首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been suggested that spontaneous synchronous neuronal activity is an essential step in the formation of functional networks in the central nervous system. The key features of this type of activity consist of bursts of action potentials with associated spikes of elevated cytoplasmic calcium. These features are also observed in networks of rat cortical neurons that have been formed in culture. Experimental studies of these cultured networks have led to several hypotheses for the mechanisms underlying the observed synchronized oscillations. In this paper, bursting integrate-and-fire type mathematical models for regular spiking (RS) and intrinsic bursting (IB) neurons are introduced and incorporated through a small-world connection scheme into a two-dimensional excitatory network similar to those in the cultured network. This computer model exhibits spontaneous synchronous activity through mechanisms similar to those hypothesized for the cultured experimental networks. Traces of the membrane potential and cytoplasmic calcium from the model closely match those obtained from experiments. We also consider the impact on network behavior of the IB neurons, the geometry and the small world connection scheme. Action Editor: David Golomb  相似文献   

2.
Mental disorders, such as schizophrenia or Alzheimer’s disease, are associated with impaired synaptogenesis and/or synaptic communication. During development, neurons assemble into neuronal networks, the primary supracellular mediators of information processing. In addition to the orchestrated activation of genetic programs, spontaneous electrical activity and associated calcium signaling have been shown to be critically involved in the maturation of such neuronal networks. We established an in vitro model that recapitulates the maturation of neuronal networks, including spontaneous electrical activity. Upon plating, mouse primary hippocampal neurons grow neurites and interconnect via synapses to form a dish-wide neuronal network. Via live cell calcium imaging, we identified a limited period of time in which the spontaneous activity synchronizes across neurons, indicative of the formation of a functional network. After establishment of network activity, the neurons grow dendritic spines, the density of which was used as a morphological readout for neuronal maturity and connectivity. Hence, quantification of neurite outgrowth, synapse density, spontaneous neuronal activity, and dendritic spine density allowed to study neuronal network maturation from the day of plating until the presence of mature neuronal networks. Via acute pharmacological intervention, we show that synchronized network activity is mediated by the NMDA-R. The balance between kynurenic and quinolinic acid, both neuro-active intermediates in the tryptophan/kynurenine pathway, was shown to be decisive for the maintenance of network activity. Chronic modulation of the neurotrophic support influenced the network formation and revealed the extreme sensitivity of calcium imaging to detect subtle alterations in neuronal physiology. Given the reproducible cultivation in a 96-well setup in combination with fully automated analysis of the calcium recordings, this approach can be used to build a high-content screening assay usable for neurotoxicity screening, target identification/validation, or phenotypic drug screening.  相似文献   

3.
During brain development, before sensory systems become functional, neuronal networks spontaneously generate repetitive bursts of neuronal activity, which are typically synchronized across many neurons. Such activity patterns have been described on the level of networks and cells, but the fine-structure of inputs received by an individual neuron during spontaneous network activity has not been studied. Here, we used calcium imaging to record activity at many synapses of hippocampal pyramidal neurons simultaneously to establish the activity patterns in the majority of synapses of an entire cell. Analysis of the spatiotemporal patterns of synaptic activity revealed a fine-scale connectivity rule: neighboring synapses (<16?μm intersynapse distance) are more likely to be coactive than synapses that are farther away from each other. Blocking spiking activity or NMDA receptor activation revealed that the clustering of synaptic inputs required neuronal activity, demonstrating a role of developmentally expressed spontaneous activity for connecting neurons with subcellular precision.  相似文献   

4.
Reverberating spontaneous synchronized brain activity is believed to play an important role in neural information processing. Whether and how external stimuli can influence this spontaneous activity is poorly understood. Because periodic synchronized network activity is also prominent in in vitro neuronal cultures, we used cortical cultures grown on multielectrode arrays to examine how spontaneous activity is affected by external stimuli. Spontaneous network activity before and after low-frequency electrical stimulation was quantified in several ways. Our results show that the initially stable pattern of stereotypical spontaneous activity was transformed into another activity pattern that remained stable for at least 1 h. The transformations consisted of changes in single site and culture-wide network activity as well as in the spatiotemporal dynamics of network bursting. We show for the first time that low-frequency electrical stimulation can induce long-lasting alterations in spontaneous activity of cortical neuronal networks. We discuss whether the observed transformations in network activity could represent a switch in attractor state.  相似文献   

5.
Regeneration of damaged central nervous systems (CNS) is an important topic in neuroscience and neuroengineering. Grafting new neurons derived from pluripotent stem cells into damaged regions can be done to restore functions after injury. Little is known, however, about network-wide interactions between stem-cell-derived neurons and CNS neurons. In this study, we developed a co-culture method of stem cell-derived neuronal networks and CNS networks and observed spontaneous activity in the co-culture samples. By using a microfabricated poly(dimethylsiloxane) device having two culture compartments and 20 connecting microconduits, we are able to compartmentalize P19-derived neurons and mouse cortical neurons and connect them via the microconduits. Furthermore, we combined the co-culture device and a microelectrode array (MEA)-based recording system and recorded spontaneous activity in the co-cultured networks. We found that periodic synchronized bursting spreading over both neuronal networks occurred during the second week in vitro and that P19-derived neurons in the co-cultured networks had different developmental processes compared with those grown in monoculture. These findings suggest that functional interactions form between P19-dervived neurons and mouse cortical neurons and that the co-culture method is useful for exploring the network-wide integrations between stem cell-derived neurons and CNS neurons.  相似文献   

6.
Increasing evidence supports the idea that spontaneous brain activity may have an important functional role. Cultured neuronal networks provide a suitable model system to search for the mechanisms by which neuronal spontaneous activity is maintained and regulated. This activity is marked by synchronized bursting events (SBEs)--short time windows (hundreds of milliseconds) of rapid neuronal firing separated by long quiescent periods (seconds). However, there exists a special subset of rapidly firing neurons whose activity also persists between SBEs. It has been proposed that these highly active (HA) neurons play an important role in the management (i.e. establishment, maintenance and regulation) of the synchronized network activity. Here, we studied the dynamical properties and the functional role of HA neurons in homogeneous and engineered networks, during early network development, upon recovery from chemical inhibition and in response to electrical stimulations. We found that their sequences of inter-spike intervals (ISI) exhibit long time correlations and a unimodal distribution. During the network's development and under intense inhibition, the observed activity follows a transition period during which mostly HA neurons are active. Studying networks with engineered geometry, we found that HA neurons are precursors (the first to fire) of the spontaneous SBEs and are more responsive to electrical stimulations.  相似文献   

7.
Background and PurposeImpairment of glucose utilization contributes to neuronal degeneration of Alzheimer's disease patients. Cellular glucose utilization can be regulated by calcium-dependent signaling pathways. Resveratrol (RSV) is a plant-derived polyphenol with multiple beneficial effects, including neuroprotection and metabolic improvement. Here, we investigated the effect of RSV on neuronal calcium signal and glucose utilization.Experimental MethodsPrimary culture of cortical neurons, calcium imaging, 2-NBDG assay and western blotting were employed to investigate RSV-mediated effects on neuronal calcium signal and glucose utilization.ResultsRSV elevated intracellular calcium in cortical neurons via modulation of secondary messenger system including nitrous oxide, cGMP and cAMP. Secondarily, a calcium-dependent enhancement of neuronal glucose utilization after RSV treatment was observed. The effects on neuronal glucose utilization are largely dependent on RSV-induced calcium-dependent AMP-activated protein kinase activation.ConclusionOur findings show that activation of calcium-dependent signaling pathways by RSV may convey improvements of neuronal glucose utilization.  相似文献   

8.
Li Y  Zhou W  Li X  Zeng S  Liu M  Luo Q 《Biosensors & bioelectronics》2007,22(12):2976-2982
Spontaneous synchronized bursts seem to play a key role in brain functions such as learning and memory. Still controversial is the characterization of spontaneous synchronized bursts in neuronal networks after learning training, whether depression or promotion. By taking advantages of the main features of the microelectrode array (MEA) technology (i.e. multisite recordings, stable and long-term coupling with the biological preparation), we analyzed changes of spontaneous synchronized bursts in cultured hippocampal neuronal networks after learning training. And for this purpose, a learning model at networking level on MEA system was constructed, and analysis of spontaneous synchronized burst activity modulation was presented. Preliminary results show that, the number of burst was increased by 154%, burst duration was increased by 35%, and the number of spikes per burst was increased by 124%, while interburst interval decreased by 44% with learning. In particular, correlation and synchrony of neuronal activities in networks were enhanced by 51% and 36%, respectively, with learning. In contrast, dynamic properties of neuronal networks were not changed much when the network was under “non-learning” condition. These results indicate that firing, association and synchrony of spontaneous bursts in neuronal networks were promoted by learning. Furthermore, from these observations, we are encouraged to think of a more engineered system based on in vitro hippocampal neurons, as a novel sensitive system for electrophysiological evaluations.  相似文献   

9.
With the growing recognition that rhythmic and oscillatory patterns are widespread in the brain and play important roles in all aspects of the function of our nervous system, there has been a resurgence of interest in neuronal synchronized bursting activity. Here, we were interested in understanding the development of synchronized bursts as information-bearing neuronal activity patterns. For that, we have monitored the morphological organization and spontaneous activity of neuronal networks cultured on multielectrode-arrays during their self-executed evolvement from a mixture of dissociated cells into an active network. Complex collective network electrical activity evolved from sporadic firing patterns of the single neurons. On the system (network) level, the activity was marked by bursting events with interneuronal synchronization and nonarbitrary temporal ordering. We quantified these individual-to-collective activity transitions using newly-developed system level quantitative measures of time series regularity and complexity. We found that individual neuronal activity before synchronization was characterized by high regularity and low complexity. During neuronal wiring, there was a transient period of reorganization marked by low regularity, which then leads to coemergence of elevated regularity and functional (nonstochastic) complexity. We further investigated the morphology-activity interplay by modeling artificial neuronal networks with different topological organizations and connectivity schemes. The simulations support our experimental results by showing increased levels of complexity of neuronal activity patterns when neurons are wired up and organized in clusters (similar to mature real networks), as well as network-level activity regulation once collective activity forms.  相似文献   

10.
Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions such as sleep, learning and sensorimotor gating. Although synaptic release processes are well known for their ability to shape the interaction between neurons in microcircuits, most computational models do not simulate the synaptic transmission process directly and hence cannot explain how changes in synaptic parameters alter neuronal network activity. In this paper, we present a novel neuronal network model that incorporates presynaptic release mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to model the spontaneous activity of neuronal networks. The model, which is based on modified leaky integrate-and-fire neurons, generates spontaneous network activity patterns, which are similar to experimental data and robust under changes in the model''s primary gain parameters such as excitatory postsynaptic potential and connectivity ratio. Furthermore, it reliably recreates experimental findings and provides mechanistic explanations for data obtained from microelectrode array recordings, such as network burst termination and the effects of pharmacological and genetic manipulations. The model demonstrates how elevated asynchronous release, but not spontaneous release, synchronizes neuronal network activity and reveals that asynchronous release enhances utilization of the recycling vesicle pool to induce the network effect. The model further predicts a positive correlation between vesicle priming at the single-neuron level and burst frequency at the network level; this prediction is supported by experimental findings. Thus, the model is utilized to reveal how synaptic release processes at the neuronal level govern activity patterns and synchronization at the network level.  相似文献   

11.
All higher order central nervous systems exhibit spontaneous neural activity, though the purpose and mechanistic origin of such activity remains poorly understood. We quantitatively analyzed the ignition and spread of collective spontaneous electrophysiological activity in networks of cultured cortical neurons growing on microelectrode arrays. Leader neurons, which form a mono-synaptically connected primary circuit, and initiate a majority of network bursts were found to be a small subset of recorded neurons. Leader/follower firing delay times formed temporally stable positively skewed distributions. Blocking inhibitory synapses usually resulted in shorter delay times with reduced variance. These distributions are characterizations of general aspects of internal network dynamics and provide estimates of pair-wise synaptic distances. The resulting analysis produced specific quantitative constraints and insights into the activation patterns of collective neuronal activity in self-organized cortical networks, which may prove useful for models emulating spontaneously active systems.  相似文献   

12.
13.
Two main features make microelectrode arrays (MEAs) a valuable tool for electrophysiological measurements under the perspective of pharmacological applications, namely: (i) they are non-invasive and permit, under appropriate conditions, to monitor the electrophysiological activity of neurons for a long period of time (i.e. from several hours up to months); (ii) they allow a multi-site recording (up to tens of channels). Thus, they should allow a high-throughput screening while reducing the need for animal experiments. In this paper, by taking advantages of these features, we analyze the changes in activity pattern induced by the treatment with specific substances, applied on dissociated neurons coming from the chick-embryo spinal cord. Following pioneering works by Gross and co-workers (see e.g. Gross and Kowalski, 1991. Neural Networks, Concepts, Application and Implementation, vol. 4. Prentice Hall, NJ, pp. 47-110; Gross et al., 1992. Sensors Actuators, 6, 1-8.), in this paper analysis of the drugs' effects (e.g. NBQX, CTZ, MK801) to the collective electrophysiological behavior of the neuronal network in terms of burst activity, will be presented. Data are simultaneously recorded from eight electrodes and besides variations induced by the drugs also the correlation between different channels (i.e. different area in the neural network) with respect to the chemical stimuli will be introduced (Bove et al., 1997. IEEE Trans. Biomed. Eng., 44, 964-977.). Cultured spinal neurons from the chick embryo were chosen as a neurobiological system for their relative simplicity and for their reproducible spontaneous electrophysiological behavior. It is well known that neuronal networks in the developing spinal cord are spontaneously active and that the presence of a significant and reproducible bursting activity is essential for the proper formation of muscles and joints (Chub and O'Donovan, 1998. J. Neurosci., 1, 294-306.). This fact, beside a natural variability among different biological preparations, allows a comparison also among different experimental session giving reliable results and envisaging a definition of a bioelectronic 'neuronal sensory system'.  相似文献   

14.
Based on our own data on generation of spindle-like field electrical activity in neuronal barrels of the rat somatic cortex and also on the published data on the properties of voltage-dependent channels in the membranes of cortical cells, we developed a model of the ensemble (simple network) of neurons connected by electrical synapses. Such connections were found earlier in neurophysiological and ultramicroscopic studies. Model neurons with membranes having sodium, potassium, and calcium channels described in the literature were capable of generating bursting rhythmic impulse activity under conditions of switching off of synaptic connections between cells (isolation). With switching on of electrical synapses, spiking generated by separate neurons, which initially was nonsynchronous, became synchronized in time. Ipso facto, we demonstrated the ability of pacemaker oscillatory activity to be electrotonically synchronized in ensembles of neurons connected with electrical synapses.  相似文献   

15.
Vestibular input to brain monoamine neurons--a review   总被引:1,自引:0,他引:1  
Yates et al. reported that serotonergic RN neurons are associated with vestibulo-sympathetic responses and may control BP changes during body repositioning (Yates et al., 1992; 1993). Pompeiano et al. demonstrated that LC-NA neurons participate in the postural control and modify the vestibulo-spinal reflex (Pompeiano et al., 1990; 1991a; 2001). Nishiike et al. (1996a) examined the effects of caloric vestibular stimulation on the neuronal activity of LC-NA neurons in rats. The predominant effect of CA with both hot- and cold-water on the electrical activity of LC neurons is inhibitory and persists for several minutes. GABAA receptors located on the postsynaptic membrane of LC neurons are responsible for these inhibitory responses. The VLM may inhibit LC neuronal activity in response to the CA via GABAA receptors (Nishiike et al., 1997). It is suggested that LC-NA inhibition is involved in the development of motion sickness (Nishiike et al., 2001).  相似文献   

16.
Synaptic plasticity is considered to play a crucial role in the experience-dependent self-organization of local cortical networks. In the absence of sensory stimuli, cerebral cortex exhibits spontaneous membrane potential transitions between an UP and a DOWN state. To reveal how cortical networks develop spontaneous activity, or conversely, how spontaneous activity structures cortical networks, we analyze the self-organization of a recurrent network model of excitatory and inhibitory neurons, which is realistic enough to replicate UP–DOWN states, with spike-timing-dependent plasticity (STDP). The individual neurons in the self-organized network exhibit a variety of temporal patterns in the two-state transitions. In addition, the model develops a feed-forward network-like structure that produces a diverse repertoire of precise sequences of the UP state. Our model shows that the self-organized activity well resembles the spontaneous activity of cortical networks if STDP is accompanied by the pruning of weak synapses. These results suggest that the two-state membrane potential transitions play an active role in structuring local cortical circuits.  相似文献   

17.
The mechanisms of hyperexcitability of neuronal networks by ammonium ions and inhibition of this activity by coenzyme NAD were investigated on mixed neuro-glial cultures of rat hippocampus. Ammonium ions cause activation of silent or spontaneously active neuronal networks inducing a bursting electrical activity of neurons and high-frequency synchronous calcium oscillations. In control conditions NAD completely inhibits spontaneous activity of the neuronal network. NAD added after NH4Cl disrupts synchronous oscillation in neurons and splits the network into five populations of neurons. In 4% of cells NAD decreased the amplitude of Ca2+ oscillations, preserving initial mode of oscillations. In 32% of cells, a transient suppression of the neuronal oscillations was observed: inhibition was followed by restoration of the synchronous periodic activity. In 10% of cells, NAD produced a gradual decrease of Ca2+ oscillations down to a complete termination of the initial periodic activity induced by ammonium. Fast and total inhibition of Ca2+ oscillations by NAD was observed in two small groups of neurons. First group (A) participated in the initial spontaneous network activity (5% of cells) with a period of 66–100 s. Second group (B), on the contrary, did not participate in the spontaneous activity. This group of neurons began to pulse with a high frequency (with a period of 6–8 s) synchronously with other neurons in the network after the addition of NH4Cl. Based on the comparison of calcium responses of different cell groups to the depolarization caused by KCl and NH4Cl and to the application of domoic acid, as well as on the results obtained in experiments with fluorescent antibodies against GAD 65/67, parvalbumin, calretinin, and calbindin, we propose that neurons of populations (A) and (B) may belong to GABAergic neurons containing calbindin and parvalbumin, respectively. Further analysis of specificity of the NAD effect on these neuronal groups may allow identification of the main targets of the ammonium toxic action in the brain. Thus, we have shown that NAD selectively inhibits neuronal activity and high-frequency synchronous Ca2+ oscillations in GABAergic neurons containing calcium-binding proteins. The inhibition is accompanied by desynchronization of oscillations and dissociation of neuronal network into several populations.  相似文献   

18.
Zhou W  Li X  Liu M  Zhao Y  Zhu G  Luo Q 《Bio Systems》2009,95(1):61-66
Homeostatic plasticity plays a critical role in the stability of neuronal activities. Here, with high-density hippocampal networks cultured on multi-electrode arrays (MEAs), the transformation of spontaneous neuronal firing patterns induced by 1microM tetrodotoxin was clarified. Once tetrodotoxin was washed out after a 4-h treatment, spontaneous activities rose significantly with spike rate increasing approximately three times, and synchronized burst oscillations appeared throughout the network, with the cross-correlation coefficient between the active sites rising from 0.06+/-0.03 to 0.27+/-0.05. The long-term recording showed that the oscillations lasted for more than 4h before the network recovered. These results suggest that short-term treatment by tetrodotoxin may induce the homeostatically enhanced neuronal excitability, and that the spontaneous synchronized oscillations should be an indicator of homeostatic plasticity in cultured neuronal network. Furthermore, the non-invasive and long-term recording with MEAs as a novel sensing system is identified to be appropriate for pharmacological investigations of neuronal plasticity at the network level.  相似文献   

19.
Correlated neuronal activity is instrumental in the formation of networks, but its emergence during maturation is poorly understood. We have used multibeam two-photon calcium microscopy combined with targeted electrophysiological recordings in order to determine the development of population coherence from embryonic to postnatal stages in the hippocampus. At embryonic stages (E16-E19), synchronized activity is absent, and neurons are intrinsically active and generate L-type channel-mediated calcium spikes. At birth, small cell assemblies coupled by gap junctions spontaneously generate synchronous nonsynaptic calcium plateaus associated to recurrent burst discharges. The emergence of coherent calcium plateaus at birth is controlled by oxytocin, a maternal hormone initiating labour, and progressively shut down a few days later by the synapse-driven giant depolarizing potentials (GDPs) that synchronize the entire network. Therefore, in the developing hippocampus, delivery is an important signal that triggers the first coherent activity pattern, which is silenced by the emergence of synaptic transmission.  相似文献   

20.
Neural processing occurs in parallel in distant cortical areas even for simple perceptual tasks. Associated cognitive binding is believed to occur through the interareal synchronization of rhythmic activity in the gamma (30-80 Hz) range. Such oscillations arise as an emergent property of the neuronal network and require conventional chemical neurotransmission. To test the potential role of gap junction-mediated electrical signaling in this network property, we generated mice lacking connexin 36, the major neuronal connexin. Here we show that the loss of this protein disrupts gamma frequency network oscillations in vitro but leaves high frequency (150 Hz) rhythms, which may involve gap junctions between principal cells (Schmitz et al., 2001), unaffected. Thus, specific connexins differentially deployed throughout cortical networks are likely to regulate different functional aspects of neuronal information processing in the mature brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号