首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative levels of pelvic floor muscle (PFM) activation and pressure generated by maximum voluntary PFM contractions were investigated in healthy continent women. The normal sequence of abdominal and PFM activation was determined.Fifteen women performed single and repeated maximum voluntary PFM contractions in supine, sitting and standing. PFM electromyographic (EMG) signals and associated intra-vaginal pressure data were recorded simultaneously. Surface EMG data were recorded from rectus abdominus (RA), external obliques (EO), internal obliques (IO) and transversus abdominus (TA).Abdominal and PFM EMG and intra-vaginal pressure amplitudes generated during voluntary PFM contractions were not different among the positions. Muscle activation sequence differed by position. In supine, EO activation preceded all other muscles by 27 ms (p = 0.043). In sitting, all of the muscles were activated simultaneously. In standing, RA and EO were activated 11 and 17 ms, respectively, prior to the PFMs and TA and IO were activated 10 and 12 ms, respectively, after the PFMs (p  0.001).The results suggest that women are able to perform equally strong PFM contractions in supine, sitting and standing, however the pattern of abdominal and PFM activation varies by position. These differences may be related to position-dependent urine leakage in women with stress incontinence.  相似文献   

2.
It is not currently known how the mechanical properties of human tendons change with maturation in the two sexes. To address this, the stiffness and Young's modulus of the patellar tendon were measured in men, women, boys and girls (each group, n=10). Patellar tendon force (Fpt) was calculated from the measured joint moment during a ramped voluntary isometric knee extension contraction, the antagonist knee extensor muscle co-activation quantified from its electromyographical activity, and the patellar tendon moment arm measured from magnetic resonance images. Tendon elongation was imaged using the sagittal-plane ultrasound scans throughout the contraction. Tendon cross-sectional area was measured at rest from ultrasound scans in the transverse plane. Maximal Fpt and tendon elongation were (mean±SE) 5453±307 N and 5±0.5 mm for men, 3877±307 N and 4.9±0.6 mm for women, 2017±170 N and 6.2±0.5 mm for boys and 2169±182 N and 5.9±0.7 mm for girls. In all groups, tendon stiffness and Young's modulus were examined at the level that corresponded to the maximal 30% of the weakest participant's Fpt and stress, respectively; these were 925–1321 N and 11.5–16.5 MPa, respectively. Stiffness was 94% greater in men than boys and 84% greater in women than girls (p<0.01), with no differences between men and women, or boys and girls (men 1076±87 N/mm; women 1030±139 N/mm; boys 555±71 N/mm and girls 561.5±57.4 N/mm). Young's modulus was 99% greater in men than boys (p<0.01), and 66% greater in women than girls (p<0.05). There were no differences in modulus between men and women, or boys and girls (men 597±49 MPa; women 549±70 MPa; boys 255±42 MPa and girls 302±33 MPa). These findings indicate that the mechanical stiffness of tendon increases with maturation due to an increased Young's modulus and, in females due to a greater increase in tendon cross-sectional area than tendon length.  相似文献   

3.
Vaginal probes may induce changes in pelvic floor muscle (PFM) recruitment by the very presence of the probes. Fine-wire electrodes allow us to detect muscle activation parameters without altering the natural position and shape of the PFMs. The purpose of this study was to determine whether PFM activation is altered by changes in sensory feedback, muscle length or tissue position caused by two different vaginal probes used to record surface electromyography (EMG). Twelve continent women (30.1 ± 5.4 years), performed PFM maximal voluntary contractions (MVCs) in supine while fine-wire EMG was recorded bilaterally from the PFMs under three conditions: (a) without any probe inserted into the vagina, (b) while a Femiscan? probe was in situ, and (c) while a Periform? vaginal probe was in situ. The reliability of the fine wire EMG data was assessed using intra-class correlation coefficients (ICCs) and coefficients of variation (CV). A repeated measures analysis of variance (ANOVA) model was used to determine if there were differences in EMG amplitude recorded when the different vaginal probes were in situ. For each condition the between-trial reliability was excellent, ICC(3,1) = 0.93–0.96, (p < 0.001) and CV = 11.2–21.8%. There were no differences in peak EMG amplitude recorded during the MVCs across the three conditions (no probe 63.4 ± 48.4 μV, Femiscan? 55.3 ± 42.4 μV, Periform? 59.4 ± 42.2 μV, p = 0.178). These results suggest that women produce consistent MVCs over multiple contractions, and that PFM muscle activation is not affected by different probes inserted into the vagina.  相似文献   

4.
Ligaments assist trunk muscles in balancing external moments and providing spinal stability. In absence of the personalized material properties for ligaments, finite element (FE) models use dispersed data from the literature. This study aims to investigate the relative effects of eight different ligament property datasets on FE model responses. Eight L4-L5 models distinct only in ligament properties were constructed and loaded under moment (15 N m) alone or combined with a compressive follower load (FL). Range of motions (RoM) of the disc-alone model matched well in vitro data. Ligament properties significantly affected only sagittal RoMs (∼3.0–7.1° in flexion and ∼3.8–5.8° in extension at 10 N m). Sequential removal of ligaments shifted sagittal RoMs in and out of the corresponding in vitro ranges. When moment was combined with FL, center of rotation matched in vivo data for all models (3.8 ± 0.9 mm and 4.3 ± 1.8 mm posterior to the disc center in flexion and extension, respectively). Under 15 N m sagittal moments, ligament strains were often smaller or within the in vitro range in flexion whereas some posterior ligament forces approached their failure forces in some models. Ligament forces varied substantially within the models and affected the moment-sharing and internal forces on the disc and facet joints. Intradiscal pressure (IDP) had the greatest variation between models in extension. None of the datasets yielded results in agreement with all reported measurements. Results emphasized the important role of ligaments especially under larger moments and the need for their accurate representation in search for valid spinal models.  相似文献   

5.
The purpose of this study was to determine the changes that occur in tendinous tissue properties during the early phase of tetanic summation in the in vivo human tibialis anterior muscle (TA). The torque response and tendinous tissue elongation following single stimuli, two-pulse trains, and three-pulse trains were recorded in the TA during isometric contractions. The elongation, compliance, and lengthening velocity of tendinous tissue were determined by real-time ultrasonography. The contribution of the response to the second stimulation (C2) was obtained by subtracting the response to the single stimulation (C1) from the response of doublet. The third contribution (C3) was obtained by subtracting the response to the doublet from that of the triplet. C2 (7.8±0.5 Nm) and C3 (7.3±0.6 Nm) had torque responses significantly higher than C1 (3.6±0.7 Nm). In contrast, the elongations of tendinous tissue for C2 (2.8±0.4 mm) and C3 (1.7±0.2 mm) were significantly lower than for C1 (4.9±0.3 mm), indicating that the summation pattern of tendinous tissue elongation is different from the summation pattern of torque response. In addition, this showed considerable difference both between C1 (0.12±0.01 mm/N; 83±4.6 mm/s) and C2 (0.03±0.005 mm/N; 50±6.3 mm/s) and between C1 and C3 (0.02±0.002 mm/N; 39±6.4 mm/s) in the compliance and lengthening velocity of tendinous tissue. These results suggest that changes in tendinous tissue properties between first and second contraction are related to different summation patterns of force and tendinous tissue elongation during early phase of tetanic summation.  相似文献   

6.
Subjects reporting neck/shoulder pain have been shown to generate less force during maximal voluntary isometric contractions (MVC) of the shoulder muscles compared to healthy controls. This has been suggested to be caused by a pain-related decrease in voluntary activation (VA) rather than lack of muscle mass. The aim of the present study was to investigate VA of the trapezius muscle during MVCs in subjects with and without neck/shoulder pain by use of the twitch interpolation technique.Ten cases suffering from pain and ten age and gender matched, healthy controls were included in the study. Upper trapezius muscle thickness was measured using ultrasonography and pain intensity was measured on a 100 mm visual analog scale (VAS). VA was calculated from five maximal muscle activation attempts. Superimposed stimuli were delivered to the accessory nerve at peak force and during a 2% MVC following the maximal contraction.Presented as mean ± SD for cases and controls, respectively: VAS; 16.0 ± 14.4 mm and 2.1 ± 4.1 mm (P = 0.004), MVC; 545 ± 161 N and 664 ± 195 N (P = 0.016), upper trapezius muscle thickness; 10.9 ± 1.9 mm and 10.4 ± 1.5 mm (P = 0.20), VA; 93.6 ± 14.2% and 96.3 ± 6.0% (P = 0.29).In spite of significantly eight-fold higher pain intensity and ∼20% lower MVC for cases compared to controls, no difference was found in VA. Possible explanations for the reduction in MVC could be differences in co-activation of antagonists and synergists as well as muscle quality.  相似文献   

7.
《Cancer epidemiology》2014,38(4):448-454
BackgroundThis study aimed to provide information on timing, anatomical location, and predictors for metachronous metastases of colorectal cancer based on a large consecutive series of non-selected patients.MethodsAll patients operated on with curative intent for colorectal cancer (TanyNanyM0) between 2003 and 2008 in the Dutch Eindhoven Cancer Registry were included (N = 5671). By means of active follow-up by the Cancer Registry staff within ten hospitals, data on development of metastatic disease were collected. Median follow-up was 5.0 years.ResultsOf the 5671 colorectal cancer patients, 1042 (18%) were diagnosed with metachronous metastases. Most common affected sites were the liver (60%), lungs (39%), extra-regional lymph nodes (22%), and peritoneum (19%). 86% of all metastases was diagnosed within three years and the median time to diagnosis was 17 months (interquartile range 10–29 months). Male gender (HR = 1.2, 95%CI 1.03–1.32), an advanced primary T-stage (T4 vs. T3 HR = 1.6, 95%CI 1.32–1.90) and N-stage (N1 vs. N0 HR = 2.8, 95%CI 2.42–3.30 and N2 vs. N0 HR = 4.5, 95%CI 3.72–5.42), high-grade tumour differentiation (HR = 1.4, 95%CI 1.17–1.62), and a positive (HR = 2.1, 95%CI 1.68–2.71) and unknown (HR = 1.7, 95%CI 1.34–2.22) resection margin were predictors for metachronous metastases.ConclusionsDifferent patterns of metastatic spread were observed for colon and rectal cancer patients and differences in time to diagnosis were found. Knowledge on these patterns and predictors for metachronous metastases may enhance tailor-made follow-up schemes leading to earlier detection of metastasized disease and increased curative treatment options.  相似文献   

8.
We studied whether the time-varying forces that control unstable foot–ground interactions provide insight into the neural control of dynamic leg function. Twenty elite (10 F, 26.4 ± 3.5 yrs) and 20 recreational (10 F, 24.8 ± 2.4 yrs) athletes used an isolated leg to maximally compress a slender spring designed to buckle at low forces while seated. The foot forces during the compression at the edge of instability quantify the maximal sensorimotor ability to control dynamic foot–ground interactions. Using the nonlinear analysis technique of attractor reconstruction, we characterized the spatial (interquartile range IQR) and geometric (trajectory length TL, volume V, and sum of edge lengths SE) features of the dynamical behavior of those force time series. ANOVA confirmed the already published effect of sex, and a new effect of athletic ability, respectively, in TL (p = 0.014 and p < 0.001), IQR (p = 0.008 and p < 0.001), V (p = 0.034 and p = 0.002), and SE (p = 0.033 and p < 0.001). Further analysis revealed that, for recreational athletes, females exhibited weaker corrective actions and greater stochasticity than males as per their greater mean values of TL (p = 0.003), IQR (p = 0.018), V (p = 0.017), and SE (p = 0.025). Importantly, sex differences disappeared in elite athletes. These results provide an empirical link between sex, athletic ability, and nonlinear dynamical control. This is a first step in understanding the sensorimotor mechanisms for control of unstable foot–ground interactions. Given that females suffer a greater incidence of non-contact knee ligament injuries, these non-invasive and practical metrics of leg dexterity may be both indicators of athletic ability, and predictors of risk of injury.  相似文献   

9.
A number of geometrically-detailed passive finite element (FE) models of the lumbar spine have been developed and validated under in vitro loading conditions. These models are devoid of muscles and thus cannot be directly used to simulate in vivo loading conditions acting on the lumbar joint structures or spinal implants. Gravity loads and muscle forces estimated by a trunk musculoskeletal (MS) model under twelve static activities were applied to a passive FE model of the L4-L5 segment to estimate load sharing among the joint structures (disc, ligaments, and facets) under simulated in vivo loading conditions. An equivalent follower (FL), that generates IDP equal to that generated by muscle forces, was computed in each task. Results indicated that under in vivo loading conditions, the passive FE model predicted intradiscal pressures (IDPs) that closely matched those measured under the simulated tasks (R2 = 0.98 and root-mean-squared-error, RMSE = 0.18 MPa). The calculated equivalent FL compared well with the resultant force of all muscle forces and gravity loads acting on the L4-L5 segment (R2 = 0.99 and RMSE = 58 N). Therefore, as an alternative approach to represent in vivo loading conditions in passive FE model studies, this FL can be estimated by available in-house or commercial MS models. In clinical applications and design of implants, commonly considered in vitro loading conditions on the passive FE models do not adequately represent the in vivo loading conditions under muscle exertions. Therefore, more realistic in vivo loading conditions should instead be used.  相似文献   

10.
3D finite element models of human lumbar functional spinal units (FSU) were used for numerical analysis of weightbath hydrotraction therapy (WHT) applied for treating degenerative diseases of the lumbar spine. Five grades of age-related degeneration were modeled by material properties. Tensile material parameters of discs were obtained by parameter identification based on in vivo measured elongations of lumbar segments during regular WHT, compressive material constants were obtained from the literature. It has been proved numerically that young adults of 40–45 years have the most deformable and vulnerable discs, while the stability of segments increases with further aging. The reasons were found by analyzing the separated contrasting effects of decreasing incompressibility and increasing hardening of nucleus, yielding non-monotonous functions of stresses and deformations in terms of aging and degeneration. WHT consists of indirect and direct traction phases. Discs show a bilinear material behaviour with higher resistance in indirect and smaller in direct traction phase. Consequently, although the direct traction load is only 6% of the indirect one, direct traction deformations are 15–90% of the indirect ones, depending on the grade of degeneration. Moreover, the ratio of direct stress relaxation remains equally about 6–8% only. Consequently, direct traction controlled by extra lead weights influences mostly the deformations being responsible for the nerve release; while the stress relaxation is influenced mainly by the indirect traction load coming from the removal of the compressive body weight and muscle forces in the water. A mildly degenerated disc in WHT shows 0.15 mm direct, 0.45 mm indirect and 0.6 mm total extension; 0.2 mm direct, 0.6 mm indirect and 0.8 mm total posterior contraction. A severely degenerated disc exhibits 0.05 mm direct, 0.05 mm indirect and 0.1 mm total extension; 0.05 mm direct, 0.25 mm indirect and 0.3 mm total posterior contraction. These deformations are related to the instant elastic phase of WHT that are doubled during the creep period of the treatment. The beneficial clinical impacts of WHT are still evident even 3 months later.  相似文献   

11.
In this study the influence of the grip position (crimp grip vs. slope grip position) on the pulley system of the finger was investigated. For this purpose 21 cadaver finger (11 hands, 10 donors) were fixed into an isokinetic loading device. Nine fingers were loaded in the slope grip position and 12 fingers in the crimp grip position. The forces in the flexor tendons and at the fingertip were recorded. A rupture of the A4 pulley occurred most often in the crimp grip position (50%) but did not occur in the slope grip position, in which alternative events were the most common (67%). The forces in the deep flexor tendon (FDP) (slope grip: 371 N, crimp grip: 348 N) and at the fingertip (slope grip: 105 N, crimp grip: 161 N) were not significantly different between the 2 finger positions, but the forces acting on the pulleys were higher in the crimp grip position (A2 pulley: 287 N, A4 pulley: 226 N) than in the slope grip position (A2 pulley: 121 N, A4 pulley: 103 N). The crimp grip position may be the main cause for A4 pulley ruptures but the slope grip position may be hazardous for other injuries as the forces recorded in the flexor tendons and at the fingertip were comparable at the occurrence of a terminal event.  相似文献   

12.
The objective of our study was to evaluate the impact of the tibial keel & stem length in surface cementation, of a full cemented keel and of an additional tibial stem on the primary stability of a posterior stabilised tibial plateau (VEGA® System Aesculap Tuttlingen, Germany) under dynamic compression-shear loading conditions in human tibiae.We performed the cemented tibial plateau implantations on 24 fresh-frozen human tibiae of a mean donor age of 70.7 years (range 47–97). The tibiae were divided into four groups of matched pairs based on comparable trabecular bone mineral density. To assess the primary stability under dynamic compression shear conditions, a 3D migration analysis of the tibial component relative to the bone based on displacements and deformations and an evaluation of the cement layer including penetration was performed by CT-based 3D segmentation.Within the tested implant fixation principles the mean load to failure of a 28 mm keel and a 12 mm stem (40 mm) was 4700 ± 1149 N and of a 28 mm keel length was 4560 ± 1429 N (p = 0.996), whereas the mean load to failure was 4920 ± 691 N in full cementation (p = 0.986) and 5580 ± 502 N with additional stem (p = 0.537), with no significant differences regarding the dynamic primary stability under dynamic compression-shear test conditions.From our observations, we conclude that there is no significant difference between a 40 mm and a 28 mm tibial keel & stem length and also between a surface and a full cementation in the effect on the primary stability of a posterior stabilised tibial plateau, in terms of failure load, migration characteristics and cement layer thickness including the penetration into the trabecular bone.  相似文献   

13.
《Small Ruminant Research》2007,70(1-3):108-114
The role of a cleft upper lip of alpaca (Lama pacos) in foraging short pastures was investigated using biting forces and associated impulses in animal grazing. Three Merino wethers and three castrated alpacas were used. Ten (10L), 20 (20L), 30 (30L), 40 (40L) or 50 (50L) leaves of orchardgrass (Dactylis glomerata) per load cell were offered to animals, and three-directional biting forces were digitally recorded at 5 s−1000. From the total biting force/time curve, grazing impulse was calculated, equivalent to the area surrounded by the curve. The grand mean of the number of grazed leaves per bite was 9.8 ± 0.53 in alpaca and 17.9 ± 1.31 in sheep. Remaining leaf length after grazing trial was significantly lower in alpaca than in sheep (11.9 ± 0.19 mm versus 18.5 ± 0.41 mm). Alpaca grazed leaves with significantly lower mean biting force (7.0 ± 0.69 N versus 20.0 ± 1.80 N) and significantly shorter duration time per one biting force (0.11 ± 0.005 s versus 0.18 ± 0.19 s) than sheep. The grand mean of sum of grazing impulse was lower (P < 0.002) in alpaca (2.8 ± 0.42 N s) than in sheep (9.4 ± 1.95 N s). Grazed DM weight increased with increasing leaf densities, but there was no difference between alpaca and sheep. The ratio of DM intake to grazing impulse was significantly higher in alpaca than in sheep (0.18 ± 0.016 g DM/N s versus 0.08 ± 0.010 g DM/N s). The grazing strategy in alpaca seems to be an adaptation for foraging extremely short grasses. Alpacas may push aside cleft upper lips when trying to grasp short leaves, resulting in keeping incisors at lower insertion position near the ground surface.  相似文献   

14.
The objectives of this study was to investigate the acute effects of various magnitudes of tendon strain on the mechanical properties of the human medial gastrocnemius (MG) in vivo during controlled heel-drop exercises. Seven male and seven female volunteers performed two different exercises executed one month apart: one was a heel-drop exercise on a block (HDB), and the other was a heel-drop exercise on level floor (HDL). In each regimen, the subjects completed a session of 150 heel-drop exercises (15 repetitions × 10 sets; with a 30 s rest following each set). Before and immediately after the heel-drop exercise, the ankle plantar flexor torque and elongation of the MG were measured using a combined measurement system of dynamometry and ultrasonography and then the MG tendon strain and stiffness were evaluated in each subject. The tendon stiffness measured prior to the exercises was not significantly different between the two groups 23.7 ± 10.6 N/mm and 24.1 ± 10.0 N/mm for the HDB and HDL, respectively (p > .05). During the heel-drop exercise, it was found that the tendon strain during the heel-drop exercise on a block (8.4 ± 3.7%) was significantly higher than the strain measured on the level floor (5.4 ± 3.8%) (p < .05). In addition, the tendon stiffness following the heel-drop exercise on a block (32.3 ± 12.2 N/mm) was significantly greater than the tendon stiffness measured following the heel-drop exercise on the level floor (25.4 ± 11.4 N/mm) (p < .05). The results of this study suggest that tendon stiffness immediately following a heel-drop exercise depends on the magnitude of tendon strain.  相似文献   

15.
Reduced sizes of implantable cardiac pacemakers and clinical advances have led to a higher feasibility of using such devices in younger patients including children. Increased structural demands deriving from reduced device size and more active recipients require detailed knowledge of in vivo mechanical conditions to ensure device reliability. Objective of this study was the proof of feasibility of a system for the measurement of in vivo mechanical loadings on pacemaker implants. The system comprised the following: implantable instrumented pacemaker (IPM) with six force sensors, accelerometer and radio-frequency (RF) transceiver; RF data logging system and video capture system. Three Chacma baboons (20.6±1.15 kg) received one pectoral sub-muscular IPM implant. After wound healing, forces were measured during physical activities. Forces during range of motion of the arm were assessed on the anaesthetized animals prior to device explantation. Mass, volume and dimensions of the excised Pectoralis major muscles were determined after device explantation. Remote IPM activation and data acquisition were reliable in the indoor cage environment with transceiver distances of up to 3 m. Sampling rates of up to 1000 Hz proved sufficient to capture dynamic in vivo loadings. Compressive forces on the IPM in conscious animals reached a maximum of 77.2±54.6 N during physical activity and were 22.2±7.3 N at rest, compared with 34.6±15.7 N maximum during range of motion and 13.4±3.3 N at rest in anaesthetized animals. The study demonstrated the feasibility of the developed system for the assessment of in vivo mechanical loading conditions of implantable pacemakers with potential for use for other implantable therapeutic devices.  相似文献   

16.
BackgroundBariatric surgery is widely performed to improve obesity-related disorders, but can lead to nutrient deficiencies. In this study we examined serum trace element concentrations before and after bariatric surgery.MethodsWe obtained serum trace element concentrations by inductively coupled plasma-mass spectrometry (ICP-MS) method in 437 patients (82% women, median preoperative body-mass index 46.7 kg/m2 [interquartile range 42–51]) undergoing either gastric banding (22.7%), sleeve gastrectomy (20.1%), or gastric bypass (57.3%) procedures. Trace element data were available for patients preoperatively (n = 44); and 3 (n = 208), 6 (n = 174), 12 (n = 122), 18 (n = 39), 24 (n = 44) and 36 months (n = 14) post-operatively. All patients were recommended to take a multivitamin-mineral supplement after surgery.ResultsCopper deficiency was found in 2% of patients before surgery; and after surgery deficiency rates ranged from 0 to 5% with no significant change in median concentrations during follow-up (p = 0.68). Selenium deficiency was reported in 2% of patients before surgery; and after surgery deficiency rates ranged from 11 to 15% with a near-significant change in median concentrations (p = 0.056). Zinc deficiency was reported in 7% before surgery; and after surgery deficiency rates ranged from 7 to 15% with no significant change in median concentrations (p = 0.39).ConclusionsIn bariatric surgery patients recommended to take multivitamin-mineral supplements, serum copper, zinc and selenium concentrations were mostly stable during the first years after bariatric surgery. There was a possible tendency for selenium concentrations to decline during the early postoperative period.  相似文献   

17.
《Endocrine practice》2020,26(7):748-753
Objective: The holy month of Ramadan poses a challenge for levothyroxine-treated patients due to altered eating habits and time restrictions. The aim of this study was to examine the impact of lifestyle changes during Ramadan on thyroid function tests in hypothyroid patients taking levothyroxine in the United Arab Emirates.Methods: Retrospective design whereby levothyroxine-treated hypothyroid patients who had thyroid function tests within 3 months pre-Ramadan and within 2 months post-Ramadan were included. We looked at adherence to levothyroxine, eating pattern, and levothyroxine administration in relation to meal times during Ramadan. Pre- and post-Ramadan thyroid function tests and the potential impact of independent variables using a random-intercept mixed effects linear model were examined.Results: A total of 112 patients (89 females) were recruited in the study, with a mean age ± standard error (SE) of 44.70 ± 1.36 years (range, 19.0 to 79.0 years). The mean thyroid-stimulating hormone (TSH) within 3 months before Ramadan was 1.809 ± 0.094 mIU/L (median, 41.5 days; interquartile range &lsqb;IQR], 25.0 to 73.0 days), while the mean TSH within 2 months post-Ramadan was higher at 3.072 ± 0.312 mIU/L (median, 27.5 days; IQR, 14.0 to 42.0 days). Post-Ramadan, 36 out of 112 patients had a plasma TSH outside of the normal reference range. The independent variable outcomes model showed that older patients and males were more likely to have an increased plasma TSH post-Ramadan. There was no relationship between the time of levothyroxine administration and change in TSH level.Conclusion: Levothyroxine-treated hypothyroid patients showed a significant increase in plasma TSH post-Ramadan, amounting to 2.525 standard deviations, with older patients and males more likely to be affected.Abbreviations: IQR = interquartile range; T4 = thyroxine; TSH = thyroid-stimulating hormone  相似文献   

18.
The aim of this study was to examine the influence of exercise-induced muscle damage on elbow rhythmic movement (RM) performance and neural activity pattern and to investigate whether this influence is joint angle specific. Ten males performed an exercise of 50 maximal eccentric elbow flexions in isokinetic machine with duty cycle of 1:15. Maximal dynamic and isometric force tests (90°, 110° and 130° elbow angle) and both active and passive stretch reflex tests of elbow flexors were applied to the elbow joint. The intentional RM was performed in the horizontal plane at elbow angles; 60–120° (SA-RM), 80–140° (MA-RM) and 100–160° (LA-RM). All measurements together with the determination of muscle soreness, swelling, passive stiffness, serum creatine kinase were conducted before, immediately and 2 h as well as 2 days, 4 days, 6 days and 8 days post-exercise. Repeated maximal eccentric actions modified the RM trajectory symmetry acutely (SA-RM) and delayed (SA/MA/LA-RM) until the entire follow up of 8 days. Acutely lowered MA-RM peak velocity together with reduced activity of biceps brachii (BB) at every RM range, reflected a poorer acceleration and deceleration capacity of elbow flexors. A large acute drop of BB EMG burst amplitude together with parallel decrease in BB active stretch reflex amplitude, especially 2 h post-exercise, suggested an inhibitory effect originating most likely from groups III/IV mechano-nociceptors.  相似文献   

19.
Cervical intervertebral body fusion devices (IBFDs) are utilized to provide stability while fusion occurs in patients with cervical pathology. For a manufacturer to market a new cervical IBFD in the United States, substantial equivalence to a cervical IBFD previously cleared by FDA must be established through the 510(k) regulatory pathway. Mechanical performance data are typically provided as part of the 510(k) process for IBFDs. We reviewed all Traditional 510(k) submissions for cervical IBFDs deemed substantially equivalent and cleared for marketing from 2007 through 2014. To reduce sources of variability in test methods and results, analysis was restricted to cervical IBFD designs without integrated fixation, coatings, or expandable features. Mechanical testing reports were analyzed and results were aggregated for seven commonly performed tests (static and dynamic axial compression, compression-shear, and torsion testing per ASTM F2077, and subsidence testing per ASTM F2267), and percentile distributions of performance measurements were calculated. Eighty-three (83) submissions met the criteria for inclusion in this analysis. The median device yield strength was 10,117 N for static axial compression, 3680 N for static compression-shear, and 8.6 N m for static torsion. Median runout load was 2600 N for dynamic axial compression, 1400 N for dynamic compression-shear, and ±1.5 N m for dynamic torsion. In subsidence testing, median block stiffness (Kp) was 424 N/mm. The mechanical performance data presented here will aid in the development of future cervical IBFDs by providing a means for comparison for design verification purposes.  相似文献   

20.
The iliotibial band (ITB) has an important role in knee mechanics and tightness can cause patellofemoral maltracking. This study investigated the effects of increasing ITB tension on knee kinematics. Nine fresh-frozen cadaveric knees had the components of the quadriceps loaded with 175 N. A Polaris optical tracking system was used to acquire joint kinematics during extension from 100° to 0° flexion. This was repeated after the following ITB loads: 30, 60 and 90 N. There was no change with 30 N load for patellar translation. On average, at 60 and 90 N, the patella translated laterally by 0.8 and 1.4 mm in the mid flexion range compared to the ITB unloaded condition. The patella became more laterally tilted with increasing ITB loads by 0.7°, 1.2° and 1.5° for 30, 60 and 90 N, respectively. There were comparable increases in patellar lateral rotation (distal patella moves laterally) towards the end of the flexion cycle. Increased external rotation of the tibia occurred from early flexion onwards and was maximal between 60° and 75° flexion. The increase was 5.2°, 9.5° and 13° in this range for 30, 60 and 90 N, respectively. Increased tibial abduction with ITB loads was not observed. The combination of increased patellar lateral translation and tilt suggests increased lateral cartilage pressure. Additionally, the increased tibial external rotation would increase the Q angle. The clinical consequences and their relationship to lateral retinacular releases may be examined, now that the effects of a tight ITB are known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号