首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《朊病毒》2013,7(3):208-210
Prion proteins misfold and aggregate into multiple infectious strain variants that possess unique abilities to overcome prion species barriers, yet the structural basis for the species-specific infectivities of prion strains is poorly understood. Therefore, we have investigated the site-specific structural properties of a promiscuous chimeric form of the yeast prion Sup35 from Saccharomyces cerevisiae and Candida albicans. The Sup35 chimera forms two strain variants, each of which selectively infect one species but not the other. Importantly, the N-terminal and middle domains of the Sup35 chimera (collectively referred to as Sup35NM) contain two prion recognition elements (one from each species) that regulate the nucleation of each strain. Mutations in either prion recognition element significantly bias nucleation of one strain conformation relative to the other. Herein, we have investigated the folding of each prion recognition element for the serine-to-arginine mutant at residue 17 of Sup35NM chimera known to promote nucleation of C. albicans strain conformation. Using cysteine-specific labeling analysis, we find that residues in the C. albicans prion recognition element are solvent-shielded, while those outside the recognition sequence (including most of those in the S. cerevisiae recognition element) are solvent-exposed. Moreover, we find that proline mutations in the C. albicans recognition sequence disrupt the prion templating activity of this strain conformation. Our structural findings reveal that differential folding of complementary and non-complementary prion recognition elements within the prion amyloid core of the Sup35NM chimera is the structural basis for its species-specific templating activity.  相似文献   

2.
Multiple yeast prions have been identified that result from the structural conversion of proteins into a self-propagating amyloid form. Amyloid-based prion activity in yeast requires a series of discrete steps. First, the prion protein must form an amyloid nucleus that can recruit and structurally convert additional soluble proteins. Subsequently, maintenance of the prion during cell division requires fragmentation of these aggregates to create new heritable propagons. For the Saccharomyces cerevisiae prion protein Sup35, these different activities are encoded by different regions of the Sup35 prion domain. An N-terminal glutamine/asparagine-rich nucleation domain is required for nucleation and fiber growth, while an adjacent oligopeptide repeat domain is largely dispensable for prion nucleation and fiber growth but is required for chaperone-dependent prion maintenance. Although prion activity of glutamine/asparagine-rich proteins is predominantly determined by amino acid composition, the nucleation and oligopeptide repeat domains of Sup35 have distinct compositional requirements. Here, we quantitatively define these compositional requirements in vivo. We show that aromatic residues strongly promote both prion formation and chaperone-dependent prion maintenance. In contrast, nonaromatic hydrophobic residues strongly promote prion formation but inhibit prion propagation. These results provide insight into why some aggregation-prone proteins are unable to propagate as prions.  相似文献   

3.
Yeast prions are protein-based genetic elements that produce phenotypes through self-perpetuating changes in protein conformation. For the prion [PSI(+)] this protein is Sup35, which is comprised of a prion-determining region (NM) fused to a translational termination region. [PSI(+)] strains (variants) with different heritable translational termination defects (weak or strong) can exist in the same genetic background. [PSI(+)] variants are reminiscent of mammalian prion strains, which can be passaged in the same mouse strain yet have different disease latencies and brain pathologies. We found that [PSI(+)] variants contain different ratios of Sup35 in the prion and non-prion state that correlate with different translation termination efficiencies. Indeed, the partially purified prion form of Sup35 from a strong [PSI(+)] variant converted purified NM much more efficiently than that of several weak variants. However, this difference was lost in a second round of conversion in vitro. Thus, [PSI(+)] variants result from differences in the efficiency of prion-mediated conversion, and the maintenance of [PSI(+)] variants involves more than nucleated conformational conversion (templating) to NM alone.  相似文献   

4.
There is a large body of evidence that divalent metal ions, particularly copper, might play a role in several protein folding pathologies like Alzheimer’s disease, Parkinson’s disease or the prion diseases. However, contribution of metal ions on pathogenesis and their molecular influence on the formation of amyloid structures is not clear. Therefore, the general influence of metals on the formation of amyloids is still controversially discussed. We have utilized the well established system of yeast Sup35p-NM to investigate the role of three different metal ions, Cu2+, Mn2+ and Zn2+, on amyloidogenesis. Recently, it has been shown that the prion determining region NM of the Saccharomyces cerevisiae prion protein Sup35p, which is responsible for the yeast prion phenotype [PSI+], specifically binds Cu2+ ions. We further characterized the affinity of NM for Cu2+, which were found to be comparable to that of other amyloidogenic proteins like the mammalian prion protein PrP. The specific binding sites could be located in the aminoterminal N-region which is known to initiate formation of amyloidogenic nuclei. In the presence of Cu2+, fibril nucleation was significantly delayed, probably due to influences of copper on the oligomeric ensemble of soluble Sup35p-NM, since Cu2+ altered the tertiary structure of soluble Sup35p-NM, while no influences on fibril elongation could be detected. The secondary structure of soluble or fibrous protein and the morphology of the fibrils were apparently not altered when assembled in presence of Cu2+. In contrast, Mn2+ and Zn2+ did not bind to Sup35p-NM and did not exhibit significant effects on the formation of NM amyloid fibrils.  相似文献   

5.
We previously showed that over production of a fusion protein in which the prion domain of Saccharomyces cerevisiae [PSI+] is connected to glutathione S-transferase (GST-Sup35NM) causes a marked decrease in the colony forming ability of Escherichia coli strain BL21 after reaching stationary phase. Evidence indicated that the observed toxicity was attributable to intracellular formation of fibrous aggregates of GST-Sup35NM. In this report, we describe the isolation of plasmids that encode mutant forms of GST-Sup35NM which do not confer the toxicity to E. coli strain BL21. Each of the four spontaneous mutant-forms of GST-Sup35NM obtained revealed amino acid substitutions. One substitution was located in the N domain, and the others in the M domain. Congo red binding assay indicated that none of these mutant proteins underwent conformational alteration in vitro. From these results, we conclude that the M domain, in collaboration with the N domain, plays an essential role in aggregation of Sup35NM. In addition, our data demonstrate the usefulness of the E. coli expression system in studying aggregate-forming proteins.Key words: [PSI+], yeast prion, protein aggregation, mutant selection, predication of protein secondary structure  相似文献   

6.
Ordered, fibrous, self-seeding aggregates of misfolded proteins known as amyloids are associated with important diseases in mammals and control phenotypic traits in fungi. A given protein may adopt multiple amyloid conformations, known as variants or strains, each of which leads to a distinct disease pattern or phenotype. Here, we study the effect of Hofmeister ions on amyloid nucleation and strain generation by the prion domain-containing fragment (Sup35NM) of a yeast protein Sup35p. Strongly hydrated anions (kosmotropes) initiate nucleation quickly and cause rapid fiber elongation, whereas poorly hydrated anions (chaotropes) delay nucleation and mildly affect the elongation rate. For the first time, we demonstrate that kosmotropes favor formation of amyloid strains that are characterized by lower thermostability and higher frangibility in vitro and stronger phenotypic and proliferation patterns effectively in vivo as compared with amyloids formed in chaotropes. These phenomena point to inherent differences in the biochemistry of Hofmeister ions. Our work shows that the ionic composition of a solution not only influences the kinetics of amyloid nucleation but also determines the amyloid strain that is preferentially formed.  相似文献   

7.
The prion [PSI +] is an amyloid isoform of the release factor eRF3 encoded by the SUP35 gene in Saccharomyces cerevisiae yeast. Naturally occurring amyloid complexes have been studied for a long time, yet their structural organization is still not well understood. The formation of amyloid forms of the wild-type Sup35 protein (Sup35p) is directed by its N-terminal portion, which forms a superpleated β-sheet structure. We previously constructed five mutants, each of which carried a replacement in two consecutive amino acids, one in each of the oligopeptide repeats (OR) and in the Sup35p N-terminal region. Mutations sup35-M1 (YQ46-47KK) and sup35-M2 (QQ61-62KK) lead to the compete loss of prion conformation. Three other mutants, i.e., sup35-M3 (QQ70-71KK), sup35-M4 (QQ80-81KK), and sup35-M5 (QQ89-90KK), formed functional prions. In the current study, we investigated the contribution of each mutant peptide to the stability of the prion and aggregation properties, and compared the effects of single mutants and combinations of different mutant alleles. Studies were carried out in yeast strains designed to carry single or a combination of different SUP35 alleles. Based on our analysis, we propose a model that clarifies the 3D organization of the β-sheet within the prion. We also provide evidence that sup35-M2 and sup35-M4 mutations change the 3D structure of prion complexes. We propose that the destabilization of prion complexes in these mutants is due to the decreased efficiency of the fragmentation of the prion aggregates by chaperone complexes.  相似文献   

8.
Recent studies have shown that Sup35p prion fibrils probably have a parallel in-register β-structure. However, the part(s) of the N-domain critical for fibril formation and maintenance of the [PSI+] phenotype remains unclear. Here we designed a set of five SUP35 mutant alleles (sup35KK) with lysine substitutions in each of five N-domain repeats, and investigated their effect on infectivity and ability of corresponding proteins to aggregate and coaggregate with wild type Sup35p in the [PSI+] strain. Alleles sup35-M1 (Y46K/Q47K) and sup35-M2 (Q61K/Q62K) led to prion loss, whereas sup35-M3 (Q70K/Q71K), sup35-M4 (Q80K/Q81K), and sup35-M5 (Q89K/Q90K) were able to maintain the [PSI+] prion. This suggests that the critical part of the parallel in-register β-structure for the studied [PSI+] prion variant lies in the first 63–69 residues. Our study also reveals an unexpected interplay between the wild type Sup35p and proteins expressed from the sup35KK alleles during prionization. Both Sup35-M1p and Sup35-M2p coaggregated with Sup35p, but only sup35-M2 led to prion loss in a dominant manner. We suggest that in the fibrils, Sup35p can bind to Sup35-M1p in the same conformation, whereas Sup35-M2p only allowed the Sup35p conformation that leads to the non-heritable fold. Mutations sup35-M4 and sup35-M5 influence the structure of the prion forming region to a lesser extent, and can lead to the formation of new prion variants.  相似文献   

9.
Protein-only (prion) epigenetic elements confer unique phenotypes by adopting alternate conformations that specify new traits. Given the conformational flexibility of prion proteins, protein-only inheritance requires efficient self-replication of the underlying conformation. To explore the cellular regulation of conformational self-replication and its phenotypic effects, we analyzed genetic interactions between [PSI+], a prion form of the S. cerevisiae Sup35 protein (Sup35[PSI+]), and the three Nα-acetyltransferases, NatA, NatB, and NatC, which collectively modify ~50% of yeast proteins. Although prion propagation proceeds normally in the absence of NatB or NatC, the [PSI+] phenotype is reversed in strains lacking NatA. Despite this change in phenotype, [PSI+] NatA mutants continue to propagate heritable Sup35[PSI+]. This uncoupling of protein state and phenotype does not arise through a decrease in the number or activity of prion templates (propagons) or through an increase in soluble Sup35. Rather, NatA null strains are specifically impaired in establishing the translation termination defect that normally accompanies Sup35 incorporation into prion complexes. The NatA effect cannot be explained by the modification of known components of the [PSI+] prion cycle including Sup35; thus, novel acetylated cellular factors must act to establish and maintain the tight link between Sup35[PSI+] complexes and their phenotypic effects.  相似文献   

10.
The [PSI(+)] factor of Saccharomyces cerevisiae is a protein-based genetic element (prion) comprised of a heritable altered conformation of the cytosolic translation termination factor Sup35p. In vitro, the prion-determining region (NM) of Sup35p undergoes conformational conversion from a highly flexible soluble state to structured amyloid fibers, with a rate that is greatly accelerated by preformed NM fiber nuclei. Nucleated conformational conversion is the molecular basis of the genetic inheritance of [PSI(+)] and provides a new model for studying amyloidogenesis. Here we investigate the importance of structure and structural flexibility in soluble NM. Elevated temperatures, chemical chaperones and certain mutations in NM increase or change its structural content and inhibit or enhance nucleated conformational conversion. We propose that the structural flexibility of NM is particularly suited to allowing heritable protein-based changes in cellular behavior.  相似文献   

11.
Saccharomyces cerevisiae prion [PSI ] is a self-propagating isoform of the eukaryotic release factor eRF3 (Sup35p). Sup35p consists of the evolutionary conserved release factor domain (Sup35C) and two evolutionary variable regions - Sup35N, which serves as a prion-forming domain in S. cerevisiae, and Sup35M. Here, we demonstrate that the prion form of Sup35p is not observed among industrial and natural strains of yeast. Moreover, the prion ([PSI + ]) state of the endogenous S. cerevisiae Sup35p cannot be transmitted to the next generations via heterologous Sup35p or Sup35NM, originating from the distantly related yeast species Pichia methanolica. This suggests the existence of a 'species barrier' in yeast prion conversion. However, the chimeric Sup35p, containing the Sup35NM region of Pichia, can be turned into a prion in S. cerevisiae by overproduction of the identical Pichia Sup35NM. Therefore, the prion-forming potential of Sup35NM is conserved in evolution. In the heterologous system, overproduction of Pichia Sup35p or Sup35NM induced formation of the prion form of S. cerevisiae Sup35p, albeit less efficiently than overproduction of the endogenous Sup35p. This implies that prion induction by protein overproduction does not require strict correspondence of the 'inducer' and 'inducee' sequences, and can overcome the 'species barrier'.  相似文献   

12.
In yeast Saccharomyces cerevisiae translation termination factors eRF1 (Sup45) and eRF3 (Sup35) are encoded by the essential genes SUP45 and SUP35 respectively. Heritable aggregation of Sup35 results in formation of the yeast prion [PSI+]. It is known that combination of [PSI+] with some mutant alleles of the SUP35 or SUP45 genes in one and the same haploid yeast cell causes synthetic lethality. In this study, we perform detailed analysis of synthetic lethality between various sup45 nonsense and missense mutations on one hand, and different variants of [PSI+] on the other hand. Synthetic lethality with sup45 mutations was detected for [PSI+] variants of different stringencies. Moreover, we demonstrate for the first time that in some combinations, synthetic lethality is dominant and occurs at the postzygotic stage after only a few cell divisions. The tRNA suppressor SUQ5 counteracts the prion-dependent lethality of the nonsense alleles but not of the missense alleles of SUP45, indicating that the lethal effect is due to the depletion of Sup45. Synthetic lethality is also suppressed in the presence of the C-proximal fragment of Sup35 (Sup35C) that lacks the prion domain and cannot be included into the prion aggregates. Remarkably, the production of Sup35C in a sup45 mutant strain is also accompanied by an increase in the Sup45 levels, suggesting that translationally active Sup35 up-regulates Sup45 or protects it from degradation.Key Words: Sup45, Sup35, eRF1, eRF3, amyloid, [PSI+], translation termination, Saccharomyces cerevisiae  相似文献   

13.
Tanaka M  Chien P  Yonekura K  Weissman JS 《Cell》2005,121(1):49-62
Efficiency of interspecies prion transmission decreases as the primary structures of the infectious proteins diverge. Yet, a single prion protein can misfold into multiple infectious conformations, and such differences in "strain conformation" also alter infection specificity. Here, we explored the relationship between prion strains and species barriers by creating distinct synthetic prion forms of the yeast prion protein Sup35. We identified a strain conformation of Sup35 that allows transmission from the S. cerevisiae (Sc) Sup35 to the highly divergent C. albicans (Ca) Sup35 both in vivo and in vitro. Remarkably, cross-species transmission leads to a novel Ca strain that in turn can infect the Sc protein. Structural studies reveal strain-specific conformational differences in regions of the prion domain that are involved in intermolecular contacts. Our findings support a model whereby strain conformation is the critical determinant of cross-species prion transmission while primary structure affects transmission specificity by altering the spectrum of preferred amyloid conformations.  相似文献   

14.
The cytosolic chaperone network of Saccharomyces cerevisiae is intimately associated with the emergence and maintenance of prion traits. Recently, the Hsp110 protein, Sse1, has been identified as a nucleotide exchange factor (NEF) for both cytosolic Hsp70 chaperone family members, Ssa1 and Ssb1. We have investigated the role of Sse1 in the de novo formation and propagation of [PSI(+)], the prion form of the translation termination factor, Sup35. As observed by others, we find that Sse1 is essential for efficient prion propagation. Our results suggest that the NEF activity is required for maintaining sufficient levels of substrate-free Ssa1. However, Sse1 exhibits an additional NEF-independent activity; it stimulates in vitro nucleation of Sup35NM, the prion domain of Sup35. We also observe that high levels of Sse1, but not of an unrelated NEF, very potently inhibit Hsp104-mediated curing of [PSI(+)]. Taken together, these results suggest a chaperone-like activity of Sse1 that assists in stabilization of early folding intermediates of the Sup35 prion conformation. This activity is not essential for prion formation under conditions of Sup35 overproduction, however, it may be relevant for spontaneous [PSI(+)] formation as well as for protection of the prion trait upon physiological Hsp104 induction.  相似文献   

15.
In prion-infected hosts, PrPSc usually accumulates as non-fibrillar, membrane-bound aggregates. Glycosylphosphatidylinositol (GPI) anchor-directed membrane association appears to be an important factor controlling the biophysical properties of PrPSc aggregates. To determine whether GPI anchoring can similarly modulate the assembly of other amyloid-forming proteins, neuronal cell lines were generated that expressed a GPI-anchored form of a model amyloidogenic protein, the NM domain of the yeast prion protein Sup35 (Sup35GPI). We recently reported that GPI anchoring facilitated the induction of Sup35GPI prions in this system. Here, we report the ultrastructural characterization of self-propagating Sup35GPI aggregates of either spontaneous or induced origin. Like membrane-bound PrPSc, Sup35GPI aggregates resisted release from cells treated with phosphatidylinositol-specific phospholipase C. Sup35GPI aggregates of spontaneous origin were detergent-insoluble, protease-resistant, and self-propagating, in a manner similar to that reported for recombinant Sup35NM amyloid fibrils and induced Sup35GPI aggregates. However, GPI-anchored Sup35 aggregates were not stained with amyloid-binding dyes, such as Thioflavin T. This was consistent with ultrastructural analyses, which showed that the aggregates corresponded to dense cell surface accumulations of membrane vesicle-like structures and were not fibrillar. Together, these results showed that GPI anchoring directs the assembly of Sup35NM into non-fibrillar, membrane-bound aggregates that resemble PrPSc, raising the possibility that GPI anchor-dependent modulation of protein aggregation might occur with other amyloidogenic proteins. This may contribute to differences in pathogenesis and pathology between prion diseases, which uniquely involve aggregation of a GPI-anchored protein, versus other protein misfolding diseases.  相似文献   

16.
Prions are self-propagating infectious protein aggregates of mammals and fungi. The exact mechanism of prion formation is poorly understood. In a recent study, a comparative analysis of the aggregation propensities of chimeric proteins derived from the yeast Sup35p and mouse PrP prion proteins was performed in neuroblastoma cells. The cytosolic expression of the Sup35p domains NM, PrP and fusion proteins thereof revealed that the carboxyterminal domain of PrP (PrP90–230) mediated aggregate formation, while Sup35p N and M domains modulated aggregate size and frequency when fused to the globular domain of PrP. Here we further present co-aggregation studies of chimeric proteins with cytosolic PrP or a huntingtin fragment with an extended polyglutamine tract. Our studies demonstrate that cross-seeding by heterologous proteins requires sequence similarity with the aggregated protein domain. Taken together, these results demonstrate that nucleation and seeding of prion protein aggregates is strongly influenced by dynamic interactions between the aggregate core forming domain and its flanking regions.Key words: prion, Sup35, huntingtin, cross-seeding, co-aggregation  相似文献   

17.
The study of fungal prion proteins affords remarkable opportunities to elucidate both intragenic and extragenic effectors of prion propagation. The yeast prion protein Sup35 and the self-perpetuating [PSI+] prion state is one of the best characterized fungal prions. While there is little sequence homology among known prion proteins, one region of striking similarity exists between Sup35p and the mammalian prion protein PrP. This region is comprised of roughly five octapeptide repeats of similar composition. The expansion of the repeat region in PrP is associated with inherited prion diseases. In order to learn more about the effects of PrP repeat expansions on the structural properties of a protein that undergoes a similar transition to a self-perpetuating aggregate, we generated chimeric Sup35-PrP proteins. Using both in vivo and in vitro systems we described the effect of repeat length on protein misfolding, aggregation, amyloid formation and amyloid stability. We found that repeat expansions in the chimeric prion proteins increase the propensity to initiate prion propagation and enhance the formation of amyloid fibers without significantly altering fiber stability.Key words: prion, yeast, sup35, PrP, nonsense suppression, translation termination, amyloid, repeatWe recently described a novel chimeric prion system that was designed to elucidate the consequences of one class of inherited prion disease mutations on protein folding.1,2 We created a fusion between the mammalian prion protein PrP and the yeast prion protein Sup35p (Fig. 1). Sup35p is an essential translation termination factor in yeast. Interestingly, the majority of the protein can be sequestered into a self-propagating aggregate, the [PSI+] prion.3 Remarkably, when yeast are grown in normal laboratory conditions, the [PSI+] prion is not detrimental. In fact, the biological consequences of the switch from the [psi−] non-prion state to the [PSI+] prion state may be beneficial in terms of adaptation and evolution.4 Importantly, the prion state of Sup35p can be readily detected in vivo by monitoring the reduced function of the translation termination factor when the protein is propagating as a prion aggregate.3 In addition, several methods have been developed to not only follow the propagation of the prion, but also to control the propagation and promote prion induction and loss (curing).5 Therefore, in addition to simply being a fascinating biological problem in of itself, the [PSI+] prion in yeast affords the ability to further elucidate both intragenic and extragenic effectors of prion biology.Open in a separate windowFigure 1Schematic representation of the yeast protein Sup35p and the mammalian prion protein PrP highlighting the position of the oligopeptide repeat domain (ORD). The amino acid sequence represents the consensus for a single repeat. Numbers shown represent the amino acid position of the beginning and the end of each ORD. The numbers above the schematic represent the original PrP amino acid positioning and the numbers below represent the original Sup35p amino acid sequence positions.Several prions have now been identified and interestingly, there is little sequence homology between the proteins to suggest that only one type of sequence can form a self-propagating aggregate.68 In vitro studies suggest that many proteins can form amyloids under the appropriate conditions.9 The fact that only a small percentage of proteins propagate as prions in vivo may be partly a consequence of physiological conditions being adequate to promote amyloid formation with those particular sequences. It is unclear what the precise distinction between prion and amyloid is at this time, but localization alone may preclude some amyloidogenic proteins from being “prion proteins” per se.10The sequence context that permits a protein to adopt a prion conformation in vivo is unclear. Several of the identified prion proteins have a domain that is enriched in glutamine and asparagine (Q/N) residues, but this is not true of all prion proteins.7 Our recent study demonstrates that the Q/N character of the Sup35p prion-forming domain can be significantly reduced, yet still propagate as a prion.1 This was also found recently in another prion protein chimera created and expressed in yeast.6 These studies suggest that the lack of stable secondary structure may be one of the defining features of a prion-forming domain. One of the striking sequence similarities that does exist between two prion proteins occurs in an oligopeptide repeat region found in Sup35p and PrP.11 Previous data clearly demonstrated that the Sup35p repeats are important for [PSI+] prion propagation.1215 The deletion of a single repeat from the wild type SUP35 sequence results in the loss of normal [PSI+] prion propagation.12 Moreover, the addition of two extra repeats of Sup35p sequence served to enhance the formation of the [PSI+] prion.13 The expansion of the analogous repeat domain in the mammalian prion protein PrP is associated with an inherited form of prion disease.16 Since the repeat regions of Sup35p and PrP are similar in size and character, we wanted to determine if the Sup35p oligopeptide repeat region could be substituted with that of PrP. Indeed, the PrP repeats in the context of Sup35p supported the propagation of the [PSI+] prion in yeast.1,17 Strikingly, we found phenotypic changes that occurred in a repeat length-dependent manner that suggested that the repeat expansions associated with disease result in an increase in the aggregation propensity but do not necessarily dictate only one type of aggregate structure.1More recently, we verified some of these results in vitro.2 These data are in agreement with other studies on the effect of repeat expansions.18,19 Taking the analysis one step further, we demonstrated that the stability of the amyloid fibers formed with the repeat-expanded proteins did not differ significantly. A very interesting observation that we made was that the formation of amyloid fibers by the longest repeat-expanded chimera (SP14NM) followed drastically different kinetics compared to the chimera containing the wild type number of repeats (SP5NM).2 In unseeded reactions, SP14NM did not show a lag phase during the course of fiber formation whereas SP5NM displayed a characteristic lag phase. Furthermore, the morphology of the amyloid fibers visualized by EM was different between SP14NM and SP5NM. SP14NM fibers were curvy and clumped but SP5NM fibers were long and straight. The correlation between the kinetics and the morphology of amyloid formation of SP14NM and SP5NM is reminiscent of fibers formed by β2-microglobulin (β2m) protein in different conditions.20 At pH 3.6, β2m formed curvy, worm-like fibers with no apparent lag phase. In contrast, long, straight fibers were formed at pH 2.5 and had a distinct lag phase. Analysis of the β2m fibers formed at pH 3.6 using mass spectrometric techniques identified species ranging from monomer to 13-mer. This suggested that the fibers were formed by monomer addition. On the other hand, oligomers larger than tetramers were not formed during fiber formation at pH 2.5. Based on these data the authors propose that β2m forms fibers in a nucleation-independent manner at pH 3.6, but fiber formation at pH 2.5 follows a nucleation-dependent mechanism. We suggest that the mechanism underlying SP5NM and repeat-expanded SP14NM fiber formation is similar to β2m fibers formed at pH 2.5 and pH 3.6, respectively. It will be interesting to determine if disease-associated mutations in amyloidogenic proteins alter the pathway whereby amyloid formation occurs and how that process plays a role in pathogenesis.In our in vivo study,1 we highlighted a unique feature of the longest Sup35-PrP chimera that related to the ability of the protein to adopt multiple self-perpetuating prion conformations more readily than wild type Sup35p. We suggest that this may be an important aspect of prion biology as it relates to inherited disease. If the repeat-expanded proteins can adopt multiple conformations that aggregate, then that may contribute to the large amount of variation observed in pathology and disease progression in this class of inherited prion diseases.21,22We also found that the spontaneous conversion of the repeat-expanded Sup35-PrP chimera into a prion state was significantly increased. However, this conversion required another aggregated protein in vivo, the [RNQ+] prion. In vitro, the prion-forming domain of the chimera showed a similar trend with the longer repeat lengths enhancing the ability of the protein to form amyloid fibers. The chimera with repeat expansions (8, 11 or 14 repeats) formed fibers very quickly as compared to that with the wild type number of repeats (5). While this correlates with the in vivo data in that both systems demonstrate an increased level of conversion with the repeat expansion, the systems are very different with respect to their requirement for a different “seed” to initiate the prion conversion. So, how does the [RNQ+] prion influence [PSI+]? At the moment, that isn''t entirely clear. Susan Liebman and colleagues discovered another epigenetic factor in yeast, [PIN+], which was important for the de novo induction of [PSI+].2325 Several years later, the [RNQ+] prion26 was found to be that factor in the commonly used [PSI+] laboratory strains, but they also found that the overexpression of other proteins could reproduce the effect.25 Hence, [RNQ+] can be [PIN+], and may be the primary epigenetic element that influences [PSI+] induction in yeast, but need not be in every case. Two models were proposed to explain the ability of [RNQ+] to influence the induction of [PSI+].25,27 One suggested that there is a direct templating effect where the aggregated state of the Rnq1 protein in the [RNQ+] prion serves as a seed for the direct physical association and aggregation of Sup35p and initiates [PSI+]. The second postulated that there is an inhibitor of aggregation in cells that is titrated out by the presence of another aggregated protein. Recent experimental evidence suggests that the templating model may explain at least part of the mechanism of action behind the [RNQ+] prion inducing the formation of [PSI+].28,29Why is [RNQ+] required for the in vivo conversion of the repeatexpanded chimera that forms amyloid on its own very efficiently in vitro? Interestingly, we found that the [RNQ+] prion per se is not required. We overexpressed the Rnq1 protein from a constitutive high promoter (pGPD-RNQ1) and found that Rnq1p aggregated in the cells but did not induce the [RNQ+] prion. That is, the cells were still [rnq−] and did not genetically transmit the aggregated state of the protein. However, even these non-prion aggregates of Rnq1p served to enhance the induction of the chimeric prions. Therefore, either the [RNQ+] prion or an aggregate of Rnq1 protein is sufficient, which is in line with previous studies that demonstrated that some proteins that aggregate when overexpressed can also enhance the induction of [PSI+].25 Also of note, recent data suggests that the requirement of [RNQ+] for the induction of Sup35p aggregation in vivo can be overcome by very long polyglutamine or glutamine/tyrosine stretches fused to the non-prion forming domain of Sup35p.30 These fusions may alter protein-protein interactions or destabilize the non-prion structure of Sup35p in such a manner that the [RNQ+] prion seed is no longer required to form [PSI+] de novo. Indeed, the non-polymerizing state of some of the fusion proteins was shown to be very unstable.So, what is the important difference between our in vitro and in vivo systems in the prion conversion? Obviously there are many candidates. First, the full length Sup35 protein may alter the conversion properties since a large part of the molecule is the structured C terminal domain. The C terminal domain may influence the initiation of prion propagation in vivo and that is not a factor in the in vitro system. Second, the influences of co-translational folding and potentially some initial unfolding of the prion-forming domain are not present since the in vitro system starts with denatured protein. Third, the environmental influences are clearly different. The molecular crowding effects and chaperones that are required for prion propagation in vivo are not required for the formation of amyloid in vitro. Finally, it is unclear if amyloid structures similar to those formed with the prion-forming domain in vitro actually exist in yeast. Certainly there is some correlation between the structures since aggregated Sup35 protein from [PSI+] cell lysates can seed amyloid formation in vitro31,32 and the fibers formed in vitro can be transformed into [psi−] cells and cause conversion to [PSI+].33 Nevertheless, we find it interesting that the expansion of the repeat region can have a tremendous effect on amyloid formation in vitro yet still cannot overcome the requirement for [RNQ+] for conversion in vivo. The presence of co-aggregating or cross-seeding proteins may play a role in the sporadic appearance or progression of neurodegenerative diseases and the interconnected yeast prions [RNQ+] and [PSI+] may provide a model system for elucidating the mechanism underlying such effects.  相似文献   

18.
Sup35pNM represents the N-terminal and middle (M) domains of the yeast Saccharomyces cerevisiae prion Sup35p. This fragment is commonly used for structural and functional studies of Sup35p. We here present a solid-state NMR study of fibrils formed by this fragment and show that sequential assignments can be obtained for the rigid and well-ordered parts of the protein using 3D spectroscopy. We describe in detail the sequential assignment of the 22 residues yielding strong, narrow signals with chemical shifts that correspond mostly to β-sheet secondary-structured amino acids that form the fibril core.  相似文献   

19.
The cytoplasmic [PSI(+)] element of budding yeast represents the prion conformation of translation release factor Sup35. Much interest lies in understanding how prions are able to generate variation in isogenic strains. Recent observations suggest that a single prion domain, PrD, is able to adopt several conformations that account for prion strains. We report novel PrD variants of Sup35 that convert weak [PSI(+)] to strong [PSI(+)], and vice versa, upon transmission from wild-type Sup35. During the transmission from wild-type Sup35 to variant Sup35s, no conformational changes were detected by proteolytic fingerprinting and the original [PSI(+)] strain was remembered upon return to wild-type Sup35. These findings suggest that during transmission to variant Sup35s, the [PSI(+)] phenotype is variable while the original conformation is remembered. A mechanism of "conformational memory" to remember specific [PSI(+)] conformations during transmission is proposed.  相似文献   

20.

Background  

Prions are self-perpetuating, infectious, aggregated proteins that are associated with several neurodegenerative diseases in mammals and heritable traits in yeast. Sup35p, the protein determinant of the yeast prion [PSI +], has a conserved C terminal domain that performs the Sup35p function and a prion domain that is highly divergent. Prions formed by chimeras of the prion domain of various species fused to the C domain of Saccharomyces cerevisiae exhibit a 'species barrier', a phenomenon first observed in mammals, and often fail to transmit the prion state to chimeras with prion domains of other species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号