首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ‘evolution of increased competitive ability’ (EICA) hypothesis states that reduced herbivory in the introduced range causes an evolutionary shift in resource allocation from herbivore defense to growth. Therefore, according to EICA, introduced genotypes are expected to grow more vigorously than conspecific native genotypes when cultivated under common standardized conditions. The EICA hypothesis also assumes that herbivores will perform better on introduced genotypes compared to native genotypes, because they are less well defended. However, selection for either defense or growth will depend on the type of defense (quantitative or qualitative) employed by the plant, and whether the plant is released from generalist or specialist herbivores. The predictions of the EICA hypothesis might be reversed if a plant experiences increased generalist herbivore pressure in the introduced range, and therefore invests more in qualitative defense. We examined this idea with the invasive perennial mustard, Lepidium draba. We grew a total of 16 populations of L. draba from both its native European and introduced western US ranges under common conditions in a greenhouse. We also tested for differences in plant resistance to the specialist herbivore, Psylliodes wrasei, by conducting a leaf disc feeding bioassay with native and introduced L. draba genotypes. Furthermore, we quantified the generalist herbivore load on L. draba in both ranges in order to assess the selection pressure for increased qualitative defense. Contrary to the original EICA prediction, all plant traits (biomass, number of shoots, length and diameter of longest leaf) tended to be greater for the native, rather than introduced L. draba genotypes. There was no significant difference in the proportion of leaf area consumed by the specialist herbivore between native and introduced genotypes. The generalist herbivore load on L. draba was significantly greater in the introduced range. Our data suggest that the EICA hypothesis does not explain the invasion success of L. draba in the US. Instead, we propose that the reduced vigor of introduced genotypes may be due to selection for increased defense against generalist herbivores in the introduced range.  相似文献   

2.
The evolution of increased competitive ability (EICA) hypothesis states that plants introduced into a new range experience reduced herbivory, which in turn results in a shift in resource allocation from herbivore defense to growth. If genotypes of an invasive plant species from its native and introduced ranges are grown under common conditions, introduced genotypes are expected to grow more vigorously than conspecific native genotypes. We tested predictions of the EICA hypothesis with the invasive species Lepidium draba by comparing the growth of genotypes from its native European and introduced western US ranges under common conditions. To test potential differences in competitive ability, we grew L. draba from both continents with either Festuca idahoensis, a weak competitor native to North America, or Festuca ovina, a strong competitor native to Europe. Contrary to EICA predictions, there were no differences in the performance of native and introduced L. draba, independent of whether plants were grown with F. idahoensis, F. ovina, or alone. The strong competitor, F. ovina impaired the growth of L. draba more than the weak competitor F. idahoensis and conversely, F. idahoensis was generally more impaired by L. draba than was F. ovina. While the native F. idahoensis was equally affected by L. draba regardless of range, F. ovina was not: US L. draba had a stronger negative effect on F. ovina growth than European L. draba. Our data suggest that the EICA hypothesis is not suitable to explain the invasion success of L. draba in the US. Instead, the greater competitive effect of L. draba on the North American F. idahoensis and the asymmetric competitive effect of L draba from different origins on F. ovina may indicate superior competitive ability for resources, or the presence of allelopathic traits in L. draba, to which plant species in non-native ranges are maladapted.  相似文献   

3.
The objective of this research was to evaluate Trichoderma harzianum strain T22 as a biocontrol agent of collar and root rot caused by different Calonectria pauciramosa isolates. Thus, the microsclerotia-forming ability and virulence of twenty C. pauciramosa isolates were assessed. Microsclerotia production varied partially among the isolates and dual culture with T22 on carnation leaf agar revealed isolates with both high and low microsclerotia-forming ability. Inoculation tests on red clover (Triflolium pratense) demonstrated its susceptibility to the pathogen. On red clover, the degree of virulence and T22 effects in controlling infections were highly variable among the isolates tested. A nursery trial performed on Feijoa sellowiana seedlings confirmed previous results, clearly indicating virulence variability among C. pauciramosa isolates. For three isolates tested in nursery trial, T22 effectiveness in controlling infection was inversely related to their degree of virulence. Overall, T. harzianum strain T22 showed good antagonist activity in reducing microsclerotia production on carnation leaf and the incidence and severity of collar and root rot on both selected hosts. This data could be crucial in developing integrated pest management strategies in ornamental plant nurseries.  相似文献   

4.
《Fungal biology》2014,118(11):924-934
Rhizoctonia solani (teleomorph: Thanatephorus cucumeris) is a soil-borne plant pathogenic fungus that has a broad host range, including potato. In this study, the double-stranded RNA (dsRNA) profiles were defined for 39 Rhizoctonia solani isolates representative of two different anastomosis groups (AGs) associated with black scurf of potato in New Zealand. A large dsRNA of c. 12 kb–18 kb was detected in each of the isolates, regardless of AG or virulence on potato. Characterisation of the large dsRNA from R. solani AG-3PT isolate RS002, using random amplification of total dsRNA and analyses of overlapping cDNA sequences, resulted in the assembly of a consensus sequence of 14 694 nt. A single, large open reading frame was identified on the positive strand of the assembled sequence encoding a putative polypeptide of at least 4893 amino acids, with a predicted molecular mass of 555.6 kDa. Conserved domains within this polypeptide included those for a viral methyltransferase, a viral RNA helicase 1 and an RNA-dependent RNA polymerase. The domains and their sequential organisation revealed the polyprotein was very similar to those encoded by dsRNA viruses of the genus Endornavirus, in the family Endornaviridae. This is the first report of an endornavirus in R. solani, and thus the putative virus is herein named Rhizoctonia solani endornavirus - RS002 (RsEV-RS002). Partial characterisation of the large dsRNAs in five additional AG-3PT isolates of R. solani also identified them as probable endornaviruses, suggesting this family of viruses is widespread in R. solani infecting potato. The ubiquitous nature of endornaviruses in this plant pathogen implies they may have an important, but yet uncharacterised, role in R. solani.  相似文献   

5.
6.
Aim To examine the composition and structure of the arthropod community on the invasive weed Lepidium draba in its native, expanded and introduced ranges, in order to elucidate the lack of a biotic constraint that may facilitate invasion. Location Europe and western North America. Methods Identical sampling protocols were used to collect data from a total of 35 populations of L. draba in its native (Eastern European), expanded (Western European) and introduced (western US) ranges. A bootstrapping analysis was used to compare herbivore richness, diversity and evenness among the regions. Core species groups (monophages, oligophages and polyphages) on the plant were defined and their abundances and host utilization patterns described. Results Species richness was greatest in the native range, while species diversity and evenness were similar in the native and expanded range, but significantly greater than in the introduced range of L. draba. Specialist herbivore abundance was greater in the native and expanded compared with the introduced range. Oligophagous Brassicaceae‐feeders were equally abundant in all three ranges, and polyphagous herbivore abundance was significantly greater in the introduced range. Overall herbivore abundance was greater in the introduced range. Host utilization was more complete in the two European ranges due to monophagous herbivores that do not exist in the introduced range. Root feeders and gall formers were completely absent from the introduced range, which was dominated by generalist sap‐sucking herbivores. However, one indigenous stem‐mining weevil, Ceutorhynchus americanus, occurred on L. draba in the introduced range. Main conclusions This is, to our knowledge, the first study documenting greater herbivore abundance on an invasive weed in its introduced, compared with its native, range. However, greater abundance does not necessarily translate to greater impact. We argue that, despite the greater total herbivore abundance in the introduced range, differences in the herbivore community structure (specialist vs. generalist herbivory) may contribute to the invasion success of L. draba in the western USA.  相似文献   

7.
Blumeria graminis f. sp. tritici, which causes wheat powdery mildew, is an obligate biotrophic pathogen that can easily genetically adapt to its host plant. Understanding the virulence structure of and genetic variations in this pathogen is essential for disease control and for breeding resistance to wheat powdery mildew. This study investigated 17 pathogenic populations in Sichuan, China and classified 109 isolates into two distinct groups based on pathogenicity analysis: high virulence (HV, 92 isolates) and low virulence (LV, 17 isolates). Populations from Yibin (Southern region), Xichang (Western region), and Meishan (Middle region) showed lower virulence frequencies than populations from other regions. Many of the previously known resistance genes did not confer resistance in this study. The resistance gene Pm21 displayed an immune response to pathogenic challenge with all populations in Sichuan, and Pm13, Pm5b, Pm2+6, and PmXBD maintained resistance. AMOVA revealed significantly higher levels of variation within populations and lower levels of variation among populations within regions. High levels of gene flow were detected among populations in the four regions. Closely related populations within each region were distinguished by cluster analyses using ISSR and SRAP alleles. Both ISSR and SRAP allele profiling analyses revealed high levels of genetic diversity among pathogenic populations in Sichuan. Although ISSR and SRAP profiling analysis showed similar resolutions, the SRAP alleles appeared to be more informative. We did not detect any significant association between these alleles and the virulence or pathogenicity of the pathogen. Our results suggest that ISSR and SRAP alleles are more efficient for the characterization of small or closely related populations versus distantly related populations.  相似文献   

8.
Cryptococcus gattii (C. gattii) is a fungal pathogen that once caused an outbreak of cryptococcosis on Vancouver Island, and had spread worldwide, while few data were available in China. In this study, seven clinical isolates of C. gattii VGII were collected from 19 hospitals, Multi-locus Sequence Typing (MLST) analysis and whole-genome sequencing (WGS) was performed, combined with published data for phylogenetic analysis. In addition, in vitro antifungal susceptibility testing, phenotypic analysis, and in vivo virulence studies were performed, subsequently, histopathological analysis of lung tissue was performed. C.gattii VGII infected patients were mainly immunocompetent male, and most of them had symptoms of central nervous system (CNS) involvement. MLST results showed that isolates from China exhibited high genetic diversity, and sequence type (ST) 7 was the major ST among the isolates. Some clinical isolates showed a close phylogenetic relationship with strains from Australia and South America. All clinical isolates did not show resistance to antifungal drugs. In addition, there was no correlation between virulence factors (temperature, melanin production, and capsule size) and virulence while in vivo experiments showed significant differences in virulence among strains. Lung fungal burden and damage to lung tissue correlated with virulence, and degree of damage to lung tissue in mice may highlight differences in virulence. Our work seeks to provide useful data for molecular epidemiology, antifungal susceptibility, and virulence differences of C. gattii VGII in China.  相似文献   

9.
A recent analysis of group A Streptococcus (GAS) invasive infections in Australia has shown a predominance of M4 GAS, a serotype recently reported to lack the antiphagocytic hyaluronic acid (HA) capsule. Here, we use molecular genetics and bioinformatics techniques to characterize 17 clinical M4 isolates associated with invasive disease in children during this recent epidemiology. All M4 isolates lacked HA capsule, and whole genome sequence analysis of two isolates revealed the complete absence of the hasABC capsule biosynthesis operon. Conversely, M4 isolates possess a functional HA-degrading hyaluronate lyase (HylA) enzyme that is rendered nonfunctional in other GAS through a point mutation. Transformation with a plasmid expressing hasABC restored partial encapsulation in wild-type (WT) M4 GAS, and full encapsulation in an isogenic M4 mutant lacking HylA. However, partial encapsulation reduced binding to human complement regulatory protein C4BP, did not enhance survival in whole human blood, and did not increase virulence of WT M4 GAS in a mouse model of systemic infection. Bioinformatics analysis found no hasABC homologs in closely related species, suggesting that this operon was a recent acquisition. These data showcase a mutually exclusive interaction of HA capsule and active HylA among strains of this leading human pathogen.  相似文献   

10.
The virulence evolution of multiple infections of parasites from the same species has been modeled widely in evolution theory. However, experimental studies on this topic remain scarce, particularly regarding multiple infections by different parasite species. Here, we characterized the virulence and community dynamics of fungal pathogens on the invasive plant Ageratina adenophora to verify the predictions made by the model. We observed that A. adenophora was highly susceptible to diverse foliar pathogens with mixed vertical and horizontal transmission within leaf spots. The transmission mode mainly determined the pathogen community structure at the leaf spot level. Over time, the pathogen community within a leaf spot showed decreased Shannon diversity; moreover, the vertically transmitted pathogens exhibited decreased virulence to the host A. adenophora, but the horizontally transmitted pathogens exhibited increased virulence to the host. Our results demonstrate that the predictions of classical models for the virulence evolution of multiple infections are still valid in a complex realistic environment and highlight the impact of transmission mode on disease epidemics of foliar fungal pathogens. We also propose that seedborne fungi play an important role in structuring the foliar pathogen community from multiple infections within a leaf spot.  相似文献   

11.
The rising incidents of invasive infections due to multidrug resistant Staphylococcus aureus necessitate the exploration of newer targets for development of antibiotics. Pathogenicity of S. aureus is attributed to a wide range of virulence factors. The aim of this study was to screen the production of three virulence factors viz. extracellular protease, extracellular lipase and superoxide dismutase in human pathogenic strains of S. aureus for development of a test panel which could aid in screening of natural products of plant and microbial origin. 27 clinical isolates were compared for their enzyme expression profiles of which eight were finally selected. Sau G5 was the only protease producing organism selected in the test panel, while Sau G3 and Sau G9 were best SOD producers and Sau G16, Sau G18, Sau G22, Sau A5 and Sau A2 exhibited highest expression among different groups of clinical staphylococci.  相似文献   

12.
Staphylococcus aureus encodes a remarkable number of virulence factors which may contribute to its pathogenicity and ability to cause invasive disease. The main objective of this study was to evaluate the association between S. aureus invasiveness and bacterial genotype, in terms of the presence of virulence genes and affiliation to clonal complexes. Also, the significance of different virulence genes, mainly adhesins, for the development of infective endocarditis was investigated.DNA microarray technology was used to analyze 134 S. aureus isolates, all methicillin-susceptible, derived from three groups of clinically well-characterized patients: nasal carriers (n=46), bacteremia (n=55), and bacteremia with infective endocarditis (n=33).Invasive isolates were dominant in four of the major clonal complexes: 5, 8, 15, and 25. Of the 170 virulence genes examined, those encoding accessory gene regulator group II (agr II), capsule polysaccharide serotype 5 (cap5), and adhesins such as S. aureus surface protein G (sasG) and fibronectin-binding protein B (fnbB) were found to be associated with invasive disease. The same was shown for the leukocidin genes lukD/lukE, as well as the genes encoding serine protease A and B (splA/splB), staphylococcal complement inhibitor (scn) and the staphylococcal exotoxin-like protein (setC or selX). In addition, there was a trend of higher prevalence of certain genes or gene clusters (sasG, agr II, cap5) among isolates causing infective endocarditis compared to other invasive isolates. In most cases, the presence of virulence genes was linked to clonal complex affiliation.In conclusion, certain S. aureus clonal lineages harboring specific sets of virulence genes seem to be more successful in causing invasive disease.  相似文献   

13.
Hyphal anastomosis testing and molecular methods have been the primary criteria employed to understand the evolutionary and taxonomic relationships of the soil-borne fungal plant pathogen Rhizoctonia solani species complex. In this study, a metabolomics-based approach for characterizing and identifying isolates of R. solani using gas chromatography/mass spectrometry (GC/MS) metabolite profiling and footprinting was developed. Multivariate and hierarchical cluster analyses of GC/MS data provided resolution of isolates belonging to anastomosis groups (AGs) 1–6, 9, and 10 of R. solani. Clustering of R. solani AG-3 isolates, based on host origin, was also observed and attributed to metabolite-biomarkers belonging to amino, carboxylic and fatty acids. The chemotaxonomic approach using metabolomics is a high-throughput methodology that complements existing molecular approaches for the taxonomic investigation of Rhizoctonia isolates and monitoring of fungal metabolism.  相似文献   

14.
Soil pathogens affect plant community structure and function through negative plant–soil feedbacks that may contribute to the invasiveness of non‐native plant species. Our understanding of these pathogen‐induced soil feedbacks has relied largely on observations of the collective impact of the soil biota on plant populations, with few observations of accompanying changes in populations of specific soil pathogens and their impacts on invasive and noninvasive species. As a result, the roles of specific soil pathogens in plant invasions remain unknown. In this study, we examine the diversity and virulence of soil oomycete pathogens in freshwater wetland soils invaded by non‐native Phragmites australis (European common reed) to better understand the potential for soil pathogen communities to impact a range of native and non‐native species and influence invasiveness. We isolated oomycetes from four sites over a 2‐year period, collecting nearly 500 isolates belonging to 36 different species. These sites were dominated by species of Pythium, many of which decreased seedling survival of a range of native and invasive plants. Despite any clear host specialization, many of the Pythium species were differentially virulent to the native and non‐native plant species tested. Isolates from invaded and noninvaded soils were equally virulent to given individual plant species, and no apparent differences in susceptibility were observed between the collective groups of native and non‐native plant species.  相似文献   

15.
BackgroundNontyphoidal Salmonellae (NTS) cause a large burden of invasive and gastrointestinal disease among young children in sub-Saharan Africa. No vaccine is currently available. Previous reports indicate the importance of the O-antigen of Salmonella lipopolysaccharide for virulence and resistance to antibody-mediated killing. We hypothesised that isolates with more O-antigen have increased resistance to antibody-mediated killing and are more likely to be invasive than gastrointestinal.Conclusion/SignificanceKenyan S. Typhimurium and Enteritidis clinical isolates are susceptible to antibody-mediated killing, with degree of susceptibility varying with level of O-antigen for S. Typhimurium. This supports the development of an antibody-inducing vaccine against NTS for Africa. No clear differences were found in the phenotype of isolates from blood and stool, suggesting that the same isolates can cause invasive disease and gastroenteritis. Genome studies are required to understand whether invasive and gastrointestinal isolates differ at the genotypic level.  相似文献   

16.
Rhizoctonia solani isolates used in this investigation were identified as anastomosis-4 (AG-40), collected from different localities from Assiut governorate in Egypt. Pathogenicity test of seven isolates of R. solani was evaluated on soybean Giza 111 cultivar under greenhouse conditions. All tested isolates were able to infect soybean plants causing root rot with different degrees of severities, isolate No. 1, 2 and 3 showed significantly highest root rot severity, while isolate No. 5 gave the lowest percentage of root rot rating. The sodium dodecyl sulphate polyacrylamide gel electrophoresis patterns were used to compare three isolates of R. solani. There are no variations among R. solani isolates except a few exceptions according to their protein patterns. DNA markers obtained from all isolates showed genetic similarity among different isolates obtained from different geographical regions barring few exceptions. Correlation between DNA patterns of R. solani isolates and their virulence was detected, but no correlation with anastomosis groups (AG).  相似文献   

17.
Magnaporthe oryzae is a fungal pathogen causing blast disease in many plant species. In this study, seventy three isolates of M. oryzae collected from rice (Oryza sativa) in 1996–2014 were genotyped using a genotyping-by-sequencing approach to detect genetic variation. An association study was performed to identify single nucleotide polymorphisms (SNPs) associated with virulence genes using 831 selected SNP and infection phenotypes on local and improved rice varieties. Population structure analysis revealed eight subpopulations. The division into eight groups was not related to the degree of virulence. Association mapping showed five SNPs associated with fungal virulence on chromosome 1, 2, 3, 4 and 7. The SNP on chromosome 1 was associated with virulence against RD6-Pi7 and IRBL7-M which might be linked to the previously reported AvrPi7.  相似文献   

18.
Hoary cress (Lepidium draba L.) is an invasive perennial mustard (Brassicaceae) introduced to North America from Eurasia. In 2001 we initiated a program to investigate the potential for classical biological control of this weed in the US. Literature and field surveys for the arthropods associated with L. draba were conducted on both continents. Field surveys began in Europe in 2001, and in 2002–2003 standardized surveys were conducted in both Europe and the western US. These field surveys resulted in 80 new host records for L. draba in Europe, and 37 new host records in the US. Although total species richness was nearly four times greater in Europe, there were approximately equal proportions of oligophagous and polyphagous species in each range. Monophagous species were only encountered in the European surveys. The literature surveys revealed that the arthropod fauna associated with L. draba is fairly well known in Europe (175 species), but not in the US (eight species), where the literature was virtually derelict of host records. In both the literature and field surveys, the order Coleoptera contained the most species (>50%) in Europe, whereas the order Hemiptera contained the most species (>40%) in the US. Nearly one-half of the species found in literature and field surveys are flower or seed feeders and the other half are primarily foliage or stem feeders. Ten potential biological control agents were discovered from the surveys, of which four are currently being investigated at the CABI Bioscience Centre in Switzerland. The phenologies of these four species are briefly described.  相似文献   

19.
Trueperella pyogenes (formerly Arcanobacterium) is commonly isolated from domesticated or wild ruminants as an opportunistic pathogen. To investigate the role of virulence determinants (VDs) and biofilm production in T. pyogenes isolates, a total of 36 T. pyogenes were collected from abscesses of forest musk deer in Miyaluo Farm (Sichuan Province, China). The prevalence of VDs and associations with clonal types, antibiotic resistance and biofilm production were analyzed by PCR and bioassay. Finally, T. pyogenes isolates were separated into three clonal types based on the DNA fingerprinting of BOX-PCR. Isolates with less VDs obtained from sick forest musk deer were mainly belonged to Type 1, and the isolates with robust VD repertoire obtained from dead forest musk deer were included in Type 3. Accordingly, resistant isolates exhibited significant lower virulence than susceptible ones. Majority of T. pyogenes isolates of this study were capable of producing a biofilm. However, no VDs presence and antibiotic resistance were statistically associated with biofilm production. In conclusion, the current study demonstrated that T. pyogenes was probably the primary pathogen of abscesses in the forest musk deer. Moreover, as an animal origin pathogen, the increasing resistance of T. pyogenes isolates could also associate with a decreased virulence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号