  相似文献   

7.
This study was to investigate the motor functional recovery process in chronic stroke during robot-assisted wrist training. Fifteen subjects with chronic upper extremity paresis after stroke attended a 20-session wrist tracking training using an interactive rehabilitation robot. Electromyographic (EMG) parameters, i.e., EMG activation levels of four muscles: biceps brachii (BIC), triceps brachii (TRI, lateral head), flexor carpiradialis (FCR), and extensor carpiradialis (ECR) and their co-contraction indexes (CI) were used to monitor the neuromuscular changes during the training course. The EMG activation levels of the FCR (11.1% of decrease from the initial), BIC (17.1% of decrease from the initial), and ECR (29.4% of decrease from the initial) muscles decreased significantly during the training (P < 0.05). Such decrease was associated with decreased Modified Ashworth Scores for both the wrist and elbow joints (P < 0.05). Significant decrease (P < 0.05) was also found in CIs of muscle pairs, BIC&TRI (21% of decrease from the initial), FCR&BIC (11.3% of decrease from the initial), ECR&BIC (49.3% of decrease from the initial). The decreased CIs related to the BIC muscle were mainly caused by the reduction in the BIC EMG activation level, suggesting a better isolation of the wrist movements from the elbow motions. The decreased CI of ECR& FCR in the later training sessions (P < 0.05) was due to the reduced co-contraction phase of the antagonist muscle pair in the tracking tasks. Significant improvements (P < 0.05) were also found in motor outcomes related to the shoulder/elbow and wrist/hand scores assessed by the Fugl–Meyer assessment before and after the training. According to the evolution of the EMG parameters along the training course, further motor improvements could be obtained by providing more training sessions, since the decreases of the EMG parameters did not reach a steady state before the end of the training. The results in this study provided an objective and quantitative EMG measure to describe the motor recovery process during poststroke robot-assisted wrist for the further understanding on the neuromuscular mechanism associated with the recovery.  相似文献   

8.
摘要 目的:探讨等速肌力训练联合上肢康复机器人在脑卒中恢复期偏瘫患者中的应用效果。方法:根据随机数字表法,将2020年1月-2022年12月期间合肥市第二人民医院收治的136例脑卒中恢复期偏瘫患者分为对照组(n=68,等速肌力训练)与观察组(n=68,等速肌力训练联合上肢康复机器人干预)。两组均干预3周,观察两组Fugl-Meyer上肢运动功能量表(FMA-UL)评分、改良Barthel指数(MBI)评分、偏瘫Brunnstrom分级、表面肌电图相关指标和生活质量评分变化情况。结果:观察组干预3周后FMA-UL、MBI评分高于对照组(P<0.05)。观察组干预3周后IV级患者例数多于对照组(P<0.05)。观察组干预3周后肱二头肌、肱三头肌、三角肌前束、三角肌中束的均方根值(RMS)和积分肌电值(iEMG)高于对照组(P<0.05)。观察组干预3周后生理职能、躯体疼痛、生理功能、总体健康、精神健康、活力、情感职能、社会功能各维度评分高于对照组(P<0.05)。结论:脑卒中恢复期偏瘫患者经等速肌力训练、上肢康复机器人联合干预,可促进偏瘫上肢肌肉激活和运动单位募集同步化,改善上肢肌力,提高患者的生活质量。  相似文献   

9.
An elderly hemiplegic patient participating in an EMG biofeedback training program was observed to produce a synergistic flexion movement of the plegic (determined by functional evaluations) upper limb while yawning. In the course of the training sessions the electrical activity of the anterior deltoid (the target muscle) was recorded during yawning. These peak EMG values were greatly facilitated in comparison with the session mean peak values obtained during an attempted maximum voluntary isometric contraction (shoulder flexion) of the same limb (e.g., Trial 1: 85.00 vs. 4.33 microV). The possibility of yawning as a confounding variable in EMG biofeedback studies is presented and discussed.  相似文献   

10.
Robot-aided gait therapy offers a promising approach towards improving gait function in individuals with neurological disorders such as stroke or spinal cord injury. However, incorporation of appropriate control strategies is essential for actively engaging the patient in the therapeutic process. Although several control algorithms (such as assist-as-needed and error augmentation) have been proposed to improve active patient participation, we hypothesize that the therapeutic benefits of these control algorithms can be greatly enhanced if combined with a motor learning task to facilitate neural reorganization and motor recovery. Here, we describe an active robotic training approach (patient-cooperative robotic gait training combined with a motor learning task) using the Lokomat and pilot-tested whether this approach can enhance active patient participation during training. Six neurologically intact adults and three chronic stroke survivors participated in this pilot feasibility study. Participants walked in a Lokomat while simultaneously performing a foot target-tracking task that necessitated greater hip and knee flexion during the swing phase of the gait. We computed the changes in tracking error as a measure of motor performance and changes in muscle activation as a measure of active subject participation. Repeated practice of the motor-learning task resulted in significant reductions in target-tracking error in all subjects. Muscle activation was also significantly higher during active robotic training compared to simply walking in the robot. The data from stroke participants also showed a trend similar to neurologically intact participants. These findings provide a proof-of-concept demonstration that combining robotic gait training with a motor learning task enhances active participation.  相似文献   

11.
This paper develops an assistive torque system which uses homogeneic surface electromyogram (EMG) signals to improve the elbow torque capability of stroke patients by applying an external time-varying assistive torque. In determining the magnitude of the torque to apply, the incorporated assistive torque algorithm considers the difference between the weighted biceps and triceps EMG signals such that the applied torque is proportional to the effort supplied voluntarily by the user. The overall stability of the assistive system is enhanced by the incorporation of a nonlinear damping element within the control algorithm which mimics the physiological damping of the elbow joint and the co-contraction between the biceps and triceps. Adaptive filtering of the control signal is employed to achieve a balance between the bandwidth and the system adaptability so as to ensure a smooth assistive torque output. The innovative control algorithm enables the provision of an assistive system whose operation is both natural to use and simple to learn. The effectiveness of the proposed assistive system in assisting elbow movement performance is investigated in a series of tests involving five stroke patients and five able-bodied individuals. The results confirm the ability of the system to assist all of the subjects in performing a number of reaching and tracking tasks with reduced effort and with no sacrifice in elbow movement performance.  相似文献   

12.
Robotic-assistive exoskeletons can enable frequent repetitive movements without the presence of a full-time therapist; however, human-machine interaction and the capacity of powered exoskeletons to attenuate shoulder muscle and joint loading is poorly understood. This study aimed to quantify shoulder muscle and joint force during assisted activities of daily living using a powered robotic upper limb exoskeleton (ArmeoPower, Hocoma). Six healthy male subjects performed abduction, flexion, horizontal flexion, reaching and nose touching activities. These tasks were repeated under two conditions: (i) the exoskeleton compensating only for its own weight, and (ii) the exoskeleton providing full upper limb gravity compensation (i.e., weightlessness). Muscle EMG, joint kinematics and joint torques were simultaneously recorded, and shoulder muscle and joint forces calculated using personalized musculoskeletal models of each subject’s upper limb. The exoskeleton reduced peak joint torques, muscle forces and joint loading by up to 74.8% (0.113 Nm/kg), 88.8% (5.8%BW) and 68.4% (75.6%BW), respectively, with the degree of load attenuation strongly task dependent. The peak compressive, anterior and superior glenohumeral joint force during assisted nose touching was 36.4% (24.6%BW), 72.4% (13.1%BW) and 85.0% (17.2%BW) lower than that during unassisted nose touching, respectively. The present study showed that upper limb weight compensation using an assistive exoskeleton may increase glenohumeral joint stability, since deltoid muscle force, which is the primary contributor to superior glenohumeral joint shear, is attenuated; however, prominent exoskeleton interaction moments are required to position and control the upper limb in space, even under full gravity compensation conditions. The modeling framework and results may be useful in planning targeted upper limb robotic rehabilitation tasks.  相似文献   

13.
Biomechanical simulations of tendon transfers performed following tetraplegia suggest that surgical tensioning influences clinical outcomes. However, previous studies have focused on the biomechanical properties of only the transferred muscle. We developed simulations of the tetraplegic upper limb following transfer of the brachioradialis (BR) to the flexor pollicis longus (FPL) to examine the influence of residual upper limb strength on predictions of post-operative transferred muscle function. Our simulations included the transfer, ECRB, ECRL, the three heads of the triceps, brachialis, and both heads of the biceps. Simulations were integrated with experimental data, including EMG and joint posture data collected from five individuals with tetraplegia and BR-FPL tendon transfers during maximal lateral pinch force exertions. Given a measured co-activation pattern for the non-paralyzed muscles in the tetraplegic upper limb, we computed the highest activation for the transferred BR for which neither the elbow nor the wrist flexor moment was larger than the respective joint extensor moment. In this context, the effects of surgical tensioning were evaluated by comparing the resulting pinch force produced at different muscle strength levels, including patient-specific scaling. Our simulations suggest that extensor muscle weakness in the tetraplegic limb limits the potential to augment total pinch force through surgical tensioning. Incorporating patient-specific muscle volume, EMG activity, joint posture, and strength measurements generated simulation results that were comparable to experimental results. Our study suggests that scaling models to the population of interest facilitates accurate simulation of post-operative outcomes, and carries utility for guiding and developing rehabilitation training protocols.  相似文献   

14.
An elderly hemiplegic patient participating in an EMG biofeedback training program was observed to produce a synergistic flexion movement of the plegic (determined by functional evaluations) upper limb while yawning. In the course of the training sessions the electrical activity of the anterior deltoid (the target muscle) was recorded during yawning. These peak EMG values were greatly facilitated in comparison with the session mean peak values obtained during an attempted maximum voluntary isometric contraction (shoulder flexion) of the same limb (e.g., Trial 1: 85.00 vs. 4.33 µV). The possibility of yawning as a confounding variable in EMG biofeedback studies is presented and discussed.This research was supported in part by Health and Welfare Canada (NHRDP).  相似文献   

15.
The exact mechanical function of synergist muscles within a human limb in vivo is not well described. Recent studies indicate the existence of a mechanical interaction between muscle actuators that may have functional significance and further play a role for injury mechanisms. The purpose of the present study was to investigate if intermuscular force transmission occurs within and between human plantarflexor muscles in vivo. Seven subjects performed four types of either active contractile tasks or passive joint manipulations: passive knee extension, voluntary isometric plantarflexion, voluntary isometric hallux flexion, passive hallux extension, and selective percutaneous stimulation of the gastrocnemius medialis (MG). In each experiment plantar- and hallux flexion force and corresponding EMG activity were sampled. During all tasks ultrasonography was applied at proximal and distal sites to assess task-induced tissue displacement (which is assumed to represent loading) for the plantarflexor muscles [MG, soleus (SOL), and flexor hallucis longus (FHL)]. Selective MG stimulation and passive knee extension resulted in displacement of both the MG and SOL muscles. Minimal displacement of the triceps surae muscles was seen during passive hallux extension. Large interindividual differences with respect to deep plantarflexor activation during voluntary contractions were observed. The present results suggest that force may be transmitted between the triceps surae muscles in vivo, while only limited evidence was provided for the occurrence of force transfer between the triceps surae and the deeper-lying FHL.  相似文献   

16.
目的:利用肌电指标分析拳击运动员上肢和腰部肌肉力量训练效果。方法:用Mega公司的ME6000肌电图仪记录分析10名女子拳击运动员上臂肱二头肌(主动肌)与肱三头肌(拮抗肌)、前臂屈肌(主动肌)与伸肌(拮抗肌)和腰部肌群的运动诱发肌电,规定运动为手持2.5 kg的哑铃负荷进行直拳空击运动直至局部肌肉力竭。结果:直拳空击运动至局部肌肉力竭过程中,上肢拮抗肌的中位频率(MF)下降幅度和速度大于相对应的主动肌,且从肌群作功来看,主动肌作功百分比较拮抗肌大。其中9名普通运动员腰肌的肌电频率(MF)均值较1名指定样本世界冠军的下降缓慢,而且其作功百分比都较小。结论:通过对普通女子拳击运动员上肢和腰部肌群肌电指标测试与世界冠军的比较分析,提示本研究中所测普通拳击运动员拮抗肌和腰部肌肉力量训练不足,有待加强该部肌肉的力量训练。  相似文献   

17.
The purpose of this study was to examine the spatio-temporal activation of the sternocleidomastoid (SCM) and cervical extensor (CE) muscles with respect to the deltoid muscle onset during rapid voluntary upper limb movement in healthy volunteers. The repeatability and reliability of the spatio-temporal aspects of the myoelectric signals were also examined. Ten subjects performed bilateral and unilateral rapid upper limb flexion, abduction and extension in response to a visual stimulus. EMG onsets and normalised root mean square (nRMS) values were calculated for the SCM and CE muscles. Subjects attended three testing sessions over non-consecutive days allowing the repeatability and reliability of these measures to be assessed. The SCM and CE muscles demonstrated feed-forward activation (activation within 50 ms of deltoid onset) during rapid arm movements in all directions. The sequence and magnitude of neck muscle activation displayed directional specificity, however, the neck flexor and extensor muscles displayed co-activation during all perturbations. EMG onsets demonstrated high repeatability in terms of repeated measure precision (nSEM in the range 1.9-5.7%). This was less evident for the repeatability of nRMS values. The results of this study provide a greater understanding of cervical neuromotor control strategies. During bilateral and unilateral upper limb perturbations, the SCM and CE muscles demonstrate feed-forward co-activation. It seems apparent that feed-forward activation of neck muscles is a mechanism necessary to achieve stability for the visual and vestibular systems, whilst ensuring stabilisation and protection of the cervical spine.  相似文献   

18.
This paper examines changes in the variability of electromyographic (EMG) activity and kinematics as a result of practicing a maximal performance task. Eight subjects performed rapid elbow flexion to a target in the horizontal plane. Four hundred trials were distributed equally over four practice sessions. A potentiometer at the elbow axis of rotation of a manipulandum recorded the angular displacement. The EMG activity of the biceps and the triceps brachii was monitored using Beckman surface electrodes. Limb speed increased while both target error and trajectory (velocity versus position) variability decreased. There was an increase in the absolute measure of total EMG variability (the first standard deviation at each point of the biceps and triceps waveform multiplied together). However, the coefficient of variation (the first standard deviation divided by the mean and the result multiplied by 100) of the mean amplitude value of the individual EMG bursts decreased. The variability of triceps motor time also decreased while the variability biceps motor time remained unchanged. The results demonstrated a clear relationship between kinematic and EMG variability. The EMG and the trajectory data suggest that practice resulted in greater central nervous system control over both the spatial-temporal aspects of movement and the magnitude of the biceps and triceps muscle force-impulses.  相似文献   

19.
The aim of this study was to discriminate fatigue of upper limb muscles depending on the external load, through the development and analysis of a muscle fatigue index. Muscle fatigue is expressed by a fatigue index based on an amplitude parameter (calculated in the time domain) and a fatigue index based on a frequency parameter (a parameter calculated in the frequency domain). The fatigue index involves a regression function that describes changes in the EMG signal parameter, time elapsing before muscle fatigue and the probability of specific trends in changes in EMG parameters for the population under study.

The experimental study covered a group of 10 young men. During the study, they exerted force at a specific level and for a specific time in 12 load variants. During the study, EMG signals from four muscles of the upper limb were recorded (trapezius pars descendents, biceps brachii caput breve, extensor carpi radialis brevis, flexor carpi ulnaris). For each variant and for each examined muscles, the value of the fatigue index was calculated. Values of that index quantitatively expressed fatigue of a specific muscle in a specific load variant.

A statistical analysis indicated variation in the fatigue of the biceps brachii caput breve, extensor carpi radialis brevis, and flexor carpi ulnaris muscles depending on the external load (load variant) according to the task performed with the upper limb.

The study demonstrated usefulness of the fatigue index in expressing quantitatively muscle fatigue and in discriminating muscle fatigue depending on the external load.  相似文献   


20.
The Brain Motor Control Assessment (BMCA) protocol is a surface electromyography (sEMG)-based measure of motor output from central nervous system during a variety of reflex and voluntary motor tasks performed under strictly controlled conditions. The aim of this study was to evaluate the BMCA protocol for upper limb with the addition of shoulder voluntary tasks. The voluntary response index (VRI) was calculated from quantitative analysis of sEMG data during defined voluntary movement in neurologically intact people for comparison with that of patients after neurological injuries. The BMCA protocol included one bilateral and 4 unilateral voluntary tasks at different joints of both arms. The VRI, measured from 19 neurologically intact participants, comprises the total muscle activity recorded for the voluntary motor task (magnitude). The calculated similarity index (SI) for each phase of each task show the similarity of “the distribution of activity across the recorded muscles” for that task in this group off participants. Results: The VRI magnitude values from right and left sides for different tasks showed no significant difference (ANOVA: FSide: 0.09, P = 0.77). Therefore these values were pooled before calculating SI. SI values were higher for tasks against gravity: elbow flexion (0.99±0.03), wrist flexion with palm up (0.98±0.03) and wrist extension with palm down (0.97±0.07). On the other hand, the SI values were the lowest for bilateral shoulder abduction (0.84±0.08) and shoulder adduction (0.84±0.08). Conclusion: To validate this index for clinical use, serial studies on patients with neurological impairments should be performed. Tasks involving movement against gravity may be more suitable in future BMCAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号