首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to determine the effects of anterior cruciate ligament reconstruction (ACLR) on sub-maximal quadriceps force control with respect to quadriceps and hamstring muscle activity. Thirty ACLR individuals together with 30 healthy individuals participated. With real-time visual feedback of muscle force output and electromyographic electrodes attached to the quadriceps and hamstring muscles, subjects performed an isometric knee extension task where they increased and decreased their muscle force output at 0.128 Hz within a range of 5–30% maximum voluntary capacity. The ACLR group completed the task with more error and increased medial hamstring and vastus medialis activation (p < 0.05). Moderate negative correlations (p < 0.05) were observed between quadriceps force control and medial (Spearman’s rho = −0.448, p = 0.022) and lateral (Spearman’s rho = −0.401, p = 0.034) hamstring activation in the ACLR group. Diminished quadriceps sub-maximal force control in ACLR subjects was reflective of medial quadriceps and hamstring dyskinesia (i.e., altered muscle activity patterns and coordination deficits). Within the ACLR group however, augmented hamstring co-activation was associated with better quadriceps force control. Future studies should explore the convergent validity of quadriceps force control in ACLR patients.  相似文献   

2.
PurposeExternal knee moments are reliable to measure knee load but it does not take into account muscle activity. Considering that muscle co-activation increases compressive forces at the knee joint, identifying relationships between muscle co-activations and knee joint load would complement the investigation of the knee loading in subjects with knee osteoarthritis. The purpose of this study was to identify relationships between muscle co-activation and external knee moments during walking in subjects with medial knee osteoarthritis.Methods19 controls (11 males, aged 56.6 ± 5, and BMI 25.2 ± 3.3) and 25 subjects with medial knee osteoarthritis (12 males, aged 57.3 ± 5.3, and BMI 28.2 ± 4) were included in this study. Knee adduction and flexion moments, and co-activation (ratios and sums of quadriceps, hamstring, and gastrocnemius) were assessed during walking and compared between groups. The relationship between knee moments and co-activation was investigated in both groups.FindingsSubjects with knee osteoarthritis presented a moderate and strong correlation between co-activation (ratios and sums) and knee moments.InterpretationMuscle co-activation should be used to measure the contribution of quadriceps, hamstring, and gastrocnemius on knee loading. This information would cooperate to develop a more comprehensive approach of knee loading in this population.  相似文献   

3.
Sixteen subjects (aged 54.2 ± 14.1 years) with hemiparesis (7.9 ± 7.1 years since diagnosis) demonstrating a foot-drop and hamstrings muscle weakness were fitted with a dual-channel functional electrical stimulation (FES) system activating the dorsiflexors and hamstrings muscles. Measurements of gait performance were collected after a conditioning period of 6 weeks, during which the subjects used the system throughout the day. Gait was assessed with and without the dual-channel FES system, as well as with peroneal stimulation alone. Outcomes included lower limb kinematics and the step length taken with the non-paretic leg. Results with the dual-channel FES indicate that in the subgroup of subjects who demonstrated reduced hip extension but no knee hyperextension (n = 9), hamstrings FES increased hip extension during terminal stance without affecting the knee. Similarly, in the subgroup of subjects who demonstrated knee hyperextension but no limitation in hip extension (n = 7), FES restrained knee hyperextension without having an impact on hip movement. Additionally, step length was increased in all subjects. The peroneal FES had a positive effect only on the ankle. The results suggest that dual-channel FES for the dorsiflexors and hamstrings muscles may affect lower limb control beyond that which can be attributed to peroneal stimulation alone.  相似文献   

4.
The purposes of this study were threefold: (1) to compare the power output related patterns of absolute and normalized MMG amplitude and MPF responses for proximal and distal accelerometer placements on the vastus lateralis (VL) muscle during incremental cycle ergometry; (2) to examine the influence of accelerometer placements on mean absolute MMG amplitude and MPF values; and (3) to determine the effects of normalization on mean MMG amplitude and MPF values from proximal and distal accelerometer placements. Fifteen adults (10 men and 5 women; mean ± SD age = 23.9 ± 3.1 years) performed incremental cycle ergometry tests to exhaustion. Two accelerometers were placed proximal and distal on the VL muscle. Paired t-tests indicated that absolute MMG amplitude values for the proximal accelerometer were greater (p < 0.05) than the distal accelerometer at all power outputs. The normalized MMG amplitude also had greater values for the proximal accelerometer at all power outputs, except 50 W. There were no differences, however, between proximal and distal accelerometers for absolute MMG MPF, except at 75 W, and normalization eliminated this difference. Twenty-seven percent of the subjects exhibited different power output related patterns of responses between accelerometer placements for MMG amplitude and 47% exhibited different patterns for MPF. These findings indicated that normalization did not eliminate the influence of accelerometer placement on MMG amplitude and highlighted the importance of standardizing accelerometer placements to compare MMG values during cycle ergometry.  相似文献   

5.
This work aimed to characterise the whole human muscle input/output law during electrical stimulation with triangular varying frequency and amplitude trains through combined analysis of torque, mechanomyogram (MMG) and electromyogram (EMG).The tibialis anterior (TA) of ten subjects (age 23–35 years) was investigated during static contraction obtained through neuromuscular electrical stimulation. After potentiation, TA underwent two 15 s stimulation patterns: (a) frequency triangle (FT): 2 > 35 > 2 Hz at Vmax (amplitude providing full motor unit recruitment); (b) amplitude triangle (AT): Vmin > Vmax > Vmin (Vmin providing TA least mechanical response) at 35 Hz. 2 > 35 Hz or Vmin > Vmax as well as 35 > 2 Hz or Vmax > Vmin were defined as up-going ramp (UGR) and down-going ramp (DGR), respectively. TA torque, MMG and EMG were detected by a load cell, an optical laser distance sensor and a probe with two silver bar electrodes, respectively. For both FT and AT, only the two mechanical signals resulted always larger in DGR than in UGR, during AT extra-torque and extra-MMG were present even in the first 1/3 of the amplitude range where EMG data presented no significant differences between DGR and UGR.Our data suggest that extra-torque and extra-displacement are evident for both FT and AT, being mainly attributed to an intrinsic muscle property.  相似文献   

6.
The purpose of the present study was to examine the patterns of responses for torque, electromyographic (EMG) amplitude, EMG mean power frequency (MPF), mechanomyographic (MMG) amplitude, and MMG MPF across 30 repeated maximal isometric (ISO) and concentric (CON) muscle actions of the leg extensors. Twelve female subjects (21.1 ± 1.4 yrs; 63.3 ± 7.4 kg) performed ISO and CON fatigue protocols with EMG and MMG signals recorded from the vastus lateralis. The relationships for torque, EMG amplitude, EMG MPF, MMG amplitude, and MMG MPF versus repetition number were examined using polynomial regression. The results indicated there were decreases (p < 0.05) across the ISO muscle actions for torque (r2 = 0.95), EMG amplitude (R2 = 0.44), EMG MPF (r2 = 0.62), and MMG MPF (r2 = 0.48), but no change in MMG amplitude (r2 = 0.07). In addition, there were decreases across the CON muscle actions for torque (R2 = 0.97), EMG amplitude (R2 = 0.46), EMG MPF (R2 = 0.86), MMG amplitude (R2 = 0.44), and MMG MPF (R2 = 0.80). Thus, the current findings suggested that the mechanisms of fatigue and motor control strategies used to modulate torque production were similar between maximal ISO and CON muscle actions.  相似文献   

7.
Rate of force development (RFD) plays an important role when performing rapid and forceful movements. Cold-induced afferent input with transient skin cooling (SC) can modulate neural drive. However, the relationship between RFD and SC is unknown. The purpose of this study was to investigate whether SC increases RFD during isometric knee extension. Fifteen young healthy men (25 ± 8 yrs old) contracted their quadriceps muscle as fast and forcefully as possible with or without SC. Skin cooling was administered to the front of the thigh. Torque and electromyographic activity were measured simultaneously. Peak torque was not affected by SC. Skin cooling induced a significant increase in RFD at the phase 0–30 and 0–50 ms. The root mean square of the electromyography of vastus medialis, rectus femoris and vastus lateralis at the phases 0–30–50–100 ms increased significantly or tended to increase with SC. These results suggest that SC may increase neural drive and improve RFD in the very early phases of contraction.  相似文献   

8.
In humans the cross sectional area of spinal motor neurons at L3 is larger in males than in females. Since these contribute to the control of the quadriceps femoris muscle group and are involved in the patellar reflex (PR), gender differences in the PR are expected. We have investigated this possibility using a group of 28 young subjects (14 male and 14 female) aged 20–22 years. The PR was quantified by the muscle compound action potential (MCAP) from the surface electromyogram (sEMG) of the vastus lateralis muscle. We found that the PR latency in females (17 ± 0.19 ms), was significantly (p < 0.001) faster than in males (21 ± 0.37 ms). This 4 ms difference in latency could not be ascribed to differences in stature or thigh length. In conclusion, for the age range tested females posses a significantly faster patellar reflex than males. We suggest that the slower PR latency of male subjects may arise in part from their larger α-motorneurons: such that longer integration times are required for the summation of postsynaptic excitation to be sufficient to excite α-motorneurons.  相似文献   

9.
This study aimed to examine within-day and between-days intratester reliability of mechanomyography (MMG) in assessing muscle fatigue. An accelerometer was used to detect the MMG signal from rectus femoris. Thirty one healthy subjects (15 males) with no prior knee problems initially performed three maximum voluntary contractions (MVCs) using an ISOCOM dynamometer. After 10 min rest, subjects performed a fatiguing protocol in which they performed three isometric knee extensions at 75% MVC for 40 s. The fatiguing protocol was repeated on two other days, two to four days apart for between-days reliability. MMG activity was determined by overall root mean squared amplitude (RMS), mean power frequency (MPF) and median frequency (MF) during a 40 s contraction. RMS, MPF and MF linear regression slopes were also analysed. Intraclass Correlation Coefficients (ICC); ICC1,1 and ICC1,2 were used to assess within-day reliability and between-days reliability respectively. Standard error of measurement (SEM) and smallest detectable difference (SDD) described the within-subjects variability. MMG fatigue measures using linear regression slopes showed low reliability and large between-days error (ICC1,2 = 0.43–0.46; SDD = 306.0–324.8% for MPF and MF slopes respectively). Overall MPF and MF, on the other hand, were reliable with high ICCs and lower SDDs compared to linear slopes (ICC1,2 = 0.79–0.83; SDD = 21.9–22.8% for MPF and MF respectively). ICC1,2 for overall MMG RMS and linear RMS slopes were 0.81 and 0.66 respectively; however, the SDDs were high (56.4% and 268.8% respectively). The poor between-days reliability found in this study suggests caution in using MMG RMS, MPF and MF and their corresponding slopes in assessing muscle fatigue.  相似文献   

10.
It was hypothesized that concentric and eccentric isokinetic muscle actions should yield detectable differences in the mechanomyograms, which may reflect properties of the contraction and relaxation phases of the muscles. A paired pattern classification technique was adapted to determine whether wavelet transformed mechanomyograms from the three superficial quadriceps muscles were different during maximal concentric and eccentric isokinetic muscle actions. Mechanomyograms for this study were recorded from eleven healthy men (mean ± SD age = 20.1 ± 1.1 yrs) who performed maximal concentric and eccentric isokinetic muscle actions of the dominant leg extensors at a velocity of 30° s?1. The results indicated that the paired pattern classification accurately classified the MMG intensity patterns in approximately 94% of the cases as being from a concentric or eccentric movement. Thus, it can be concluded that the differences in the intensity patterns recorded from concentric and eccentric muscle actions were significant. These findings indicated that the combined MMG wavelet analysis and pattern classification techniques could potentially be useful in situations where muscle activity during concentric muscle actions must be distinguished from that during eccentric muscle actions.  相似文献   

11.
ObjectiveTo investigate the effects of functional electrical stimulation (FES) combined with conventional rehabilitation program on the effort and speed of walking, the surface electromyographic (sEMG) activity and metabolic responses in the management of drop foot in stroke subjects.MethodsFifteen patients with a drop foot resulting from stroke at least 3 months prior to the start of the trial took part in this study. All subjects were treated 1 h a day, 5 days a week, for 12 weeks, including conventional stroke rehabilitation program and received 30 min of FES to the tibialis anterior (TA) muscle of the paretic leg in clinical settings. Baseline and post-treatment measurements were made for temporal and spectral EMG parameters of TA muscle, walking speed, the effort of walking as measured by physiological cost index (PCI) and metabolic responses.ResultsThe experimental results showed a significant improvement in mean-absolute-value (21.7%), root-mean-square (66.3%) and median frequency (10.6%) of TA muscle EMG signal, which reflects increased muscle strength. Mean increase in walking speed was 38.7%, and a reduction in PCI of 34.6% between the beginning and at end of the trial. Improvements were also found in cardiorespiratory responses with reduction in oxygen consumption (24.3%), carbon dioxide production (19.9%), heart rate (7.8%) and energy cost (22.5%) while walking with FES device.ConclusionsThe results indicate that the FES may be a useful therapeutic tool combined with conventional rehabilitation program to improve the muscle strength, walking ability and metabolic responses in the management of drop foot with stroke patients.  相似文献   

12.
Reliability of high-resolution accelerometery (HRA) and mechanomyography (MMG) was evaluated for the assessment of single-leg balance. Subjects (5M/5F, 25 ± 3 yr; 169.4 ± 11.7 cm; 79.0 ± 16.9 kg) participated in fifteen (three randomized bouts of five repetitions) 15-s dominant leg stances. A single HRA was fixed superficial to L3/L4 segment to capture motions relative to the center-of-mass, and three-uniaxial accelerometers were fixed on the surface of the dominant leg correspondent to the vastus medialis (VM), vastus lateralis (VL), and soleus (SOL) muscles to record MMG. Triaxial signals from the HRA (s.r. = 625 Hz) were streamed to a base station, simultaneously with MMG (s.r. = 1000 Hz). Signals were sampled, recorded and later analyzed. HRAs were recorded in g’s for vertical (VT), medial/lateral (ML), anterior/posterior (AP) directions, and resultant (RES) scalar. Intraclass correlation coefficients (ICC) were computed for each and Pearson’s r was calculated for the relationships between MMG and HRA (α ? 0.05). Except for RES (ICC = 0.36), all measures demonstrated moderately strong reliability (ICC = 0.75, 0.73, 0.63, 0.87, 0.89, and 0.86 for VM, VL, SOL, VT, ML, and AP, respectively). HRA and MMG provide reliable information pertaining to balance, and may have application in evaluating postural control and stability.  相似文献   

13.
Valgus knee angle (VKA) maybe a predictor of non-contact anterior cruciate ligament (ACL) injuries. Pre-programmed muscle activation strategies may exist which could contribute to the larger VKA displayed in women compared to men. The current study examined the relationship between the peak VKA and preparatory muscle activity. Twenty-one adults were asked to perform five trials of a forward hop. Lower extremity kinematics and surface EMG were recorded. Peak VKA and EMG from 100 ms prior to ground contact were used in the data analyses. Three multiple linear regressions, where muscle activity was regressed upon the peak VKA, were run using subsets (female, male, and male/female) of the sample. Partial regression coefficients were considered significant at P  0.05. When female subjects were exclusively included in the model, a higher peak VKA was associated with increased preparatory vastus lateralis and lateral hamstring activity, while a lower VKA was associated with increased preparatory vastus medialis activity (P  0.05). When both genders and males alone were considered, preparatory activity was not associated with peak VKA (P  0.05). Neuromuscular training promoting equal preparatory muscle activity in the medial-to-lateral quadriceps and hamstrings may reduce the incidence of ACL injuries in females.  相似文献   

14.
The purpose of this investigation is to introduce a wavelet analysis designed for analyzing short events reflecting bursts of muscle activity in non-stationary mechanomyographic (MMG) signals. A filter bank of eleven nonlinearly scaled wavelets that maintain the optimal combination of time and frequency resolution across the frequency range of MMG signals (5–100 Hz) was used for the analysis. A comparison with the short-time Fourier transform, Wigner-Ville transform and continuous wavelet transform using a test signal with known time–frequency characteristics showed that the MMG wavelet analysis resolved the intensity, timing, and frequencies of events in a more distinct way without overemphasizing high or low frequencies or generating interference terms. The analysis was used to process MMG signals from the vastus lateralis, rectus femoris, and vastus medialis muscles obtained during maximal concentric and eccentric isokinetic movements. Muscular events were observed that were precisely located in time and frequency in a muscle-specific way, thereby showing periods of synergistic contractions of the quadriceps muscles. The MMG wavelet spectra showed different spectral bands for concentric and eccentric isokinetic movements. In addition, the high and low frequency bands seemed to be activated independently during the isokinetic movement. What generates these bands is not yet known, however, the MMG wavelet analysis was able to resolve them, and is therefore applicable to non-stationary MMG signals.  相似文献   

15.
It is believed that force feedback can modulate lower extremity extensor activity during gait. The purpose of this research was to determine the role of limb loading on knee extensor excitability during the late stance/early swing phase of gait in persons post-stroke. Ten subjects with chronic hemiparesis post-stroke participated in (1) seated isolated quadriceps reflex testing with ankle loads of 0–0.4N m/kg and (2) gait analysis on a treadmill with 0%, 20% or 40% body weight support. Muscle reflex responses were recorded from vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM) during seated testing. Knee kinematics and quadriceps activity during late stance/early swing phase of gait were compared across loading conditions. Although isolated loading of the ankle plantarflexors at 0.2 N m/kg reduced VM prolonged response (p = 0.04), loading did not alter any other measure of quadriceps excitability (all p > 0.08). During gait, the use of BWS did not influence knee kinematics (p = 0.18) or muscle activity (all p > 0.17) during late stance/early swing phase. This information suggests that load sensed at the ankle has minimal effect on the ipsilateral quadriceps of individuals post-stroke during late stance. It appears that adjusting limb loading during rehabilitation may not be an effective tool to address stiff-knee gait following stroke.  相似文献   

16.
A coordinated activation of distal forearm muscles allows the hand and fingers to be shaped during movement and grasp. However, little is known about how the muscle activation patterns are reflected in multi-channel mechanomyogram (MMG) signals. The purpose of this study is to determine if multi-site MMG signals exhibit distinctive patterns of forearm muscle activity. MMG signals were recorded from forearm muscle sites of nine able-bodied participants during hand movement. By using 14 features selected by a genetic algorithm and classified by a linear discriminant analysis classifier (LDA), we show that MMG patterns are specific and consistent enough to identify 7 ± 1 hand movements with an accuracy of 90 ± 4%. MMG-based movement recognition required a minimum of three recording sites. Further, by classifying five classes of contraction patterns with 98 ± 3% accuracy from MMG signals recorded from the residual limb of an amputee participant, we demonstrate that MMG shows pattern-specificity even in the absence of typical musculature. Multi-site monitoring of the RMS of MMG signals is suggested as a method of estimating the relative contributions of muscles to motor tasks. The patterns in MMG facilitate our understanding of the mechanical activity of muscles during movement.  相似文献   

17.
The aims of this study were to examine group differences in muscle activation onset of the vastus medialis (VM) in relation to the vastus lateralis (VL) and pain level during stair ascent in females with patellofemoral pain (PFP) who maintain high and moderate levels of physical activity; to determine the association between physical activity level and muscle activation onset. Forty-three females with PFP and thirty-eight pain-free females were recruited and divided into four groups based on their level of physical activity: females with PFP (n = 26) and pain-free females (n = 26) who practiced a moderate level of physical activity and females with PFP (n = 17) and pain-free females (n = 12) who practiced an intense amount of physical activity. Participants were asked to ascend a seven-step staircase and the VM and VL activation onset was determined. Females with PFP who practiced high level of physical activity demonstrated delayed onset of VM (4.06 ms) compared to healthy females (−14.4 ms). Conversely, females with PFP who practiced moderate level of physical activity did not present VM delay (−2.48 ms) in comparison to healthy females (−9.89 ms). Furthermore, physical activity significantly correlated to the muscle activation onset difference (p = 0.005; R = 0.60). These findings may explain why controversial results regarding VM and VL muscle activation onset have been found.  相似文献   

18.
IntroductionThe purpose of this study was to examine possible correlations between skinfold thicknesses and the a terms from the log-transformed electromyographic (EMGRMS) and mechanomyographic amplitude (MMGRMS)-force relationships, EMG M-Waves, and MMG gross lateral movements (GLM).MethodsForty healthy subjects performed a 6-s isometric ramp contraction from 5% to 85% of their maximal voluntary contraction with EMG and MMG sensors placed on the vastus lateralis (VL) and rectus femoris (RF). A single electrical stimulus was applied to the femoral nerve to record the EMG M-waves and MMG GLMs. Skinfold thickness was assessed at the site of each electrode. Pearson’s product correlation coefficients were calculated comparing skinfold thicknesses with the a terms from the log-transformed EMGRMS-and MMGRMS-force relationships, EMG M-waves, and MMG GLMs.ResultsThere were no significant cor1relations (p > 0.05) between the a terms and skinfold thicknesses for the RF and VL from the EMGRMS and MMGRMS-force relationships. However, there were significant correlations (p < 0.05) between skinfold thicknesses and the EMG M-waves and MMG GLMs for the RF (r = −0.521, −0.376) and VL (r = −0.479, −0.484).DiscussionRelationships were only present between skinfold thickness and the amplitudes of the EMG and MMG signals during the non-voluntary muscle actions.  相似文献   

19.
The current study examined the effects of 12 weeks of surface neuromuscular electrical stimulation (NMES) and ankle weights on the cross-sectional areas (CSAs) of three thigh [Gracilis (Gra), Sartorious (Sar) and Adductor (Add)] as well as two trunk [hip flexor (HF) and back extensor (BE)] muscle groups in men with spinal cord injury (SCI). Seven individuals with chronic motor complete SCI were randomly assigned into a resistance training + diet (RT + diet; n = 4) or diet control (n = 3) groups. The RT + diet group underwent twice weekly training with surface NMES and ankle weights for 12 weeks. Training composed of four sets of 10 repetitions of leg extension exercise while sitting in their wheelchairs. Both groups were asked to monitor their dietary intake. Magnetic resonance images were captured before and after 12 weeks of interventions. Gra muscle CSA showed no change before and after interventions. A significant interaction (P = 0.001) was noted between both groups as result of 9% increase and 10% decrease in the Gra muscle CSA of the RT + diet and diet groups, respectively. Sar muscle CSA increased [1.7 ± 0.4–2.5 ± 0.5 cm2; P = 0.029] in the RT + diet group with no change [2.9 ± 1.4–2.6 ± 1.3 cm2] in the diet group; with interaction noted between both groups (P = 0.002). Analysis of covariance indicated that Add muscle CSA was 38% greater in the RT + diet compared to the diet group (P = 0.025) after 12 weeks; a trend of interaction was also noted between both groups (P = 0.06). HF and BE muscle groups showed no apparent changes in CSA in both groups. The results suggested that surface NMES can delay the process of progressive skeletal muscle atrophy after chronic SCI. However, the effects are localized to the trained thigh muscles and do not extend to the proximal trunk muscles.  相似文献   

20.
The aim of the study was to examine how individuals of different ages react to forward balance perturbations. Thirty-six volunteers, divided into four groups [young (YA), middle-age (MA40 and MA50), and old (OA) adults], stood on a platform that was either kept stationary, moved backward, or moved forward. EMG onset, EMG time-to-peak, iEMG, and agonist–antagonist co-activation, as well as cumulative angular excursion, maximum center of mass (CM) backward displacement, and CM time-to-reversal were assessed after forward translations. Postural synergies were assessed using principal component analysis (PCA). The results showed that OA activated their muscles later than YA [TA = 25 ms, RF = 17 ms] and OA and MA50 reached the peak of activation later than YA [MA50:TA = 23 ms, RF = 32 ms, OA:TA = 28 ms, RF = 21 ms]. Moreover, OA kept a higher level of activation longer than all younger groups. No differences among groups were observed in co-activation, kinematic, and PCA variables. We conclude that changes in temporal EMG patterns can be seen in the fifth decade. However, such changes have no effect on the CM horizontal displacement and CM time-to-reversal after perturbation, which cannot be justified by the use of different postural synergies, suggesting that temporal aspects of muscle activation could play a minor role in controlling excessive CM displacements after perturbations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号