首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tension-time area is an estimation of the work performed by contracting motor units. The relationship between tension and frequency of stimulation and between tension-time area and frequency have been studied on 148 single motor units of the rat medial gastrocnemius muscle, under isometric conditions. Motor units were classified as fast fatigable (FF), fast resistant to fatigue (FR) or slow (S). Trains of stimuli of increasing frequency and constant duration were used. For all motor units a half of the maximum tetanic tension corresponded to lower frequencies compared to frequencies at a half of the maximum tension-time area. Moreover, the slopes of tension-frequency and area-frequency curves (change of tension or area per 1 Hz rise in frequency) were higher for slow than for fast motor units. The tension-time area per one pulse was calculated for different frequencies of stimulation. For slow units the maximum area per pulse corresponded to significantly lower frequencies than for fast ones, especially of FF type. However, for all three types of motor units this optimal frequency corresponded to sub-fused tetani with a tension of about 75% of the maximum tension, and with the fusion index slightly over 0.90. The absolute values of the maximum tension-time area per pulse revealed that in one contraction within the tetanus, slow units are generating greater work than FR units. The work performed by FF units is nearly two times larger than for S units, although the tension of slow units is over eight times lower. The presented results reveal that the contraction of slow motor units is much more effective than was suggested based on their low tension.  相似文献   

2.
The aim of this study was to interpret changes in experimentally recorded M waves with progressive motor unit (MU) activation based on simulation of the surface electromyogram. Activation order during transcutaneous electrical stimulation was analyzed by investigating M-wave average rectified value, spectral properties, and conduction velocity (CV) during electrically elicited contractions. M-waves were detected from the biceps brachii muscle of 10 healthy male subjects by a linear adhesive array of eight electrodes. Electrical stimulation was delivered to the motor point at either constant current intensity (40, 60, 80, and 100% of the supramaximal stimulation current) or with linearly increasing current. A model of surface electromyogram generation that varied activation order based on MU size and location was used to interpret the experimental results. From the experimental and model analysis, it was found that 1) MUs tended to be activated from low to high CV and from the superficial to the deep muscle layers with increasing transcutaneous electrical stimulation of the biceps brachii muscle, and 2) characteristic spectral frequencies of the M-wave were affected by many factors other than average CV (such as the activation order by MU location or the spread of the MU innervation zones and CVs), thus decreasing with a concomitant increase in CV during progressive MU activation.  相似文献   

3.
It is still an enigma how human subjects combine visual and vestibular inputs for their self-motion perception. Visual cues have the benefit of high spatial resolution but entail the danger of self motion illusions. We performed psychophysical experiments (verbal estimates as well as pointer indications of perceived self-motion in space) in normal subjects (Ns) and patients with loss of vestibular function (Ps). Subjects were presented with horizontal sinusoidal rotations of an optokinetic pattern (OKP) alone (visual stimulus; 0.025-3.2 Hz; displacement amplitude, 8 degrees) or in combinations with rotations of a Bárány chair (vestibular stimulus; 0.025-0.4 Hz; +/- 8 degrees). We found that specific instructions to the subjects created different perceptual states in which their self-motion perception essentially reflected three processing steps during pure visual stimulation: i) When Ns were primed by a procedure based on induced motion and then they estimated perceived self-rotation upon pure optokinetic stimulation (circular vection, CV), the CV has a gain close to unity up to frequencies of almost 0.8 Hz, followed by a sharp decrease at higher frequencies (i.e., characteristics resembling those of the optokinetic reflex, OKR, and of smooth pursuit, SP). ii) When Ns were instructed to "stare through" the optokinetic pattern, CV was absent at high frequency, but increasingly developed as frequency was decreased below 0.1 Hz. iii) When Ns "looked at" the optokinetic pattern (accurately tracked it with their eyes) CV was usually absent, even at low frequency. CV in Ps showed similar dynamics as in Ns in condition i), independently of the instruction. During vestibular stimulation, self-motion perception in Ns fell from a maximum at 0.4 Hz to zero at 0.025 Hz. When vestibular stimulation was combined with visual stimulation while Ns "stared through" OKP, perception at low frequencies became modulated in magnitude. When Ns "looked" at OKP, this modulation was reduced, apart from the synergistic stimulus combination (OKP stationary) where magnitude was similar as during "staring". The obtained gain and phase curves of the perception were incompatible with linear systems prediction. We therefore describe the present findings by a non-linear dynamic model in which the visual input is processed in three steps: i) It shows dynamics similar to those of OKR and SP; ii) it is shaped to complement the vestibular dynamics and is fused with a vestibular signal by linear summation; and iii) it can be suppressed by a visual-vestibular conflict mechanism when the visual scene is moving in space. Finally, an important element of the model is a velocity threshold of about 1.2 degrees/s which is instrumental in maintaining perceptual stability and in explaining the observed dynamics of perception. We conclude from the experimental and theoretical evidence that self-motion perception normally is related to the visual scene as a reference, while the vestibular input is used to check the kinematic state of the scene; if the scene appears to move, the visual signal becomes suppressed and perception is based on the vestibular cue.  相似文献   

4.
Motor unit recruitment strategies investigated by surface EMG variables.   总被引:9,自引:0,他引:9  
During isometric contractions of increasing strength, motor units (MUs) are recruited by the central nervous system in an orderly manner starting with the smallest, with muscle fibers that usually show the lowest conduction velocity (CV). Theory predicts that the higher the velocity of propagation of the action potential, the higher the power at high frequencies of the detected surface signal. These considerations suggest that the power spectral density of the surface detected electromyogram (EMG) signal may give indications about the MU recruitment process. The purpose of this paper is to investigate the potential and limitations of spectral analysis of the surface EMG signal as a technique for the investigation of muscle force control. The study is based on a simulation approach and on an experimental investigation of the properties of surface EMG signals detected from the biceps brachii during isometric linearly increasing torque contractions. Both simulation and experimental data indicate that volume conductor properties play an important role as confounding factors that may mask any relation between EMG spectral variables and estimated CV as a size principle parameter during ramp contractions. The correlation between spectral variables and CV is thus significantly lower when the MU pool is not stable than during constant-torque isometric contractions. Our results do not support the establishment of a general relationship between spectral EMG variables and torque or recruitment strategy.  相似文献   

5.
As global climate changes, there is increasing need to understand how changes in the frequencies of environmental variability affect populations. Age-structured populations have recently been shown to filter specific frequencies of environmental variability, favoring generational frequencies, and very low frequencies, a phenomenon known as cohort resonance. However, there has been little exploration of how changes in the spectra of environmental signals will affect the stability and persistence of age-structured populations. To examine this issue, we analyzed a likely example to show how changes in the frequency of an influential climate phenomenon, the El Niño-Southern Oscillation (ENSO), could affect a marine bird population. We used a density-dependent, age-structured population model to calculate the transfer function (i.e., the frequency-dependent sensitivity) of Brandt’s cormorant (Phalacrocorax penicillatus), a representative marine bird species known to be influenced by ENSO. We then assessed how the population would be affected by ENSO forcing that was doubled and halved in frequency. The transfer function indicated this population is most sensitive to variance at low frequencies, but does not exhibit the sensitivity to generational frequencies (cohort resonance) observed in shorter-lived species. Doubling the frequency of ENSO unexpectedly resulted in higher mean adult population abundance, lower variance, and lower probability of extinction, compared to forcing with the historical or reduced ENSO frequency. Our results illustrate how long-lived species with environmentally driven variability in recruitment, including many species of marine birds and fish, may respond in counterintuitive ways to anticipated changes in environmental variability.  相似文献   

6.
The purpose of this investigation is to introduce a wavelet analysis designed for analyzing short events reflecting bursts of muscle activity in non-stationary mechanomyographic (MMG) signals. A filter bank of eleven nonlinearly scaled wavelets that maintain the optimal combination of time and frequency resolution across the frequency range of MMG signals (5–100 Hz) was used for the analysis. A comparison with the short-time Fourier transform, Wigner-Ville transform and continuous wavelet transform using a test signal with known time–frequency characteristics showed that the MMG wavelet analysis resolved the intensity, timing, and frequencies of events in a more distinct way without overemphasizing high or low frequencies or generating interference terms. The analysis was used to process MMG signals from the vastus lateralis, rectus femoris, and vastus medialis muscles obtained during maximal concentric and eccentric isokinetic movements. Muscular events were observed that were precisely located in time and frequency in a muscle-specific way, thereby showing periods of synergistic contractions of the quadriceps muscles. The MMG wavelet spectra showed different spectral bands for concentric and eccentric isokinetic movements. In addition, the high and low frequency bands seemed to be activated independently during the isokinetic movement. What generates these bands is not yet known, however, the MMG wavelet analysis was able to resolve them, and is therefore applicable to non-stationary MMG signals.  相似文献   

7.
A computational procedure is described for obtaining reproducible, low noise estimates of the instantaneous velocity of axonally transported organelles. Axonally transported organelles were detected in myelinated nerve fibers from Xenopus laevis by dark-field microscopy. The motion of the organelles was recorded on motion picture film at 3 frames/s, and the position of organelles travelling in the retrograde direction was obtained as a pair of x (axial) and y (transverse) coordinates at each 0.33-s interval. THe trend in organelle movement with time was calculated for each of the series of x and y coordinates by linear regression. This trend was removed from the measurements of x and y to yield sets of trend-free displacements. The trend yielded a measure of the mean velocity of the organelle in each of the two orthogonal directions. Power spectra of the deviations in x and y about the trend were calculated. For 133 particles studied, 99% of the power in the trend-free deviations occurred at frequencies below 0.3 Hz. The peak power in the x and y deviations occurred at a frequency of 0.1 Hz or less. Positional deviations about the trend were treated with a discrete 21-term differentiating filter that attenuated frequencies above 0.3 Hz. Instantaneous velocities for the organelles were obtained by adding the result of the band-limited differentiation to the appropriate estimates of mean velocity. The 21-term method was compared with a commonly used 2-term approximation to a differentiator and was shown to produce velocity estimates with about one order of magnitude less error. Estimates of organelle velocity obtained with the 21-term method indicate that saltatory particle motion may be viewed either as a smooth variation of particle velocity with respect to time or as an irregular, or discontinuous, variation of velocity with respect to particle position.  相似文献   

8.
Sinusoidal oscillatory flow of blood and of aqueous glycerol solutions was produced in rigid cylindrical tubes. For aqueous glycerol, the amplitude of the measured pressure gradient wave form conformed closely to that predicted by Womersley's theory of oscillatory flow, up to Reynolds numbers approaching 2000. Blood differed significantly from aqueous glycerol solutions of comparable viscosity, especially at low frequencies and high hematocrits. As frequency increased, the hydraulic impedance of blood decreased to a minimum at a frequency of about 1-2 CPS, increasing monotonically at higher frequencies. The dynamic apparent viscosity of blood, calculated from Womersley's theory, decreased with increasing flow amplitude. The reactive component of the hydraulic impedance increased with frequency as predicted by theory; the resistive component decreased with increasing frequency, differing from the resistance of a Newtonian fluid which increased with frequency.  相似文献   

9.
Frequency selectivity of hearing was measured in the green treefrog, Hyla cinerea. A psychophysical technique based on reflex modification was used to obtain masked threshold estimates for pure tones (300-5,400 Hz) presented against two levels of broadband masking noise. A pure tone (S-1) presented 200 ms prior to a reflex-eliciting stimulus (S-2) inhibited the motor reflex response to S-2. The magnitude of this reflex modification effect varied systematically with the sound pressure level (SPL) of S-1, and threshold was defined as the SPL of S-1 at which the reflex modification effect disappeared. Masked thresholds were used to calculate critical ratios, an index of the auditory system's frequency selectivity. The frequency selectivity of the treefrog's hearing is greatest and critical ratios are lowest (22-24 dB) at about 900 and 3,000 Hz, the two spectral regions dominant in the male treefrog's species-specific advertisement call. These results suggest that the treefrog's auditory system may be specialized to reject noise at biologically-relevant frequencies. As in other vertebrates, critical ratios remain constant when background noise level is varied; however, the shape of the treefrog's critical ratio function across frequencies differs from the typical vertebrate function that increases with increasing frequency at a slope of about 3 dB/octave. Instead, the treefrog's critical ratio function resembles its pure tone audiogram. Although the shape of the treefrog's critical ratio function is atypical, the critical ratio values themselves are comparable to those of many other vertebrates in the same frequency range. Critical ratio values here measured behaviorally do not match critical ratio values previously measured physiologically in single eighth nerve fibers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Sounds produced by northern bottlenose whales ( Hyperoodon ampullatus ) recorded in the Gully, a submarine canyon off Nova Scotia, consisted predominately of clicks. In 428 min of recordings no whistles were heard which could unequivocally be attributed to bottlenose whales. There were two major types of click series, initially distinguished by large differences in received amplitude. Loud clicks (produced by nearby whales socializing at the surface) were rapid, with short and variable interclick intervals (mean 0.07 sec; CV 71%). The frequency spectra of these were variable and often multimodal, with peak frequencies ranging between 2 and 22 kHz (mean 11 kHz, CV 59%). Clicks received at low amplitude (produced by distant whales, presumably foraging at depth) had more consistent interclick intervals (mean 0.40 sec, CV 12.5%), generally unimodal frequency spectra with a mean peak frequency of 24 kHz (CV 7%) and 3 dB bandwidth of 4 kHz. Echolocation interclick intervals may reflect the approximate search distance of an animal, in this case 300 m, comparable to that found for sperm whales. The relationship between click frequency and the size of object being investigated, suggests that 24 kHz would be optimal for an object of approximately 6 cm or more, consistent with the size range of their squid prey.  相似文献   

11.
Continuous wavelet analyses was applied to investigate the spectral characteristics of m. vastus lateralis EMG activity in two incremental tests till exhaustion: rhythmic knee-joint extensions and cycling. Wavelet analysis of surface EMG revealed differences in the dynamics of time-frequency characteristics of the signal during single cycle of two types of movements with different loads, as well as differences in the slow variations of spectral characteristics associated with the development of muscle fatigue during the tests. It was shown that during cycling with low loads (beginning of the test) maximum of EMG activity was confined within the second half of muscle contraction (the angle in the knee joint approximately 140 degrees), increase of load at the end of the test led to a shift of the peak to the beginning of the active phase of movement, while the median frequency of the "instant" wavelet spectra during muscle contraction remained almost unchanged. During knee-joint extensions the maximum of EMG activity was observed at the end of the active phase of movement for all loads, median frequency increased significantly with increasing the angle at the knee joint. Long-term dynamics of EMG intensity growth during these tests differed as well, whereas dynamics of wavelet-spectra median frequencies were practically the same--during both tests their growths were observed.  相似文献   

12.
Interneurons in the ventral nerve cord of Periplaneta americana are excited by sound stimuli to the cerci. The responsiveness of giant fibers in the nerve cord generally declines with increasing sound frequency but the frequency-response curve is complex with small sensitivity peaks along its course. The frequency-response curve for smaller interneurons differs from that of the largest giant fibers in having a pronounced sensitivity peak near 300 Hz. At sound frequencies below about 200 Hz, giant fiber spikes occur at the same frequency as impinging sound waves. Thus information about the frequency of sound stimuli is present in the nerve cord in the temporal pattern of activity in giant fibers at low sound frequencies, and in the spatial pattern of activity between large and small units of the nerve cord at higher sound frequencies.  相似文献   

13.
It has been described that the frequency ranges at which theta, mu and alpha rhythms oscillate is increasing with age. The present report, by analyzing the spontaneous EEG, tries to demonstrate whether there is an increase with age in the frequency at which the cortical structures oscillate. A topographical approach was followed. The spontaneous EEG of one hundredand seventy subjects was recorded. The spectral power (from 0.5 to 45.5 Hz) was obtained by means of the Fast Fourier Transform. Correlations of spatial topographies among the different age groups showed that older groups presented the same topographical maps as younger groups, but oscillating at higher frequencies. The results suggest that the same brain areas oscillate at lower frequencies in children than in older groups, for a broad frequency range. This shift to a higher frequency with age would be a trend in spontaneous brain rhythm development.  相似文献   

14.
The sun-fish Lepomis responds to a moving system of stripes by a motion of its body. By changing the velocity of motion of the stripe system different flicker frequencies can be produced and thus the relation of flicker frequency to critical intensity of illumination can be studied. Threshold illumination varies with flicker frequency in such a way that with increasing flicker frequency the intensity of illumination must be increased to produce a threshold response in the fish. The curve of critical illumination as a function of frequency is made up of two distinct parts. For an intensity range below 0.04 millilambert and flicker frequencies below 10 per second, the rods are in function. For higher intensities and flicker frequencies above 10, the cones come into play. The maximum frequency of flicker which can be perceived by the fish''s eye is slightly above 50 per second. The flicker curve for the eye of Lepomis can easily be compared with that for the human eye. The extent of the curve for the fish is greater at low illuminations, the fish being capable of distinguishing flicker at illuminations lower than can the human eye. The transition of rod vision to cone vision occurs for the fish and for the human eye at the same intensity and flicker frequency. The maximum frequency of flicker which can be perceived is for both about the same.  相似文献   

15.
Usually dielectrophoretic and electrorotation measurements are carried out at low ionic strength to reduce electrolysis and heat production. Such problems are minimized in microelectrode chambers. In a planar ultramicroelectrode chamber fabricated by semiconductor technology, we were able to measure the dielectric properties of human red blood cells in the frequency range from 2 kHz to 200 MHz up to physiological ion concentrations. At low ionic strength, red cells exhibit a typical electrorotation spectrum with an antifield rotation peak at low frequencies and a cofield rotation peak at higher ones. With increasing medium conductivity, both electrorotational peaks shift toward higher frequencies. The cofield peak becomes antifield for conductivities higher than 0.5 S/m. Because the polarizability of the external medium at these ionic strengths becomes similar to that of the cytoplasm, properties can be measured more sensitively. The critical dielectrophoretic frequencies were also determined. From our measurements, in the wide conductivity range from 2 mS/m to 1.5 S/m we propose a single-shell erythrocyte model. This pictures the cell as an oblate spheroid with a long semiaxis of 3.3 microns and an axial ratio of 1:2. Its membrane exhibits a capacitance of 0.997 x 10(-2) F/m2 and a specific conductance of 480 S/m2. The cytoplasmic parameters, a conductivity of 0.4 S/m at a dielectric constant of 212, disperse around 15 MHz to become 0.535 S/m and 50, respectively. We attribute this cytoplasmic dispersion to hemoglobin and cytoplasmic ion properties. In electrorotation measurements at about 60 MHz, an unexpectedly low rotation speed was observed. Around 180 MHz, the speed increased dramatically. By analysis of the electric chamber circuit properties, we were able to show that these effects are not due to cell polarization but are instead caused by a dramatic increase in the chamber field strength around 180 MHz. Although the chamber exhibits a resonance around 180 MHz, the harmonic content of the square-topped driving signals generates distortions of electrorotational spectra at far lower frequencies. Possible technological applications of chamber resonances are mentioned.  相似文献   

16.
Nanoindentation has recently gained attention as a characterization technique for mechanical properties of biological tissues, such as bone, on the sub-micron level. However, optimal methods to characterize viscoelastic properties of bones are yet to be established. This study aimed to compare the time-dependent viscoelastic properties of bone tissue obtained with different nanoindentation methods. Bovine cortical and trabecular bone samples (n=8) from the distal femur and proximal tibia were dehydrated, embedded and polished. The material properties determined using nanoindentation were hardness and reduced modulus, as well as time-dependent parameters based on creep, loading-rate, dissipated energy and semi-dynamic testing under load control. Each loading protocol was repeated 160 times and the reproducibility was assessed based on the coefficient of variation (CV). Additionally, three well-characterized polymers were tested and CV values were calculated for reference.The employed methods were able to characterize time-dependent viscoelastic properties of bone. However, their reproducibility varied highly (CV 9–40%). The creep constant increased with increasing dwell time. The reproducibility was best with a 30 s creep period (CV 18%). The dissipated energy was stable after three repeated load cycles, and the reproducibility improved with each cycle (CV 23%). The viscoelastic properties determined with semi-dynamic test increased with increase in frequency. These measurements were most reproducible at high frequencies (CV 9–10%). Our results indicate that several methods are feasible for the determination of viscoelastic properties of bone material. The high frequency semi-dynamic test showed the highest precision within the tested nanoindentation protocols.  相似文献   

17.
Continuous wavelet analysis was used to study the spectral characteristics of the m. vastus lateralis electromyographic activity in two I : rhythmic knee-joint extensions and cycling. Wavelet analysis of surface electromyograms (EMGs) recorded during cyclic contractions of the same muscle during the two types of movements showed differences in the pattern of changes in the timefrequency characteristics of the signal during a single cycle of movements with different loads, as well as differences in the slow variations of spectral characteristics related to the development of muscle fatigue during the tests. It was shown that, during cycling at low loads (the beginning of the test) the EMG activity peaked during the second half of the muscle contraction (the angle in the knee joint was ≈140°); the increase in the load at the end of the test led to a shift of the peak to the beginning of the active phase of movement, while the median frequency of the instant wavelet spectra during the muscle contraction remained almost unchanged. During knee-joint extension, the maximum EMG activity was observed at the very end of the active phase of movement for all loads, and the median frequency significantly increased with increasing angle at the knee joint. The long-term time course of the EMG intensity growth during these tests also differed, whereas the changes in the wavelet-spectrum median frequencies were practically the same: they increased during both tests.  相似文献   

18.
Courtship displays may serve as signals of the quality of motor performance, but little is known about the underlying biomechanics that determines both their signal content and costs. Peacocks (Pavo cristatus) perform a complex, multimodal “train-rattling” display in which they court females by vibrating the iridescent feathers in their elaborate train ornament. Here we study how feather biomechanics influences the performance of this display using a combination of field recordings and laboratory experiments. Using high-speed video, we find that train-rattling peacocks stridulate their tail feathers against the train at 25.6 Hz, on average, generating a broadband, pulsating mechanical sound at that frequency. Laboratory measurements demonstrate that arrays of peacock tail and train feathers have a broad resonant peak in their vibrational spectra at the range of frequencies used for train-rattling during the display, and the motion of feathers is just as expected for feathers shaking near resonance. This indicates that peacocks are able to drive feather vibrations energetically efficiently over a relatively broad range of frequencies, enabling them to modulate the feather vibration frequency of their displays. Using our field data, we show that peacocks with longer trains use slightly higher vibration frequencies on average, even though longer train feathers are heavier and have lower resonant frequencies. Based on these results, we propose hypotheses for future studies of the function and energetics of this display that ask why its dynamic elements might attract and maintain female attention. Finally, we demonstrate how the mechanical structure of the train feathers affects the peacock’s visual display by allowing the colorful iridescent eyespots–which strongly influence female mate choice–to remain nearly stationary against a dynamic iridescent background.  相似文献   

19.
《IRBM》2022,43(6):594-603
IntroductionSteady-state visually evoked potentials (SSVEPs) have become popular in brain-computer interface (BCI) applications in addition to many other applications on clinical neuroscience (neurodegenerative disorders, schizophrenia, epilepsy, etc.), cognitive (visual attention, working memory, brain rhythms, etc.), and use of engineering researches. Among available methods to measure brain activities, SSVEPs have advantages like higher information transfer rate, simplicity in structure, and short training time. SSVEP-based BCIs use flickering stimuli at different frequencies to discriminate distinct commands in real life. Some features are extracted from the SSVEP signals before these commands are classified. The wavelet transform (WT) has attracted researchers among feature extraction methods since it utilizes the non-stationary signals well. In the WT, a sample function (named mother wavelet) represents the SSVEP signal in both time and frequency domains. Unfortunately, there is no universal mother wavelet function that fits all the signals. Therefore, choosing an appropriate mother wavelet function may be a challenge in WT-related studies. Although there are such studies in three- and seven-command SSVEP-based studies, there is no study for two-command systems in our knowledge.Materials and MethodsIn this study, two user commands flickered at the combinations of seven different frequencies were tested to determine which frequency pairs give the highest performance. For this purpose, three well-known wavelet features (energy, entropy, and variance) were calculated for each of derived EEG frequency bands from the discrete WT coefficients of SSVEP signals. The WT was repeated for six different mother wavelet functions (Haar, Db4, Sym4, Coif1, Bior3.5, and Rbior2.8). Then, four feature sets (every three features, and all together) were applied to seven commonly-used machine learning algorithms (Decision Tree, Discriminant Analysis, Logistic Regression, Naive Bayes, Support Vector Machines, Nearest Neighbors, and Ensemble Classifiers).Results and DiscussionWe achieved 100% accuracies among these 3,528 runs (7 classifiers x 4 feature sets x 6 mother wavelets x 21 flickering frequency pairs) using the mother wavelet function of Haar and the Ensemble Learner classifier. The highest classifier performances are 100% when two commands have the flickering frequency pairs of (6.0 and 10 Hz), (6.5 and 8.2 Hz), or (6.5 and 10.0 Hz).ConclusionWe obtained three main outcomes from this study. First, the most representative mother wavelet function was Haar, while the worst one was Symlet 4. Second, the Ensemble Learner classifier gave the maximum classifier performance in a two-command SSVEP-based BCI system. Besides, two user commands from SSVEP should be one of the frequency pairs of (6.0 and 10.0 Hz), (6.5 and 8.2 Hz), and (6.5 and 10.0 Hz) to achieve the maximum accuracy.  相似文献   

20.
An auditory neuron can preserve the temporal fine structure of a low-frequency tone by phase-locking its response to the stimulus. Apart from sound localization, however, much about the role of this temporal information for signal processing in the brain remains unknown. Through psychoacoustic studies we provide direct evidence that humans employ temporal fine structure to discriminate between frequencies. To this end we construct tones that are based on a single frequency but in which, through the concatenation of wavelets, the phase changes randomly every few cycles. We then test the frequency discrimination of these phase-changing tones, of control tones without phase changes, and of short tones that consist of a single wavelet. For carrier frequencies below a few kilohertz we find that phase changes systematically worsen frequency discrimination. No such effect appears for higher carrier frequencies at which temporal information is not available in the central auditory system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号