首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeThis study investigated neuromuscular fatigue following high versus low-intensity eccentric exercise corresponding to the same amount of work.MethodsTen volunteers performed two eccentric exercises of the elbow flexors: a high-intensity versus a low-intensity exercise. Maximal voluntary contraction torque and surface electromyography of the biceps brachii muscle were recorded before, immediately and 48 h after exercises. Maximal voluntary activation level, neural (M-wave) and contractile (muscular twitch) properties of the biceps brachii muscle were analysed using electrical stimulation techniques.ResultsMaximal voluntary contraction torque was significantly (P < 0.01) reduced immediately and 48 h after exercise but the reduction was not different between the two conditions. Electromyography associated with maximal voluntary contraction significantly decreased (P < 0.05) immediately and 48 h after exercise for both conditions while maximal voluntary activation level was only significantly reduced immediately after the high-intensity exercise. Peak twitch alterations were observed immediately and 48 h after exercise for both conditions while M-wave did not change.ConclusionHigh and low-intensity eccentric exercises with the same amount of work induced the same reduction in maximal strength capacities of the biceps brachii muscles. The magnitude of peripheral and central fatigue was very similar in both conditions.  相似文献   

2.
The bicipital arteries (Rami bicipitales) were classified according to the part of the muscle they supply, to the artery from which they originate and to their relative position to the median, musculocutaneous and ulnar nerves. The maximal density of bicipital arteries can be found in the middle of the upper arm and slightly distal to the greater tubercle.  相似文献   

3.
The purpose of the present study was to assess the ability of TMG in detecting mechanical fatigue induced by two different resistance exercises on biceps brachii: high-volume (HV), and high-load (HL). Sixteen healthy subjects (age 25.1±2.6years; body mass 79.9±8.9kg; height 179±7.4cm) performed arm-curl in two different protocols (HV: 8×15×10kg, HL: 5×3×30kg). Tensiomyography was used to assess muscle response to both exercise protocols. The contractile capacity of biceps brachii significantly varied by means of the effects of potentiation and fatigue mechanisms that take place at different exercise phases. The most significant changes correspond to values of maximum radial displacement of muscle belly (D(m)), sustained contraction time (T(s)), relaxation time (T(r)), and contraction velocity (V(c)). The behavior of these parameters is, in general, similar in both exercise protocols, but they show subtle differences among them. During the first set, in both protocols, values for V(c) increase, along with a decrease in T(r), T(s), and D(m) values. Fatigue onset was evident from changes in such parameters, with HL being the first in showing these mechanisms. Tensiomyography has been shown to be highly sensitive in detecting fatigue-induced changes.  相似文献   

4.
The main aim of the present paper was to address the validity of a methodology proposed in a previous paper [Li L, Baum BS. Electromechanical delay estimated by using electromyography during cycling at different pedaling frequencies. J Electromyogr Kinesiol 2004;14(6):647-52], aimed at determining the electromechanical delay from pedaling exercise performed at various cadences. Twelve trained subjects undertook pedaling bouts corresponding to combinations of cadences ranging from 50 to 100 RPM and power output from 37.5% to 75% of Pmax. As cadence increased, peak torque angle was found to shift forward in crank cycle (from 60-65 degrees at 50 RPM to 75-80 degrees at 100 RPM, depending on the power output level), while muscle bursts shifted backward in accordance with previous works. It is therefore suggested to take into account this peak torque angle lag to improve the methodology proposed by Li and Baum. The present results also evidenced that the central strategy, consisting in earlier muscle activation in crank cycle as cadence increases, is only partial. Neural strategy seems to be a trade-off between mechanical efficiency of muscular force output and coactivation.  相似文献   

5.
6.
This study investigated biceps brachii oxygenation and myoelectrical activity during and following maximal eccentric exercise to better understand the repeated-bout effect. Ten men performed two bouts of eccentric exercise (ECC1, ECC2), consisting of 10 sets of 6 maximal lengthening contractions of the elbow flexors separated by 4 wk. Tissue oxygenation index minimum amplitude (TOI(min)), mean and maximum total hemoglobin volume by near-infrared spectroscopy, torque, and surface electromyography root mean square (EMG(RMS)) during exercise were compared between ECC1 and ECC2. Changes in maximal voluntary isometric contraction (MVC) torque, range of motion, plasma creatine kinase activity, muscle soreness, TOI(min), and EMG(RMS) during sustained (10-s) and 30-repeated isometric contraction tasks at 30% (same absolute force) and 100% MVC (same relative force) for 4 days postexercise were compared between ECC1 and ECC2. No significant differences between ECC1 and ECC2 were evident for changes in torque, TOI(min), mean total hemoglobin volume, maximum total hemoglobin volume, and EMG(RMS) during exercise. Smaller (P < 0.05) changes and faster recovery of muscle damage markers were evident following ECC2 than ECC1. During 30% MVC tasks, TOI(min) did not change, but EMG(RMS) increased 1-4 days following ECC1 and ECC2. During 100% MVC tasks, EMG(RMS) did not change, but torque and TOI(min) decreased 1-4 days following ECC1 and ECC2. TOI(min) during 100% MVC tasks and EMG(RMS) during 30% MVC tasks recovered faster (P < 0.05) following ECC2 than ECC1. We conclude that the repeated-bout effect cannot be explained by altered muscle activation or metabolic/hemodynamic changes, and the faster recovery in muscle oxygenation and activation was mainly due to faster recovery of force.  相似文献   

7.
连续递增负荷条件下肌肉活动的力-电关系   总被引:1,自引:0,他引:1  
目的:观察非疲劳状态下肱二头肌在静态连续递增负荷下sEMG信号的线性和非线性指标变化规律,探讨非疲劳状态下肌肉活动的力-电关系。方法:记录11名男性受试者肱二头肌在完成为时5s连续递增负荷等长收缩过程中的sEMG信号,观察线性分析指标AEMG、MPF、MF与非线性分析指标C(N)和DET%的变化规律。结果:AEMG由第1s的112.14μV逐渐上升到第5s的1277.18μV,与负荷水平呈明显线性相关;DET%从第1s的74.95下降到第5s的46.78,呈单调递减变化;MPF、MF和C(N)在本试验条件下未发生明显改变。结论:在连续递增收缩过程中,线性分析指标AEMG呈线性递增性变化,而MPF和MF无显著改变;非线性分析指标DET%随用力程度的连续递增而递减,而C(N)则保持相对稳定。  相似文献   

8.
This study tested the common assumption that skeletal muscle shortens uniformly in the direction of its fascicles during low-load contraction. Cine phase contrast magnetic resonance imaging was used to characterize shortening of the biceps brachii muscle in 12 subjects during repeated elbow flexion against 5 and 15% maximum voluntary contraction (MVC) loads. Mean shortening was relatively constant along the anterior boundary of the muscle and averaged 21% for both loading conditions. In contrast, mean shortening was nonuniform along the centerline of the muscle during active elbow flexion. Centerline shortening in the distal region of the biceps brachii (7.3% for 5% MVC and 3.7% for 15% MVC) was significantly less (P < 0.001) than shortening in the muscle midportion (26.3% for 5% MVC and 28.2% for 15% MVC). Nonuniform shortening along the centerline was likely due to the presence of an internal aponeurosis that spanned the distal third of the longitudinal axis of the biceps brachii. However, muscle shortening was also nonuniform proximal to the centerline aponeurosis. Because muscle fascicles follow the anterior contour and centerline of the biceps brachii, our results suggest that shortening is uniform along anterior muscle fascicles and nonuniform along centerline fascicles.  相似文献   

9.
The purpose of this investigation was to determine the influence of contraction velocity on the eccentric (ECC) and concentric (CON) torque production of the biceps brachii. After performing warm-up procedures, each male subject (n = 11) completed 3 sets of 5 maximal bilateral CON and ECC isokinetic contractions of the biceps at speeds of 90, 180, and 300 degrees x s(-1) on a Biodex System 3 dynamometer. The men received a 3-minute rest between sets and the order of exercises was randomized. Peak torque (Nm) values were obtained for CON and ECC contractions at each speed. Peak torque scores (ECC vs. CON) were compared using a t-test at each speed. A repeated measures analysis of variance was used to determine differences between speeds. ECC peak torque scores were greater than CON peak torque scores at each given speed: 90 degrees x s(-1), p = 0.0001; 180 degrees x s(-1), p = 0.0001; and 300 degrees x s(-1), p = 0.0001. No differences were found between the ECC peak torque scores (p = 0.62) at any of the speeds. Differences were found among the CON scores (p = 0.004). Post hoc analysis revealed differences between 90 degrees x s(-1) (114.61 +/- 23) and 300 degrees x s(-1) (94.17 +/- 18). These data suggest that ECC contractions of the biceps brachii were somewhat resistant to a force decrement as the result of an increase in velocity, whereas CON muscular actions of the biceps brachii were unable to maintain force as velocity increased.  相似文献   

10.
Muscle fiber numbers were estimated in vivo in biceps brachii in 5 elite male bodybuilders, 7 intermediate caliber bodybuilders, and 13 age-matched controls. Mean fiber area and collagen volume density were calculated from needle biopsies and muscle cross-sectional area by computerized tomographic scanning. Contralateral measurements in a subsample of seven subjects indicated the method for estimation of fiber numbers to have adequate reliability. There was a wide interindividual range for fiber numbers in biceps (172,085-418,884), but despite large differences in muscle size both bodybuilder groups possessed the same number of muscle fibers as the group of untrained controls. Although there was a high correlation between average cross-sectional fiber area and total muscle cross-sectional area within each group, many of the subjects with the largest muscles also tended to have a large number of fibers. Since there were equally well-trained subjects with fewer than normal fiber numbers, we interpret this finding to be due to genetic endowment rather than to training-induced hyperplasia. The proportion of muscle comprised of connective and other noncontractile tissue was the same for all subjects (approximately 13%), thus indicating greater absolute amounts of connective tissue in the trained subjects. We conclude that in humans, heavy resistance training directed toward achieving maximum size in skeletal muscle does not result in an increase in fiber numbers.  相似文献   

11.
The mechanomyography (MMG) signal reflects mechanical properties of limb muscles that undergo complex phenomena in different functional states. We undertook the study of the chaotic nature of MMG signals by referring to recent developments in the field of nonlinear dynamics. MMG signals were measured from the biceps brachii muscle of 5 subjects during fatigue of isometric contraction at 80% maximal voluntary contraction (MVC) level. Deterministic chaotic character was detected in all data by using the Volterra–Wiener–Korenberg model and noise titration approach. The noise limit, a power indicator of the chaos of fatigue MMG signals, was 22.20±8.73. Furthermore, we studied the nonlinear dynamic features of MMG signals by computing their correlation dimension D2, which was 3.35±0.36 across subjects. These results indicate that MMG is a high-dimensional chaotic signal and support the use of the theory of nonlinear dynamics for analysis and modeling of fatigue MMG signals.  相似文献   

12.
Motor unit (MU) synchronization is the simultaneous or near-simultaneous firing of two MUs which occurs more often than would be expected by chance. The present study sought to investigate the effects of exercise training, muscle group, and force level, by comparing the magnitude of synchronization in the biceps brachii (BB) and first dorsal interosseous (FDI) muscles of untrained and strength-trained college-aged males at two force levels, 30% of maximal voluntary contraction (MVC) and 80% MVC. MU action potentials were recorded directly via an intramuscular needle electrode. The magnitude of synchronization was assessed using previously-reported synchronization indices: k′, E, and CIS. Synchronization was significantly higher in the FDI than in the BB. Greater synchronization was observed in the strength-trained group with CIS, but not with E or k′. Also, synchronization was significantly greater at 80% MVC than at 30% MVC with E, but only moderately greater with CIS and there was no force difference with k′. Synchronization prevalence was found to be greater in the BB (80.1%) than in the FDI (71.5%). Thus, although the evidence is a bit equivocal, it appears that MU synchronization is greater at higher forces, and greater in strength-trained individuals than in untrained subjects.  相似文献   

13.
Myosin heavy chain composition of muscle spindles in human biceps brachii.   总被引:1,自引:0,他引:1  
Data on the myosin heavy chain (MyHC) composition of human muscle spindles are scarce in spite of the well-known correlation between MyHC composition and functional properties of skeletal muscle fibers. The MyHC composition of intrafusal fibers from 36 spindles of human biceps brachii muscle was studied in detail by immunocytochemistry with a large battery of antibodies. The MyHC content of isolated muscle spindles was assessed with SDS-PAGE and immunoblots. Four major MyHC isoforms (MyHCI, IIa, embryonic, and intrafusal) were detected with SDS-PAGE. Immunocytochemistry revealed very complex staining patterns for each intrafusal fiber type. The bag(1) fibers contained slow tonic MyHC along their entire fiber length and MyHCI, alpha-cardiac, embryonic, and fetal isoforms along a variable part of their length. The bag(2) fibers contained MyHC slow tonic, I, alpha-cardiac, embryonic, and fetal isoforms with regional variations. Chain fibers contained MyHCIIa, embryonic, and fetal isoforms throughout the fiber, and MyHCIIx at least in the juxtaequatorial region. Virtually each muscle spindle had a different allotment of numbers of bag(1), bag(2) and chain fibers. Taken together, the complexity in intrafusal fiber content and MyHC composition observed indicate that each muscle spindle in the human biceps has a unique identity.  相似文献   

14.
The purpose of the present study was to validate the capability of new fatigue indexes (in the time and frequency domain) applied to experimental recordings and thus, to test some assumptions made in previous simulations. The indexes were applied to M-waves detected non-invasively from human m.biceps brachii during repetitive slightly above threshold stimulations. It was found that distance between the motor point and middle of the end-plate region could be relatively large. Under identical conditions (signals detected by monopolar electrodes and high-pass filtered at 1 Hz), the relative changes of the indexes obtained in electrophysiological experiments and simulations were similar. Changes of the intracellular action potential profile during fatigue used in the simulations were consequently supposed to be close to the actual ones for the muscle analyzed. When the high-pass cut-off frequency was higher than 1 Hz, the sensitivity of the index in the time domain was higher, while that in the frequency domain was lower. If the normalizing spectral moment was of higher order, the sensitivity of the spectral index could be even 150-times greater than that of the fatigue indexes traditionally used. Thus, the spectral index promises high capability to assess fatigue during functional electrical stimulation.  相似文献   

15.
The neural adaptations that mediate the increase in strength in the early phase of a strength training program are not well understood; however, changes in neural drive and corticospinal excitability have been hypothesized. To determine the neural adaptations to strength training, we used transcranial magnetic stimulation (TMS) to compare the effect of strength training of the right elbow flexor muscles on the functional properties of the corticospinal pathway. Motor-evoked potentials (MEPs) were recorded from the right biceps brachii (BB) muscle from 23 individuals (training group; n = 13 and control group; n = 10) before and after 4 weeks of progressive overload strength training at 80% of 1-repetition maximum (1RM). The TMS was delivered at 10% of the root mean square electromyographic signal (rmsEMG) obtained from a maximal voluntary contraction (MVC) at intensities of 5% of stimulator output below active motor threshold (AMT) until saturation of the MEP (MEPmax). Strength training resulted in a 28% (p = 0.0001) increase in 1RM strength, and this was accompanied by a 53% increase (p = 0.05) in the amplitude of the MEP at AMT, 33% (p = 0.05) increase in MEP at 20% above AMT, and a 38% increase at MEPmax (p = 0.04). There were no significant differences in the estimated slope (p = 0.47) or peak slope of the stimulus-response curve for the left primary motor cortex (M1) after strength training (p = 0.61). These results demonstrate that heavy-load isotonic strength training alters neural transmission via the corticospinal pathway projecting to the motoneurons controlling BB and in part underpin the strength changes observed in this study.  相似文献   

16.
Muscle pain has widespread effects on motor performance, but the effect of pain on voluntary activation, which is the level of neural drive to contracting muscle, is not known. To determine whether induced muscle pain reduces voluntary activation during maximal voluntary contractions, voluntary activation of elbow flexors was assessed with both motor-point stimulation and transcranial magnetic stimulation over the motor cortex. In addition, we performed a psychophysical experiment to investigate the effect of induced muscle pain across a wide range of submaximal efforts (5-75% maximum). In all studies, elbow flexion torque was recorded before, during, and after experimental muscle pain by injection of 1 ml of 5% hypertonic saline into biceps. Injection of hypertonic saline evoked deep pain in the muscle (pain rating ~5 on a scale from 0 to 10). Experimental muscle pain caused a small (~5%) but significant reduction of maximal voluntary torque in the motor-point and motor cortical studies (P < 0.001 and P = 0.045, respectively; n = 7). By contrast, experimental muscle pain had no significant effect on voluntary activation when assessed with motor-point and motor cortical stimulation although voluntary activation tested with motor-point stimulation was reduced by ~2% in contractions after pain had resolved (P = 0.003). Furthermore, induced muscle pain had no significant effect on torque output during submaximal efforts (P > 0.05; n = 6), which suggests that muscle pain did not alter the relationship between the sense of effort and production of voluntary torque. Hence, the present study suggests that transient experimental muscle pain in biceps brachii has a limited effect on central motor pathways.  相似文献   

17.
Measuring muscle forces in vivo is invasive and consequently indirect methods e.g., electromyography (EMG) are used in estimating muscular force production. The aim of the present paper was to examine what kind of effect the disruption of the physiological signal caused by the innervation zone has in predicting the force/torque output from surface EMG. Twelve men (age 26 (SD ±3) years; height 179 (±6) cm; body mass 73 (±6) kg) volunteered as subjects. They were asked to perform maximal voluntary isometric contraction (MVC) in elbow flexion, and submaximal contractions at 10%, 20%, 30%, 40%, 50% and 75% of the recorded MVC. EMG was measured from biceps brachii muscle with an electrode grid of 5 columns × 13 rows. Force-EMG relationships were determined from individual channels and as the global mean value. The relationship was deemed inconsistent if EMG value did not increase in successive force levels. Root mean squared errors were calculated for 3rd order polynomial fits. All subjects had at least one (4-52) inconsistent channel. Two subjects had inconsistent relationship calculated from the global mean. The mean root mean squared error calculated using leave one out method for the fits of the individual channels (0.33 ± 0.17) was higher (P < 0.001) than the error for the global mean fit (0.16 ± 0.08). It seems that the disruption of the physiological signal caused by the innervation zone affects the consistency of the force-EMG relationship on single bipolar channel level. Multichannel EMG recordings used for predicting force overcame this disruption.  相似文献   

18.
The biceps brachii of horses is subdivided into a lateral and medial head. Electrophoresis of samples from the lateral head revealed three slow-migrating native myosin isoforms, including one that does not correspond to slow myosin isoforms described for other mammalian muscles. In contrast, the medial head contained a single slow isoform. Both the lateral and medial heads contained three fast-migrating isoforms corresponding with the FM-2, FM-3 and FM-4 isoforms reported for other mammalian fast-twitch muscle fibers. Electrophoresis of myosin heavy chains (MHCs) revealed only two MHC bands, one fast-migrating band that comigrates with rat type I MHC and a second slower-migrating band that comigrates with rat type IIa MHC. Quantitation of the histochemical data is correlated with densitometric analysis of MHCs in the medial and lateral heads of biceps brachii and is consistent with previously hypothesized functional specializations of this muscle.  相似文献   

19.
Inactive forearm muscle oxygenation has been reported to begin decreasing from the respiratory compensation point (RCP) during ramp leg cycling. From the RCP, hyperventilation occurs with a decrease in arterial CO2 pressure (PaCO2). The aim of this study was to determine which of these two factors, hyperventilation or decrease in PaCO2, is related to a decrease in inactive biceps brachii muscle oxygenation during leg cycling. Each subject (n = 7) performed a 6-min two-step leg cycling. The exercise intensity in the first step (3 min) was halfway between the ventilatory threshold and RCP (170+/-21 watts), while that in the second step (3 min) was halfway between the RCP and peak oxygen uptake (240+/-28 watts). The amount of hyperventilation and PaCO2 were calculated from gas parameters. The average cross correlation function in seven subjects between inactive muscle oxygenation and amount of hyperventilation showed a negative peak at the time shift of zero (r = -0.72, p<0.001), while that between inactive muscle oxygenation and calculated PaCO2 showed no peak near the time shift of zero. Thus, we concluded that decrease in oxygenation in inactive arm muscle is closely coupled with increase in the amount of hyperventilation.  相似文献   

20.
The fibre type ratio and the cross sectional areas of fibres were studied in triceps brachial muscle after rupture of tendon of the biceps brachial muscle in man. On the healthy and injured sides of the m. triceps brachii, the mean value of type 1 fibres was 51.9% and 52.4%, respectively. The mean cross sectional area of fibre on the two sides of the triceps muscle varied considerably among individuals without any significant correlation to injury of the biceps tendon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号