首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 495 毫秒
1.
Scapular dyskinesis is observed in 61% of overhead athletes (Burn et al., 2016). For most of them, it remains asymptomatic. However, scapular dyskinesis is considered a risk factor for shoulder injury by some authors (Clarsen et al., 2014). The aim of this study is to explore the effectiveness of kinesiotaping in modifying scapular kinematics and peri-scapular muscle activity in dyskinetic athletes. The 3-dimensional position and orientation of the scapula as well as the activation of upper trapezius, lower trapezius and serratus anterior were recorded in twenty asymptomatic athletes during shoulder movements (flexion and abduction), in loaded and unloaded conditions and in three circumstances (standard, kinesiotaping 1, kinesiotaping 2). A significant decrease between 9 and 12% in upper trapezius activity was observed with kinesiotaping 1 and 2. Lower trapezius activity was slightly increased with kinesiotaping 1 while it was significantly decreased about 15–20% with kinesiotaping 2. No change was observed in serratus anterior activity, for either kinesiotaping 1 or 2. Considering scapular kinematics, both kinesiotaping 1 and 2 significantly increased posterior tilt and upward rotation. External rotation was decreased with kinesiotaping 2, in comparison to standard condition. Kinesiotaping, and especially taping 1, seems to be an effective method for changing periscapular muscle activity and scapular kinematics.  相似文献   

2.
Upper extremity muscle fatigue is challenging to identify during industrial tasks and places changing demands on the shoulder complex that are not fully understood. The purpose of this investigation was to examine adaptation strategies in response to isolated anterior deltoid muscle fatigue while performing simulated repetitive work. Participants completed two blocks of simulated repetitive work separated by an anterior deltoid fatigue protocol; the first block had 20 work cycles and the post-fatigue block had 60 cycles. Each work cycle was 60 s in duration and included 4 tasks: handle pull, cap rotation, drill press and handle push. Surface EMG of 14 muscles and upper body kinematics were recorded. Immediately following fatigue, glenohumeral flexion strength was reduced, rating of perceived exertion scores increased and signs of muscle fatigue (increased EMG amplitude, decreased EMG frequency) were present in anterior and posterior deltoids, latissimus dorsi and serratus anterior. Along with other kinematic and muscle activity changes, scapular reorientation occurred in all of the simulated tasks and generally served to increase the width of the subacromial space. These findings suggest that immediately following fatigue people adapt by repositioning joints to maintain task performance and may also prioritize maintaining subacromial space width.  相似文献   

3.
Increased activity of the serratus anterior (SA) muscle combined with decreased activity of the pectoralis major (PM) muscle during scapular protraction exercise is a widely used method for selective strengthening of the former muscle. However, the role played by the PM during maximal scapular protraction remains unclear. The objective of our study was to investigate the effects of horizontal shoulder abduction (decreasing PM activity) and adduction (increasing activity) on the strength and activity of the scapular protractors (the SA and PM) during maximal protraction. Twenty-nine healthy males performed maximal scapular protraction combined with horizontal shoulder abduction or adduction. The strength and activity of the PM and SA decreased significantly (both p < 0.01) during maximal scapular protraction combined with horizontal shoulder abduction, compared with maximal scapular protraction alone, but increased significantly (both p < 0.01) when maximal scapular protraction was combined with horizontal shoulder adduction. We thus conclude that the PM stabilizes the activated SA during maximal scapular protraction, which effectively increases SA activity and scapular protraction strength in the serratus punch posture.  相似文献   

4.
Scapula and humerus motion associated with common manual wheelchair tasks is hypothesized to reduce the subacromial space. However, previous work relied on either marker-based motion capture for kinematic measures, which is prone to skin-motion artifact; or ultrasound imaging for arthrokinematic measures, which are 2D and acquired in statically-held positions. The aim of this study was to use a fluoroscopy-based approach to accurately quantify glenohumeral kinematics during manual wheelchair use, and compare tasks for a subset of parameters theorized to be associated with mechanical impingement. Biplane images of the dominant shoulder were acquired during scapular plane elevation, propulsion, sideways lean, and weight-relief raise in ten manual wheelchair users with spinal cord injury. A computed tomography scan of the shoulder was obtained, and model-based tracking was used to quantify six-degree-of-freedom glenohumeral kinematics. Axial rotation and superior/inferior and anterior/posterior humeral head positions were characterized for full activity cycles and compared between tasks. The change in the subacromial space was also determined for the period of each task defined by maximal change in the aforementioned parameters. Propulsion, sideways lean, and weight-relief raise, but not scapular plane elevation, were marked by mean internal rotation (8.1°, 10.8°, 14.7°, −49.2° respectively). On average, the humeral head was most superiorly positioned during the weight-relief raise (1.6 ± 0.9 mm), but not significantly different from the sideways lean (0.8 ± 1.1 mm) (p = 0.191), and much of the task was characterized by inferior translation. Scaption was the only task without a defined period of superior translation on average. Pairwise comparisons revealed no significant differences between tasks for anterior/posterior position (task means range: 0.1–1.7 mm), but each task exhibited defined periods of anterior translation. There was not a consistent trend across tasks between internal rotation, superior translation, and anterior translation with reductions in the subacromial space. Further research is warranted to determine the likelihood of mechanical impingement during these tasks based on the measured task kinematics and reductions in the subacromial space.  相似文献   

5.
Trunk rotation often accompanies humeral elevation, during daily activities as well as sports activities. Earlier studies have demonstrated that changes in spinal posture contribute to scapular motion during humeral elevation. However, the effect of trunk rotation on scapular kinematics during humeral elevation has received scant attention. This study aimed to clarify how trunk rotation affects scapular kinematics and muscle activities during humeral elevation. Electromagnetic motion capture and electromyography were used to assess scapular and clavicular motion and muscle activity in the right and left sides of 12 healthy young men. The subjects were seated and instructed to elevate both arms with the trunk in neutral, ipsilaterally rotated, or contralaterally rotated position. Ipsilaterally rotated trunk position decreased the internal rotation (by 5°, relative to neutral trunk position) and increased the upward rotation (by 4°, relative to neutral trunk position) of the scapula. Trunk position did not affect clavicular motion during humeral movement. Electromyography showed that contralaterally rotated trunk position increased the activity of the upper trapezius and serratus anterior muscles and decreased the activity of the lower trapezius. Therapists should consider the importance of trunk rotation, which may be the key to developing more efficient rehabilitation programs.  相似文献   

6.
The importance of arm-raising has been a major consideration in the functional interpretation of differences in shoulder morphology among species of nonhuman primates. Among the characters that have been associated with enhancement of the arm-raising mechanism in hominoid primates are the relative enlargement of cranial trapezius and caudal serratus anterior, as the main scapular rotators, as well as changes in scapular morphology associated with their improved leverage for scapular rotation. Yet in an EMG study of cranial trapezius and caudal serratus anterior function in the great apes, Tuttle and Basmajian (Yrbk. Phys. Anthropol. 20:491-497, 1977) found these muscles to be essentially inactive during arm-raising. Although Tuttle and Basmajian suggest that the cranial orientation of the glenoid fossa in apes has reduced the demand for scapular rotation during arm-raising, subsequent EMG studies on other primate species suggest that these muscles do play a significant role in arm motion during active locomotion. This paper presents a reexamination of muscle recruitment patterns for trapezius and caudal serratus anterior in the chimpanzee. All but the lowest parts of caudal serratus anterior were found to be highly active during arm-raising motions, justifying earlier morphological interpretations of differences in caudal serratus anterior development. The lowest digitations of this muscle, while inactive during arm-raising, displayed significant activity during suspensory postures and locomotion, presumably to control the tendency of the scapula to shift cranially relative to the rib cage. Cranial trapezius did not appear to be involved in arm-raising; instead, its recruitment was closely tied to head position.  相似文献   

7.
8.
Through the onset of post-stroke motor disorders, the normal scapular function is compromised. As a result, shoulder pain and associated upper limb dysfunctions frequently arise after stroke.This review aimed to provide a systematic overview of available literature on scapular function, i.e. scapular three-dimensional (3D) kinematics and muscle activity during elevation, in healthy persons, persons with primary shoulder disorders and post-stroke patients. 3D scapular kinematics have been widely reported in healthy persons and persons with primary shoulder disorders, whereby a general pattern of upward rotation and posterior tilt during elevation has been agreed upon. Results on scapular internal/external rotation are inconsistent. In a post-stroke population, 3D scapular kinematics are less frequently reported. Scapular muscle activity has thus far been studied to very limited extend and firm conclusions could not be drawn.Although 3D scapular kinematics and muscle activity registrations are being increasingly used, some general methodological aspects should be considered. While the International Society of Biomechanics already proposed recommendations on the definition of upper limb joint coordinate systems and rotation sequences, proper result comparison necessitates further guidelines on other methodological aspects, i.e. data collection, processing, analyzing, and reporting.  相似文献   

9.
Characterization of scapular kinematics under demanding load conditions might aid to distinguish between physiological and clinically relevant alterations. Previous investigations focused only on submaximal external load situations. How scapular movement changes with maximal load remains unclear. Therefore, the present study aimed to evaluate 3D scapular kinematics during unloaded and maximal loaded shoulder flexion and extension. Twelve asymptomatic individuals performed shoulder flexion and extension movements under unloaded and maximal concentric and eccentric loaded isokinetic conditions. 3D scapular kinematics assessed with a motion capture system was analyzed for 20° intervals of humeral positions from 20° to 120° flexion. Repeated measures ANOVAs were used to evaluate kinematic differences between load conditions for scapular position angles, scapulohumeral rhythm and scapular motion extent. Increased scapular upward rotation was seen during shoulder flexion and extension as well as decreased posterior tilt and external rotation during eccentric and concentric arm descents of maximal loaded compared to unloaded conditions. Load effects were further seen for the scapulohumeral rhythm with greater scapular involvement at lower humeral positions and increased scapular motion extent under maximal loaded shoulder movements. With maximal load applied to the arm physiological scapular movement pattern are induced that may imply both impingement sparing and causing mechanisms.  相似文献   

10.
Shoulder-related dysfunction affects individuals’ ability to function independently and thus decreases quality of life. Functional task assessment is a key concern for a clinician in diagnostic assessment, outcome measurement, and planning of treatment programs. The purpose of this study was to test the reliability of the FASTRAK 3-dimensional (3-D) motion analysis and surface electromyography (sEMG) systems to analyze 3-D shoulder complex movements during functional tasks and compare motion patterns between subjects with and without shoulder dysfunctions (SDs).For the test, sEMG and 3-D motion analysis systems were used to characterize the functional tasks. Twenty-five asymptomatic male subjects and 21 male subjects with right shoulder disorders performed four functional tasks which involved arm reaching and raising activities with their dominant arms. Reliability was estimated by the intraclass correlation coefficient (ICC). Motion pattern was compared between two groups using mixed analysis of variances (ANOVAs). Shoulder complex kinematics and associated muscular activities during functional tasks were reliably quantified (ICC = 0.83–0.99) from the means of three trials. Relative to the group without SDs, the group with SDs showed significant alteration in shoulder complex kinematics (3°–40°) and associated muscular activities (3–10% maximum). Scapular tipping, scapular elevation, upper trapezius muscle function, and serratus anterior muscle function may have implications in the rehabilitation of patients with SDs.  相似文献   

11.
PurposeNo direct evidence exists to support the validity of using surface electrodes to record muscle activity from serratus anterior, an important and commonly investigated shoulder muscle. The aims of this study were to determine the validity of examining muscle activation patterns in serratus anterior using surface electromyography and to determine whether intramuscular electromyography is representative of serratus anterior muscle activity.MethodsSeven asymptomatic subjects performed dynamic and isometric shoulder flexion, extension, abduction, adduction and dynamic bench press plus tests. Surface electrodes were placed over serratus anterior and around intramuscular electrodes in serratus anterior. Load was ramped during isometric tests from 0% to 100% maximum load and dynamic tests were performed at 70% maximum load. EMG signals were normalised using five standard maximum voluntary contraction tests.ResultsSurface electrodes significantly underestimated serratus anterior muscle activity compared with the intramuscular electrodes during dynamic flexion, dynamic abduction, isometric flexion, isometric abduction and bench press plus tests. All other test conditions showed no significant differences including the flexion normalisation test where maximum activation was recorded from both electrode types. Low correlation between signals was recorded using surface and intramuscular electrodes during concentric phases of dynamic abduction and flexion.ConclusionsIt is not valid to use surface electromyography to assess muscle activation levels in serratus anterior during isometric exercises where the electrodes are not placed at the angle of testing and dynamic exercises. Intramuscular electrodes are as representative of the serratus anterior muscle activity as surface electrodes.  相似文献   

12.
The shoulder allows kinematic and muscular changes to facilitate continued task performance during prolonged repetitive work. The purpose of this work was to examine changes during simulated repetitive work in response to a fatigue protocol. Participants performed 20 one-minute work cycles comprised of 4 shoulder centric tasks, a fatigue protocol, followed by 60 additional cycles. The fatigue protocol targeted the anterior deltoid and cycled between static and dynamic actions. EMG was collected from 14 upper extremity and back muscles and three-dimensional motion was captured during each work cycle. Participants completed post-fatigue work despite EMG manifestations of muscle fatigue, reduced flexion strength (by 28%), and increased perceived exertion (∼3 times). Throughout the post-fatigue work cycles, participants maintained performance via kinematic and muscular adaptations, such as reduced glenohumeral flexion and scapular rotation which were task specific and varied throughout the hour of simulated work. By the end of 60 post-fatigue work cycles, signs of fatigue persisted in the anterior deltoid and developed in the middle deltoid, yet perceived exertion and strength returned to pre-fatigue levels. Recovery from fatigue elicits changes in muscle activity and movement patterns that may not be perceived by the worker which has important implications for injury risk.  相似文献   

13.
BackgroundClinician-led training through tactile and verbal guidance to improve muscle activity and joint motion are a common but understudied focus of therapeutic interventions for shoulder pain. The purpose of this study was to determine if clinician guidance changes scapulothoracic muscle activity and kinematics compared to unguided shoulder exercises.MethodsEleven participants with shoulder pain were studied. Electromyographic (EMG) sensors were placed on the serratus anterior and upper and lower trapezii. Scapulothoracic and sternoclavicular kinematics were collected using electromagnetic sensors. Five common resisted shoulder exercises were performed with the following guidance: unguided, combined (verbal and tactile cues), and verbal guidance only. One-way repeated measures ANOVAs determined the effect of guidance versus unguided conditions for each exercise.ResultsNine of ten combinations of exercise and guidance techniques demonstrated a significant effect of guidance for either muscle activity or joint kinematics. The guidance condition with the most frequent significant improvements across all variables was the combined condition. The exercises with the most frequent significant improvements across all variables were the external rotation exercises. Variables improved most frequently were: upper:lower trapezius EMG ratio (up to 11%), sternoclavicular elevation (up to 6°) and scapulothoracic internal rotation positioning (up to 8°), and sternoclavicular retraction displacement (up to 5°).ConclusionShoulder muscle activity and kinematics during exercises can be modified by tactile and verbal guidance. Most improvements in muscle activity occurred with verbal guidance during external rotation exercises. Most improvements in joint positioning and movement occurred with combined guidance during external rotation exercises.  相似文献   

14.
BackgroundMuscle imbalance between serratus anterior (SA), upper trapezius (UA), middle trapezius (MT), and lower trapezius (LT) muscles has been observed in subjects with subacromial impingement syndrome (SAIS).Objective(1) To investigate the effect of electromyography (EMG) biofeedback training on muscle balance ratios and scapular kinematics in healthy adults and subjects with SAIS. (2) To investigate whether the effects of EMG biofeedback on muscle balance ratios are different between groups.DesignTwelve healthy adults and 13 subjects with SAIS were recruited in this study. EMG was used to record the activity of scapular muscles. The ratios (UT/SA, UT/MT, and UT/LT) during exercises with/without EMG biofeedback were calculated. Scapular kinematics were recorded before and after exercises with/without EMG biofeedback.ResultsFor the subjects with SAIS, muscle balance ratios were lower during forward flexion with EMG biofeedback than during exercise only (UT/SA: 70.3–45.2; UT/LT: 124.8–94.6). Additionally, similar results were found during side-lying external rotation (UT/MT: 58.5–36.4). For the scapular upward rotation and tipping in both groups, there were no significant differences with and without EMG biofeedback.ConclusionEMG biofeedback improved the scapular muscular balance during training exercises in both groups. Further clinical trials should investigate the long-term effects of EMG biofeedback.  相似文献   

15.
The aim of this study was to determine the effect of isometric horizontal abduction using Thera-Band during three exercises (forward flexion, scaption, and wall push-up plus) in subjects with scapular winging by investigating the electromyographic (EMG) amplitude of the pectoralis major, serratus anterior and the pectoralis major/serratus anterior activity ratio. Twenty-four males with scapular winging participated in this study. The subjects performed the forward flexion, scaption, and wall push-up plus with and without isometric horizontal abduction using Thera-Band. Surface EMG was used to collect the EMG data of the pectoralis major and serratus anterior during the three exercises. Two-way repeated analyses of variance with two within-subject factors (isometric horizontal abduction condition and exercise type) were used to determine the statistical significance of pectoralis major and serratus anterior EMG activity and the pectoralis major/serratus anterior EMG activity ratio. Pectoralis major EMG activity was significantly lower during forward flexion and wall push-up plus with isometric horizontal abduction, and serratus anterior EMG activity was significantly greater with isometric horizontal abduction. Additionally, the pectoralis major/serratus anterior activity ratio was significantly lower during the forward flexion and wall push-up plus with isometric horizontal abduction. The results of this study suggest that isometric horizontal abduction using Thera-Band can be used as an effective method to facilitate the serratus anterior activity and to reduce excessive pectoralis major activity during exercises for activating serratus anterior.  相似文献   

16.
Background: Plyometric shoulder exercises are commonly used to progress from slow analytical strength training to more demanding high speed power training in the return to play phase after shoulder injury. The aim of this study was first, to investigate scapular muscle activity in plyometric exercises to support exercise selection in practice and second, to enhance understanding of how scapular muscles are recruited during the back and forth movement phase of these exercises. Methods: Thirty-two healthy subjects performed 10 plyometric exercises while surface EMG-activity of the scapular muscles (upper (UT), middle (MT) and lower trapezius (LT) and serratus anterior (SA)) was registered. A high speed camera tracked start and end of the back and forth movement. Results: Mean scapular EMG activity during the 10 exercises ranged from 14.50% to 76.26%MVC for UT, from 15.19% to 96.55%MVC for MT, from 13.18% to 94.35%MVC for LT and from 13.50% to 98.50%MVC for SA. Anova for repeated measures showed significant differences in scapular muscle activity between exercises (p < 0.001) and between the back and forth movement (p < 0.001) within exercises. Conclusion: Plyometric shoulder exercises require moderate (31–60%MVC) to high (>60%MVC) scapular muscle activity. Highest MT/LT activity was present in prone plyometric external rotation and flexion. Highest SA activity was found in plyometric external rotation and flexion with Xco and plyometric push up on Bosu. Specific exercises can be selected that recruit minimal levels of UT activity (<15%): side lying plyometric external rotation and horizontal abduction or plyometric push up on the Bosu. The results of this study support exercise selection for clinical practice.  相似文献   

17.
Altered shoulder muscle activity is frequently believed to be a pathogenetic factor of subacromial impingement (SI) and therapeutic interventions have been directed towards restoring normal motor patterns. Still, there is a lack of scientific evidence regarding the changes in muscle activity in patients with SI. The aim of the study was to determine and compare the activity pattern of the shoulder muscles in subjects with and without SI. Twenty-one subjects with SI and 20 healthy controls were included. Electromyography (EMG) was assessed from eight shoulder muscles from both shoulders during motion. In the symptomatic shoulder, there was a significantly greater EMG activity during abduction in the supraspinatus and latissimus muscles and less activity in serratus anterior compared to the healthy subjects. During external rotation, there was significantly less activity of the infraspinatus and serratus anterior muscles on the symptomatic side compared to the healthy subjects. On the asymptomatic side, the groups showed different muscle activity during external rotation. Our findings of an altered shoulder muscle activity pattern on both the symptomatic and asymptomatic side in patients indicate that the different motor patterns might be a pathogenetic factor of SI, perhaps due to inappropriate neuromuscular strategies affecting both shoulders.  相似文献   

18.
Motor control and learning possibilities of scapular muscles are of clinical interest for restoring scapular muscle balance in patients with neck and shoulder disorders. The aim of the study was to investigate whether selective voluntary activation of intra-muscular parts within the serratus anterior can be learned with electromyographical (EMG) biofeedback, and whether the lower serratus anterior and the lower trapezius muscle comprise the lower scapula rotation force couple by synergistic activation. Nine healthy males practiced selective activation of intra-muscular parts within the serratus anterior with visual EMG biofeedback, while the activity of four parts of the serratus anterior and four parts of the trapezius muscle was recorded. One subject was able to selectively activate both the upper and the lower serratus anterior respectively. Moreover, three subjects managed to selectively activate the lower serratus anterior, and two subjects learned to selectively activate the upper serratus anterior. During selective activation of the lower serratus anterior, the activity of this muscle part was 14.4 ± 10.3 times higher than the upper serratus anterior activity (P < 0.05). The corresponding ratio for selective upper serratus vs. lower serratus anterior activity was 6.4 ± 1.7 (P < 0.05). Moreover, selective activation of the lower parts of the serratus anterior evoked 7.7 ± 8.5 times higher synergistic activity of the lower trapezius compared with the upper trapezius (P < 0.05). The learning of complete selective activation of both the lower and the upper serratus anterior of one subject, and selective activation of either the upper or lower serratus anterior by five subjects designates the promising clinical application of EMG biofeedback for restoring scapular muscle balance. The synergistic activation between the lower serratus anterior and the lower trapezius muscle was observed in only a few subjects, and future studies including more subjects are required before conclusions of a lower scapula rotation couple can be drawn.  相似文献   

19.
Scapular kinematics alterations have been found following muscle fatigue. Considering the importance of the lower trapezius in coordinated scapular movement, this study aimed to investigate the effects of elastic taping (Kinesio taping, KT) for muscle facilitation on scapular kinematics of healthy overhead athletes following muscle fatigue. Twenty-eight athletes were evaluated in a crossover, single-blind, randomized design, in three sessions: control (no taping), KT (KT with tension) and sham (KT without tension). Scapular tridimensional kinematics and EMG of clavicular and acromial portions of upper trapezius, lower trapezius and serratus anterior were evaluated during arm elevation and lowering, before and after a fatigue protocol involving repetitive throwing. Median power frequency decline of serratus anterior was significantly lower in KT session compared to sham, possibly indicating lower muscle fatigue. However, the effects of muscle fatigue on scapular kinematics were not altered by taping conditions. Although significant changes were found in scapular kinematics following muscle fatigue, they were small and not considered relevant. It was concluded that healthy overhead athletes seem to present an adaptive mechanism that avoids the disruption of scapular movement pattern following muscle fatigue. Therefore, these athletes do not benefit from the use of KT to assist scapular movement under the conditions tested.  相似文献   

20.
PurposeThis study aimed to investigate the effect of elastic taping on kinematics, muscle activity and strength of the scapular region in baseball players with shoulder impingement.ScopeSeventeen baseball players with shoulder impingement were recruited from three amateur baseball teams. All subjects received both the elastic taping (Kinesio TexTM) and the placebo taping (3 M Micropore tape) over the lower trapezius muscle. We measured the 3-dimensional scapular motion, electromyographic (EMG) activities of the upper and lower trapezius, and the serratus anterior muscles during arm elevation. Strength of the lower trapezius was tested prior to and after each taping application. The results of the analyses of variance (ANOVA) with repeated measures showed that the elastic taping significantly increased the scapular posterior tilt at 30° and 60° during arm raising and increased the lower trapezius muscle activity in the 60–30° arm lowering phase (p < 0.05) in comparison to the placebo taping.ConclusionsThe elastic taping resulted in positive changes in scapular motion and muscle performance. The results supported its use as a treatment aid in managing shoulder impingement problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号