首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Due to its complex, dynamic and well-known paleogeography, the Mediterranean region provides an ideal framework to study the colonization history of plant lineages. The genus Linaria has its diversity centre in the Mediterranean region, both in Europe and Africa. The last land connection between both continental plates occurred during the Messinian Salinity Crisis, in the late Miocene (5.96 to 5.33 Ma).

Methodology/Principal Findings

We analyzed the colonization history of Linaria sect. Versicolores (bifid toadflaxes), which includes c. 22 species distributed across the Mediterranean, including Europe and Africa. Two cpDNA regions (rpl32-trnLUAG and trnK-matK) were sequenced from 66 samples of Linaria. We conducted phylogenetic, dating, biogeographic and phylogeographic analyses to reconstruct colonization patterns in space and time. Four major clades were found: two of them exclusively contain Iberian samples, while the other two include northern African samples together with some European samples. The bifid toadflaxes have been split in African and European clades since the late Miocene, and most lineage and speciation differentiation occurred during the Pliocene and Quaternary. We have strongly inferred four events of post-Messinian colonization following long-distance dispersal from northern Africa to the Iberian Peninsula, Sicily and Greece.

Conclusions/Significance

The current distribution of Linaria sect. Versicolores lineages is explained by both ancient isolation between African and European populations and recent events of long-distance dispersal over sea barriers. This result provides new evidence for the biogeographic complexity of the Mediterranean region.  相似文献   

2.
Matudaea is the only genus of the Hamamelidaceae found in South America. The genus is composed by two extant species, M. trinervia, from Mexico and Costa Rica, and Matudaea colombiana, from the Colombian Andes; additional fossil records are present in Central Europe. Population genetics, molecular phylogenetics and niche modelling approaches were applied to explain processes related with the trans-Panamanian M. trinervia/M. colombiana split and the putative colonization of the latter to the northern Andes. The split between the two Matudaea species was estimated during Middle Miocene. The colonization of Matudaea into South America could have been facilitated by the closure of the Isthmus of Panama and the global decreasing of temperature during Miocene. Five haplotypes of M. colombiana were identified, which show an eastwards decline of genetic diversity and suggest a founder effect in the colonization of Eastern cordillera of the Colombian Andes. We detected a niche conservatism signal between the two Matudaea species related with Temperature of Coldest Month and Mean Temperature of Driest Quarter bioclimatic variables; this signal might be related to the narrow altitudinal range occupied by the two species.  相似文献   

3.
Insect pest phylogeography might be shaped both by biogeographic events and by human influence. Here, we conducted an approximate Bayesian computation (ABC) analysis to investigate the phylogeography of the New World screwworm fly, Cochliomyia hominivorax, with the aim of understanding its population history and its order and time of divergence. Our ABC analysis supports that populations spread from North to South in the Americas, in at least two different moments. The first split occurred between the North/Central American and South American populations in the end of the Last Glacial Maximum (15,300-19,000 YBP). The second split occurred between the North and South Amazonian populations in the transition between the Pleistocene and the Holocene eras (9,100-11,000 YBP). The species also experienced population expansion. Phylogenetic analysis likewise suggests this north to south colonization and Maxent models suggest an increase in the number of suitable areas in South America from the past to present. We found that the phylogeographic patterns observed in C. hominivorax cannot be explained only by climatic oscillations and can be connected to host population histories. Interestingly we found these patterns are very coincident with general patterns of ancient human movements in the Americas, suggesting that humans might have played a crucial role in shaping the distribution and population structure of this insect pest. This work presents the first hypothesis test regarding the processes that shaped the current phylogeographic structure of C. hominivorax and represents an alternate perspective on investigating the problem of insect pests.  相似文献   

4.
B Wang  J Climent  X-R Wang 《Heredity》2015,114(4):413-418
Horizontal gene transfer (HGT) is viewed as very common in the plant mitochondrial (mt) genome, but, to date, only one case of HGT has been found in gymnosperms. Here we report a new case of HGT, in which a mt nad5-1 fragment was transferred from an angiosperm to Pinus canariensis. Quantitative assay and sequence analyses showed that the foreign nad5-1 is located in the mt genome of P. canariensis and is nonfunctional. An extensive survey in the genus Pinus revealed that the angiosperm-derived nad5-1 is restricted to P. canariensis and present across the species'' range. Molecular dating based on chloroplast DNA suggested that the HGT event occurred in the late Miocene after P. canariensis split from its closest relatives, and that the foreign copy became fixed in P. canariensis owing to drift during its colonization of the Canary Islands. The mechanism of this HGT is unclear but it was probably achieved through either direct cell–cell contact or external vectors. Our discovery provides evidence for an important role of HGT in plant mt genome evolution.  相似文献   

5.

Background

Population genetic theory holds that oceanic island populations are expected to have lower levels of genetic variation than their mainland counterparts, due to founder effect after island colonization from the continent. Cistus monspeliensis (Cistaceae) is distributed in both the Canary Islands and the Mediterranean region. Numerous phylogenetic results obtained in the last years allow performing further phylogeographic analyses in Cistus.

Methodology/Principal Findings

We analyzed sequences from multiple plastid DNA regions in 47 populations of Cistus monspeliensis from the Canary Islands (21 populations) and the Mediterranean basin (26 populations). The time-calibrated phylogeny and phylogeographic analyses yielded the following results: (1) a single, ancestral haplotype is distributed across the Mediterranean, whereas 10 haplotypes in the Canary Islands; (2) four haplotype lineages are present in the Canarian Islands; (3) multiple colonization events across the archipelago are inferred; (4) the earliest split of intraspecific lineages occurred in the Early to Middle Pleistocene (<930,000 years BP).

Conclusions/Significance

The contrasting pattern of cpDNA variation is best explained by genetic bottlenecks in the Mediterranean during Quaternary glaciations, while the Canarian archipelago acted as a refugium of high levels of genetic diversity. Active colonization across the Canarian islands is supported not only by the distribution of C. monspeliensis in five of the seven islands, but also by our phylogeographic reconstruction in which unrelated haplotypes are present on the same island. Widespread distribution of thermophilous habitats on every island, as those found throughout the Mediterranean, has likely been responsible for the successful colonization of C. monspeliensis, despite the absence of a long-distance dispersal mechanism. This is the first example of a plant species with higher genetic variation among oceanic island populations than among those of the continent.  相似文献   

6.
The decomposition and microbial colonization of Carex leaf litter were examined in an arctic lake in Alaska during the summer of 1978. Dried leaf segments in screen bags were placed at various locations and depths for 13 and 26 days. Weight loss varied from 24.15 to 33.56% and from 27.69 to 65.01% after 13 and 26 days, respectively. Abiotic controls lost approximately 19.5% with no subsequent change. Weight loss significantly correlated with microbial colonization as measured by alkaline phosphatase activity (r = 0.780), cellulase activity (r = 0.613), heterotrophic CO2 fixation (r = 0.835), and acetate incorporation into microbial lipids (r = 0.618). Alkaline phosphatase activity correlated with cellulase activity (r = 0.889), and heterotrophic CO2 fixation correlated with acetate incorporation into lipids (r = 0.712). Weight loss after 26 days inversely correlated with the logarithm of the depth of incubation regardless of whether incubation occurred on the sediment surface or in the water column. These findings suggest that a rapid initial period of microbial colonization is driven by nutrients derived from the litter and that the rate of these processes is controlled by a factor(s) inversely related to the logarithm of depth, such as light intensity, primary production, or turbulence.  相似文献   

7.
Colonization by Staphylococcus aureus is a characteristic feature of several inflammatory skin diseases and is often followed by epidermal damage and invasive infection. In this study, we investigated the mechanism of skin colonization by a virulent community-acquired methicillin-resistant S. aureus (CA-MRSA) strain, MW2, using a murine ear colonization model. MW2 does not produce a hemolytic toxin, beta-hemolysin (Hlb), due to integration of a prophage, ϕSa3mw, inside the toxin gene (hlb). However, we found that strain MW2 bacteria that had successfully colonized murine ears included derivatives that produced Hlb. Genome sequencing of the Hlb-producing colonies revealed that precise excision of prophage ϕSa3mw occurred, leading to reconstruction of the intact hlb gene in their chromosomes. To address the question of whether Hlb is involved in skin colonization, we constructed MW2-derivative strains with and without the Hlb gene and then subjected them to colonization tests. The colonization efficiency of the Hlb-producing mutant on murine ears was more than 50-fold greater than that of the mutant without hlb. Furthermore, we also showed that Hlb toxin had elevated cytotoxicity for human primary keratinocytes. Our results indicate that S. aureus Hlb plays an important role in skin colonization by damaging keratinocytes, in addition to its well-known hemolytic activity for erythrocytes.  相似文献   

8.
Flooding has been described as one of the primary factors affecting arbuscular mycorrhizal (AM) colonization in wetlands. We investigated the effect of water-level fluctuations on AM colonization of Typha latifolia L. using an experimental wetland in southeastern Idaho, USA that received intermittent flows. Unlike previous research that has examined the effect of flooding on AM fungi using topographic gradients, we replicated flooding in time by sampling across multiple flooding events. AM colonization of T. latifolia occurred during flooded and unflooded periods, but was markedly reduced at drawdown. Both hyphal (R = 0.74, P = 0.015) and arbuscular (R = 0.67, P = 0.033) colonization were positively correlated with the length of the unflooded period. Taken together, the length of the unflooded period and soil moisture explained 83% of the variation in mean hyphal colonization (R2 = 0.83, P = 0.001). Overall, the results of this investigation show that drawdown represents a period of reduced AM colonization in T. latifolia.  相似文献   

9.
《Aquatic Botany》2007,86(3):291-294
Of the 20 plant species of hydrophytes screened for Arbuscular Mycorrhizal (AM) fungal root colonization, 10 aquatic plants (out of 14 species) and five marshy plants (out of six species) were found to be mycorrhizal, while the remaining species were non mycorrhizal. Vesicular colonization occurred in 12 plant species while arbuscular colonization was restricted to only three plant species. A rooted submerged pteridophyte viz., Isoetes coromandelina L. was found to be mycorrhizal exhibiting vesicular colonization. In all, two genera viz., Glomus and Scutellospora, the former being dominant, were recorded. The most common AM fungal species Glomus claroideum was recovered from 14 plant species.  相似文献   

10.
《Fungal biology》2020,124(10):877-883
Metarhizium is an insect pathogenic fungus and a plant root symbiont. Here the root association patterns (rhizoplane or endophytic colonization) were analyzed in common beans (Phaseolus vulgaris) and sweet corn (Zea mays) using M. robertsii and M. brunneum under various vermiculite treatments (control, with sucrose, with an insect) at two time points of plant growth (10 and 20 days). We observed that M. brunneum and M. robertsii preferentially endophytically colonized the hypocotyl, however, greater rhizoplane colonization was observed at the regions proximal to the hypocotyl in both plants. Vermiculite amended with an infected insect resulted in greater endophytic and rhizoplane colonization at 20 days compared to 10 days, for both plants as well as for both Metarhizium species. Regardless of the vermiculite treatment, corn was preferentially colonized compared to bean. Sucrose amendment in the vermiculite and infected insect amended vermiculite only showed differences in rhizoplane colonization. The greatest root association occurred with M. brunneum with an infected insect and that in corn after 20 days.  相似文献   

11.
Investigations into the edaphic associations, host affiliations and soil depth of dark septate endophytes (DSE) in arid desert environments can help explain their spatial distribution and the response mechanisms in desert ecosystems. Soils were sampled to a depth of 50 cm in the rhizospheres of Psammochloa villosa, Hedysarum laeve and Artemisia ordosica in the Mu Us sandland of northwest China in July 2015. The plant species and soil depth significantly influenced the distribution and colonization of DSE. Hyphal and total root colonization were significantly higher under P. villosa than the others in the 0–20 cm layer. The maximum colonization of P. villosa and H. laeve occurred in the 10–20 cm and 20–30 cm soil layers, respectively, while 30–40 cm soil layer under A. ordosica. Of twelve DSE species isolated from the roots of these plants, Phoma radicina and Bipolaris zeae were reported in desert ecosystems for the first time. Hyphal colonization was significantly and positively correlated with soil total nitrogen (TN) and significantly and negatively correlated with the soil carbon/nitrogen (C/N) ratio. Microsclerotial colonization was significantly and positively correlated with soil organic carbon (SOC), and total colonization was significantly and positively correlated with soil TN and total phosphorus (TP) and significantly and negatively correlated with soil C/N. Variation of DSE colonization was mostly attributed to effects of plant species. We concluded that the species composition and colonization of the DSE fungi were influenced by the plant species, soil depth and soil nutrient availability in this desert ecosystem. This research provides a basis for further understanding the ecological adaptability of DSE and their roles in promoting vegetation restoration and reducing desertification in arid ecosystems.  相似文献   

12.
13.
Biological invasions are considered one of the main anthropogenic factors that reduce the abundance of native species. Understanding the patterns of population structure and behavior of introduced species is important to determine invasion sources and pathways, in addition to improving the protective management of native species. Thus, we set out to advance our knowledge about the mosquitofish Gambusia spp., which is an invasive species that was introduced to southern Europe in 1921 to control mosquito populations. We assessed the genetic diversity and population structure of this species at 13 European locations, by screening variation at six microsatellite loci. We also evaluated six American samples (four of G. holbrooki and two of G. affinis) to identify the most likely source of the populations that established in Europe, and to determine whether G. affinis is also present. The results showed that, while there was evidence of recent bottleneck events in a few isolated locations, most introduced populations harbored a considerable amount of gene diversity, probably because of multiple introductions and secondary contacts. Populations displayed strong genetic differentiation that was mainly associated with geographical distance. At least two main routes of colonization of G. holbrooki seem to have occurred in Europe. The first, and more ancient colonization, was consistent with historical records, with the species invading the Iberian Peninsula. A second and more recent colonization probably occurred in Greece and, from there, France. The presence of G. affinis was not detected in any of the European samples.  相似文献   

14.
Large polytopic membrane proteins often derive from duplication and fusion of genes for smaller proteins. The reverse process, splitting of a membrane protein by gene fission, is rare and has been studied mainly with artificially split proteins. Fragments of a split membrane protein may associate and reconstitute the function of the larger protein. Most examples of naturally split membrane proteins are from bacteria or eukaryotic organelles, and their exact history is usually poorly understood. Here, we describe a nuclear-encoded split membrane protein, split-Doa10, in the yeast Kluyveromyces lactis. In most species, Doa10 is encoded as a single polypeptide with 12–16 transmembrane helices (TMs), but split-KlDoa10 is encoded as two fragments, with the split occurring between TM2 and TM3. The two fragments assemble into an active ubiquitin-protein ligase. The K. lactis DOA10 locus has two ORFs separated by a 508-bp intervening sequence (IVS). A promoter within the IVS drives expression of the C-terminal KlDoa10 fragment. At least four additional Kluyveromyces species contain an IVS in the DOA10 locus, in contrast to even closely related genera, allowing dating of the fission event to the base of the genus. The upstream Kluyveromyces Doa10 fragment with its N-terminal RING-CH and two TMs resembles many metazoan MARCH (Membrane-Associated RING-CH) and related viral RING-CH proteins, suggesting that gene splitting may have contributed to MARCH enzyme diversification. Split-Doa10 is the first unequivocal case of a split membrane protein where fission occurred in a nuclear-encoded gene. Such a split may allow divergent functions for the individual protein segments.  相似文献   

15.
In rice, the lysin motif (LysM) receptor-like kinase OsCERK1, originally identified as the essential molecule for chitin-triggered immunity, plays a key role in arbuscular mycorrhizal (AM) symbiosis. As we previously reported, although AM colonization was largely repressed at 2 weeks after inoculation (WAI), arbuscules were observed at 5 WAI in oscerk1 mutant. Conversely, most mutant plants that defect the common symbiosis signaling pathway exhibited no arbuscule formation. Concerning the reason for this characteristic phenotype of oscerk1, we speculated that OsRLK10, which is a putative paralog of OsCERK1, may have a redundant function in AM symbiosis. The protein sequences of these two genes are highly conserved and it is estimated that the gene duplication occurred 150 million years ago. Here we demonstrated that OsCERK2/OsRLK10 induced AM colonization and chitin-triggered reactive oxygen species production in oscerk1 knockout mutant as similar to OsCERK1. The oscerk2 mutant showed a slight but significant reduction of AM colonization at 5 WAI, indicating the contribution of OsCERK2 for AM symbiosis. However, the oscerk2;oscerk1 double-knockout mutant produced arbuscules at 5 WAI as similar to the oscerk1 mutant, indicating that the redundancy of OsCERK1 and OsCERK2 did not explain the mycorrhizal colonization in oscerk1 at 5 WAI. These results indicated that OsCERK2 has a potential to regulate both chitin-triggered immunity and AM symbiosis and at least partially contributes to AM symbiosis in rice though the contribution of OsCERK2 appears to be weaker than that of OsCERK1.  相似文献   

16.
Hevea brasiliensis is a mycotrophic tree for which root colonization by arbuscular mycorrhizal fungi (AMF) under in vitro or pot culture conditions can take several weeks. The reason for this slow colonization is still unknown, but the exudation of antifungal compounds such as hevein by the roots may be one of the causes. Here, the root colonization of Medicago truncatula, a highly mycotrophic plant, was assessed after 12 days of growth in the extraradical mycelium network of the AMF Rhizophagus irregularis in close vicinity of H. brasiliensis plantlets or Urtica dioica seedlings (also known to synthesize antifungal compounds of the hevein family). We hypothesized that a negative impact on the root colonization of a M. truncatula seedling developing close to H. brasiliensis and U. dioica may give indirect proofs for the exudation of inhibitory molecules. The percentages of total root colonization of M. truncatula were 30.1 % lower in the presence of H. brasiliensis than in the control plants, and 29.1 % lower in presence of U. dioica. The abundance of arbuscules in the roots of M. truncatula was also lower in plants grown in presence of H. brasiliensis plantlets than in the control plants. Similarly, the succinate dehydrogenase and the phosphatase activities measured in the extraradical mycelium of R. irregularis were significantly lower in the presence of both plants, compared with the controls. No root colonization was observed in H. brasiliensis and U. dioica within the time-frame of the experiments. The low root colonization of M. truncatula when grown in the presence of rubber or stinging nettle suggested the exudation of diffusible molecules which could also explain the delayed root colonization of H. brasiliensis and the absence of colonization of U. dioica.  相似文献   

17.
In this paper, the optical properties of titanium nitride split ring resonators as an intermetallic metamaterial nanostructure were studied. Our simulation shows the presence of plasmon and LC resonances in the transmission spectrum of a cell consists of four u-shape split ring resonators. The effect of different parameters of resonator such as size, periodic constant, and the material between arms in addition to the polarization of incident beam was examined on the resonance behavior of the system. Also, the optical properties of a cell consist of four complementary split ring resonators within titanium nitride thin film were investigated. An excited mode was observed at λ = 840 nm that was attributed to the plasmon resonance. Changing the arrangement and configuration of the system from C 1v to C 2v symmetry led to the presence of the LC mode beside the plasmon mode in the transmission spectrum. Also, we explored a connection between the complementary split ring resonators and orderly perforated surface plasmon systems. It was determined that a transition occurred from resonator-type to surface plasmon behavior by increasing the size of resonator above 170 nm.  相似文献   

18.
19.
We aimed to infer ancestral area and historical colonization of Lobelia columnaris in the sky islands of Bioko and Cameroon through dated phylogeny using chloroplast genomes. Specifically, we aim to answer the following questions: (1) What are the phylogenetic relationships among Bioko Island and Cameroon populations? (2) Are the older populations found in the older sky islands? We assembled novel plastomes from 20 individuals of L. columnaris from 5 mountain systems. The plastome data were explored with phylogenetic analyses using Maximum Likelihood and Bayesian Inference. The populations of L. columnaris have a monophyletic origin, subdivided into three plastomes‐geographic clades. The plastid phylogenomic results and age of the sky islands indicate that L. columnaris colonized first along with the Cameroon Volcanic Line''s young sky islands of Bioko. The crown group (1.54 Ma) split the population in Bioko and mainland Cameroon. It is possible that Bioko was the ancestral area and likely isolated during cold and dry conditions in forest refugia. Presumably, the colonization history occurred during the middle‐late Pleistocene from South Bioko''s young sky island to North Bioko and the northern old sky islands in Cameroon. Furthermore, the central depression with lowland forest between North and South Bioko is a current geographic barrier that keeps separating the populations of Bioko from each other. Also, the shallow sea channel keeps isolated the populations of Bioko and the mainland populations. The Pleistocene climatic oscillations led to the divergence of the Cameroon and Bioko populations into three clades. L. columnaris colonized the older sky islands in mainland Cameroon after establishment in Bioko''s younger sky islands. Contrary to expectations, the biogeography history was an inverse progression with respect to the age of the Afromontane sky islands.  相似文献   

20.
Herbaspirillum seropedicae is a plant growth-promoting diazotrophic betaproteobacterium which associates with important crops, such as maize, wheat, rice and sugar-cane. We have previously reported that intact lipopolysaccharide (LPS) is required for H. seropedicae attachment and endophytic colonization of maize roots. In this study, we present evidence that the LPS biosynthesis gene waaL (codes for the O-antigen ligase) is induced during rhizosphere colonization by H. seropedicae. Furthermore a waaL mutant strain lacking the O-antigen portion of the LPS is severely impaired in colonization. Since N-acetyl glucosamine inhibits H. seropedicae attachment to maize roots, lectin-like proteins from maize roots (MRLs) were isolated and mass spectrometry (MS) analysis showed that MRL-1 and MRL-2 correspond to maize proteins with a jacalin-like lectin domain, while MRL-3 contains a B-chain lectin domain. These proteins showed agglutination activity against wild type H. seropedicae, but failed to agglutinate the waaL mutant strain. The agglutination reaction was severely diminished in the presence of N-acetyl glucosamine. Moreover addition of the MRL proteins as competitors in H. seropedicae attachment assays decreased 80-fold the adhesion of the wild type to maize roots. The results suggest that N-acetyl glucosamine residues of the LPS O-antigen bind to maize root lectins, an essential step for efficient bacterial attachment and colonization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号