共查询到20条相似文献,搜索用时 15 毫秒
1.
Charles A. Thigpen Darin A. Padua Lori A. Michener Kevin Guskiewicz Carol Giuliani Jay D. Keener Nicholas Stergiou 《Journal of electromyography and kinesiology》2010,20(4):701-709
Forward head and rounded shoulder posture (FHRSP) is theorized to contribute to alterations in scapular kinematics and muscle activity leading to the development of shoulder pain. However, reported differences in scapular kinematics and muscle activity in those with forward head and rounded shoulder posture are confounded by the presence of shoulder pain. Therefore, the purpose of this study was to compare scapular kinematics and muscle activity in individuals free from shoulder pain, with and without FHRSP. Eighty volunteers were classified as having FHRSP or ideal posture. Scapular kinematics were collected concurrently with muscle activity from the upper and lower trapezius as well as the serratus anterior muscles during a loaded flexion and overhead reaching task using an electromagnetic tracking system and surface electromyography. Separate mixed model analyses of variance were used to compare three-dimensional scapular kinematics and muscle activity during the ascending phases of both tasks. Individuals with FHRSP displayed significantly greater scapular internal rotation with less serratus anterior activity, during both tasks as well as greater scapular upward rotation, anterior tilting during the flexion task when compared with the ideal posture group. These results provide support for the clinical hypothesis that FHRSP impacts shoulder mechanics independent of shoulder pain. 相似文献
2.
The purpose of this study was to examine whether fatigue of postural muscles might influence the coordination between segmental posture and movement. Seven healthy adults performed series of fifteen fast wrist flexions and extensions while being instructed to keep a dominant upper limb posture as constant as possible. These series of voluntary movements were performed before and after a fatiguing submaximal isometric elbow flexion, and also with or without the help of an elbow support. Surface EMG from muscles Delto?deus anterior, Biceps brachii, Triceps brachii, Flexor carpi ulnaris, Extensor carpi radialis were recorded simultaneously with wrist, elbow and shoulder accelerations and wrist and elbow displacements. Fatigue was evidenced by a shift of the elbow and shoulder muscles EMG spectra towards low frequencies. Kinematics of wrist movements and corresponding activations of wrist prime-movers, as well as the background of postural muscle activation before wrist movement were not modified. There were only slight changes in timing of postural muscle activations. These data indicate that postural fatigue induced by a low-level isometric contraction has no effect on voluntary movement and requires no dramatic adaptation in postural control. 相似文献
3.
Neuromechanics of muscle synergies for posture and movement 总被引:2,自引:1,他引:1
Recent research suggests that the nervous system controls muscles by activating flexible combinations of muscle synergies to produce a wide repertoire of movements. Muscle synergies are like building blocks, defining characteristic patterns of activation across multiple muscles that may be unique to each individual, but perform similar functions. The identification of muscle synergies has strong implications for the organization and structure of the nervous system, providing a mechanism by which task-level motor intentions are translated into detailed, low-level muscle activation patterns. Understanding the complex interplay between neural circuits and biomechanics that give rise to muscle synergies will be crucial to advancing our understanding of neural control mechanisms for movement. 相似文献
4.
The purpose of this study was to investigate the responses of the spine during sudden loading in the presence of back and abdominal muscle fatigue, with a primary focus on the implications for spinal stability. Fifteen females were studied and each received sudden loads to the hands, at both known and unknown times. Participants received these loading trials (a) while rested, (b) with back muscle fatigue, and (c) with a combination of back and abdominal muscle fatigue. Measures were taken on the EMG activity of two trunk extensor and two abdominal muscles, and on the trunk angle and centre of pressure. A 3 × 2 Repeated Measures ANOVA was also performed. There were no preparations made prior to the perturbation even when it could be anticipated. However, the peak responses that followed were greater in the unexpected versus the expected condition. In addition, trunk muscle fatigue led to an increase in the baseline activity of the trunk muscles but no additional increase in activity just prior to loading. There was increased activation of both (opposing) muscle groups when only one muscle group was fatigued. Because the peak responses following the perturbation were enhanced in the unknown timing condition, preparations must have taken place prior to the anticipated perturbations, perhaps in other segments of the body that were not measured. Also, the load impact may not have been great enough to elicit large preparations. The heightened baseline activity with fatigue suggests that there may have been increased spinal stiffness whenever the spine was fatigued, and not just immediately prior to an impending perturbation. The increased activation of opposing muscle groups is evidence of increased cocontraction in response to fatigue, possibly to maintain stability with decreasing coordination. 相似文献
5.
6.
7.
Eadric Bressel Jeffrey M. Willardson Brennan Thompson Fabio E. Fontana 《Journal of electromyography and kinesiology》2009,19(6):e500-e504
The aim of this study was to assess the effect of verbal instruction, surface stability, and load intensity on trunk muscle activity levels during the free weight squat exercise. Twelve trained males performed a free weight squat under four conditions: (1) standing on stable ground lifting 50% of their 1-repetition maximum (RM), (2) standing on a BOSU balance trainer lifting 50% of their 1-RM, (3) standing on stable ground lifting 75% of their 1-RM, and (4) receiving verbal instructions to activate the trunk muscles followed by lifting 50% of their 1-RM. Surface EMG activity from muscles rectus abdominis (RA), external oblique (EO), transversus abdominis/internal oblique (TA/IO), and erector spinae (ES) were recorded for each condition and normalized for comparisons. Muscles RA, EO, and TA/IO displayed greater peak activity (39–167%) during squats with instructions compared to the other squat conditions (P = 0.04–0.007). Peak EMG activity of muscle ES was greater for the 75% 1-RM condition than squats with instructions or lifting 50% of 1-RM (P = 0.04–0.02). The results indicate that if the goal is to enhance EMG activity of the abdominal muscles during a multi-joint squat exercise then verbal instructions may be more effective than increasing load intensity or lifting on an unstable surface. However, in light of other research, conscious co-activation of the trunk muscles during the squat exercise may lead to spinal instability and hazardous compression forces in the lumbar spine. 相似文献
8.
The purpose of this study was to determine if the effect of visually targeted gripping on shoulder muscle activity was maintained with repeated exposures. Eleven healthy males had eight shoulder muscles monitored via surface electromyography while maintaining shoulder elevation at 90° in the scapular plane with and without a 30% grip force. Three non-gripping trials were followed by 15 gripping trials and another 3 non-gripping control trials. Gripping significantly decreased the activity of the anterior deltoid, trapezius, and latissimus dorsi over the exposure of 15 trials. Gripping also reduced variability in all muscles' activity. The changes in shoulder muscle activity are likely in response to forces being transferred through multi-articular muscles spanning from the forearm to the shoulder. Targeted gripping during shoulder elevation resulted in small but significant decreases in muscle activity and reduced variability which supports previous evidence for increased risk of upper extremity disorders in occupational settings. 相似文献
9.
10.
C. McNee J.K. Kieser J.S. Antoun H. Bennani L.M. Gallo M. Farella 《Journal of electromyography and kinesiology》2013,23(3):600-607
Work related musculoskeletal disorders (WMSDs) are common among dentists and possibly caused by prolonged static load. The aim of this study was to assess the contraction pattern of neck and shoulder muscles of orthodontists in natural environments.Electromyographic (EMG) activity of right sternocleidomastoid and trapezius muscles were recorded by means of portable recorders in eight orthodontists during working conditions, and both active and resting non-working conditions. Recordings were analysed in terms of contraction episode (CE) count, amplitude, and duration.The sternocleidomastoid and trapezius muscles contracted about 40–70 times per hour in the natural environment. Their EMG activity pattern mainly consisted of short-lasting, low-amplitude CEs. The counts and amplitude of sternocleidomastoid CEs did not differ across vocational and non-vocational conditions. The number and amplitude of trapezius CEs were slightly but significantly higher during the vocational condition. There were highly significant (p < 0.001) differences in duration of CEs across conditions, with two to threefold increase in the average duration of trapezius muscle contractions found in the vocational setting.During orthodontic work, operators commonly hold muscular contractions for significantly longer periods than are encountered in non-vocational settings. This behaviour may be associated causally with the increases seen in WMSDs through proposed pathophysiological mechanisms occurring at the motor unit level. Our findings may also be valid for other occupations characterised by seated static postures with precision hand and wrist movements. 相似文献
11.
Francesco Lacquaniti 《Current opinion in neurobiology》1992,2(6):807-814
Studies are reviewed that address the problem of the variables controlled by the central nervous system in the maintenance of body posture and limb movement against disturbing forces. The role of global variables of control, which take into account the dynamic state of the limb, is discussed. Neural substrates that are involved in the distributed control of kinematic and dynamic parameters are also considered. 相似文献
12.
Bahar Shahidi Ashley Haight Katrina Maluf 《Journal of electromyography and kinesiology》2013,23(5):1082-1089
Physical and psychosocial stressors in the workplace have been independently associated with the development of neck pain, yet interactions among these risk factors remain unclear. The purpose of this study was to compare the effects of mentally challenging computer work performed with and without exposure to a psychosocial stressor on cervical muscle activity and posture. Changes in cervical posture and electromyography of upper trapezius, cervical extensor, and sternocleidomastoid muscles were compared between a resting seated posture at baseline, a low stress condition with mental concentration, and a high stress condition with mental concentration and psychosocial stress in sixty healthy office workers. Forward head posture significantly increased with mental concentration compared to baseline, but did not change with further introduction of the stressor. Muscle activity significantly increased from the low stress to high stress condition for both the dominant and non-dominant upper trapezius, with no corresponding change in activity of the cervical extensors or flexors between stress conditions. These findings suggest that upper trapezius muscles are selectively activated by psychosocial stress independent of changes in concentration or posture, which may have implications for the prevention of stress-related trapezius myalgia in the workplace. 相似文献
13.
D M Warshaw J M Desrosiers S S Work K M Trybus 《The Journal of biological chemistry》1991,266(36):24339-24343
To test the idea that the in vitro motility assay is a simplified model system for muscle contraction, the MgATP-dependent movement of actin filaments by thiophosphorylated smooth muscle myosin was characterized in the presence of the products MgADP and inorganic phosphate. The dependence of actin filament velocity on MgATP concentration was hyperbolic with a maximum velocity of 0.6 micron/s and an apparent Km = 40 microM (30 degrees C). MgADP competitively inhibited actin movement by MgATP with a Ki = 0.25 mM. Inorganic phosphate did not affect actin filament velocity in the presence of 1 mM MgATP, but competitively inhibited movement in the presence of 50 microM MgATP with a Ki = 9.5 mM. The effects of ADP and Pi on velocity agree with fiber mechanical studies, confirming that the motility assay is an excellent system to investigate the molecular mechanisms of force generation and shortening in smooth muscle. The rate at which rigor cross-bridges can be recruited to move actin filaments was observed by initiating cross-bridge cycling from rigor by flash photolysis of caged MgATP. Following the flash, which results in a rapid increase in MgATP concentration, actin filaments experienced a MgATP-dependent delay prior to achieving steady state velocity. The delay at low MgATP concentrations was interpreted as evidence that motion generating cross-bridges are slowed by a load due to a transiently high percentage of rigor cross-bridges immediately following MgATP release. 相似文献
14.
Louise Pyndt Diederichsen Jesper N?rregaard Poul Dyhre-Poulsen Annika Winther Goran Tufekovic Thomas Bandholm Lars Raundal Rasmussen Michael Krogsgaard 《Journal of electromyography and kinesiology》2007,17(4):410-419
The aim of the study was to investigate whether there was a difference in the electromyographic (EMG) activity of human shoulder muscles between the dominant and nondominant side during movement and to explore whether a possible side-difference depends on the specific task. We compared the EMG activity with surface and intramuscular electrodes in eight muscles of both shoulders in 20 healthy subjects whose hand preference was evaluated using a standard questionnaire. EMG signals were recorded during abduction and external rotation. During abduction, the normalized EMG activity was significantly smaller on the dominant side compared to the nondominant side for all the muscles except for infraspinatus and lower trapezius (P 相似文献
15.
Monteleone BJ Ronsky JL Meeuwisse WH Zernicke RF 《Journal of applied biomechanics》2012,28(2):215-221
Ankle function is frequently measured using static or dynamic tasks in normal and injured patients. The purpose of this study was to develop a novel task to quantify ankle dynamics and muscle activity in normal subjects. Twelve subjects with no prior ankle injuries participated. Video motion analysis cameras, force platforms, and an EMG system were used to collect data during a lateral hop movement task that consisted of multiple lateral-medial hops over an obstacle. Mean (SD) inversion ankle position at contact was 4.4° (4.0) in the medial direction and -3.5° (4.4) in the lateral direction; mean (SD) tibialis anterior normalized muscle activity was 0.11 (0.08) in the medial direction and 0.16 (0.13) in the lateral direction. The lateral hop movement was shown to be an effective task for quantifying ankle kinematics, forces, moments, and muscle activities in normal subjects. Future applications will use the lateral hop movement to assess subjects with previous ankle injuries in laboratory and clinical settings. 相似文献
16.
The mechanics of multi-joint posture and movement control 总被引:15,自引:0,他引:15
Neville Hogan 《Biological cybernetics》1985,52(5):315-331
17.
S Duc W Bertucci J N Pernin F Grappe 《Journal of electromyography and kinesiology》2008,18(1):116-127
Despite the wide use of surface electromyography (EMG) to study pedalling movement, there is a paucity of data concerning the muscular activity during uphill cycling, notably in standing posture. The aim of this study was to investigate the muscular activity of eight lower limb muscles and four upper limb muscles across various laboratory pedalling exercises which simulated uphill cycling conditions. Ten trained cyclists rode at 80% of their maximal aerobic power on an inclined motorised treadmill (4%, 7% and 10%) with using two pedalling postures (seated and standing). Two additional rides were made in standing at 4% slope to test the effect of the change of the hand grip position (from brake levers to the drops of the handlebar), and the influence of the lateral sways of the bicycle. For this last goal, the bicycle was fixed on a stationary ergometer to prevent the lean of the bicycle side-to-side. EMG was recorded from M. gluteus maximus (GM), M. vastus medialis (VM), M. rectus femoris (RF), M. biceps femoris (BF), M. semimembranosus (SM), M. gastrocnemius medialis (GAS), M. soleus (SOL), M. tibialis anterior (TA), M. biceps brachii (BB), M. triceps brachii (TB), M. rectus abdominis (RA) and M. erector spinae (ES). Unlike the slope, the change of pedalling posture in uphill cycling had a significant effect on the EMG activity, except for the three muscles crossing the ankle's joint (GAS, SOL and TA). Intensity and duration of GM, VM, RF, BF, BB, TA, RA and ES activity were greater in standing while SM activity showed a slight decrease. In standing, global activity of upper limb was higher when the hand grip position was changed from brake level to the drops, but lower when the lateral sways of the bicycle were constrained. These results seem to be related to (1) the increase of the peak pedal force, (2) the change of the hip and knee joint moments, (3) the need to stabilize pelvic in reference with removing the saddle support, and (4) the shift of the mass centre forward. 相似文献
18.
C. Stevens F. Bojsen-M?ller R. W. Soames 《European journal of applied physiology and occupational physiology》1989,58(7):687-692
Head movements, ground reaction forces and electromyographic activity of selected muscles were recorded simultaneously from two subjects as they performed the sit-to-stand manouevre under a variety of conditions. The influence of initial leg posture on the magnitude of the various parameters under investigation was examined first. A preferred initial leg posture resulted in smaller magnitudes of head movement and ground reaction forces. EMG activity in some muscles, trapezius and erector spinae, decreased, while in others, quadriceps and hamstrings, it increased in the preferred leg posture. The decreases seen correlate with reductions in head movement observed. The effect of inhibiting habitual postural adjustments of the head and neck, by comparing "free" and "guided" movements was also examined. In guided movements there are significant reductions in head movement, ground reaction forces and EMG activity in trapezius, sternomastoid and erector spinae. It would appear that both initial leg posture and the abolition of habitual postural adjustment have a profound influence on the efficiency of the sit-to-stand manouevre. This preliminary study high-lights the practical importance of head posture in the diagnosis and treatment of movement disorders, as well as in movement education. 相似文献
19.
A specially instrumented bicycle ergometer is utilized in this investigation to induce reproducable loading conditions on the muscles of the lower extremity at different speeds. Various tehcniques for evaluating the electromyographic signals from the vastas medialis muscle are investigated for different load and speed conditions and shown to be essentially equivalent. The RMS signal power computed by means of a real time spectral analyzer is shown to be a convenient means of quantification of the dynamic EMG signals. The electromyographic signals are shown to be stable under repeated static or dynamic conditions but not under sustained isometric static loading. 相似文献