首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
一步法生产1,5-戊二胺谷氨酸棒杆菌基因工程菌的构建   总被引:3,自引:0,他引:3  
1,5-戊二胺是一种重要的化工原料,发酵法生产1,5-戊二胺是一条新颖且具有潜在竞争力的生产途径。以蜂房哈夫尼菌(Hafnia alvei)AS1.1009基因组为模板,通过PCR扩增,得到大小约为2.2kb的赖氨酸脱羧酶基因ldc。以大肠杆菌(Escherichia coli)/谷氨酸棒杆菌(Corynebacterium glutamicum)穿梭质粒pXMJl9为载体,将扩增得到的目的基因片段克隆至谷氨酸棒杆菌C.glutamicum TK260512,获得重组菌株C.glutamicum TK260512/pXMJl9-ldc.在摇瓶发酵水平上,通过IPTG诱导ldc基因的表达,并采用反相高效液相色谱方法测定了发酵液中1,5-戊二胺的含量,结果显示,经36h发酵,工程菌C.glutamicum TK260512/pXMJ19-ldc的1,5-戊二胺产量为0.96g/L。  相似文献   

2.
生物法合成戊二胺研究进展   总被引:2,自引:0,他引:2  
随着经济快速发展,大气污染和全球变暖的趋势日益恶化。世界上每年消耗大量石化资源来源的聚酰胺,戊二胺作为聚酰胺的重要组成单体,生物法合成戊二胺具有经济学和生态学双重意义。目前,生物法合成戊二胺的工程菌主要有谷氨酸棒状杆菌和大肠杆菌,文中从微生物中戊二胺的代谢、戊二胺合成途径的关键酶和转运蛋白、戊二胺生产最佳代谢途径和戊二胺产量的预测、代谢工程研究进展等方面综述了生物法合成戊二胺的最新研究现状和进展,并对其前景进行了展望。  相似文献   

3.
赖氨酸脱羧酶,可以催化赖氨酸脱羧生成戊二胺。戊二胺是重要的平台化合物,可以合成新型聚酰胺材料、脂肪族异氰酸酯等新材料。本研究对来自于产酸克雷伯氏菌的赖氨酸脱羧酶进行异源表达。以pUC18质粒为载体,将来源于产酸克雷伯氏菌的赖氨酸脱羧酶基因ldc克隆到大肠杆菌,得到菌株LN18。在添加0.5 mmol/L IPTG的LB培养基中,对LN18进行摇瓶培养,发酵液酶活可达到35 U/g发酵液,从发酵液制备的赖氨酸脱羧酶粗酶蛋白的酶活可以达到30 000 U/g粗蛋白。产酸克雷伯氏菌赖氨酸脱羧粗酶蛋白大小约80 kDa,粗酶的最适温度和pH值分别为55℃和5.5,与文献中报道的大肠杆菌的赖氨酸脱羧酶Cad A在pH 8.0几乎没有酶活不同,产酸克雷伯氏菌的赖氨酸脱羧酶在pH 8.0的酶活达到最优pH下酶活的30%以上。金属离子对酶活有一定的影响,Mg~(2+)对酶活有促进作用,Fe~(2+)、Zn~(2+)、Ca~(2+)有一定的抑制作用。  相似文献   

4.
随着基因工程技术的快速发展,通过对不同菌株腈水解酶基因的分析,将其克隆到表达菌株内,可以构建高效并且稳定的基因工程菌。对腈水解酶进行分子改造可以明显提高酶的活性、稳定性、底物耐受性和底物特异性等性能,为腈水解酶的工业化应用提供了可能。综述了腈水解酶的来源、结构、催化机制、克隆表达、固定化及分子改造等方面的研究进展。同时对腈水解酶的研究进行了展望,具有重要的指导意义。  相似文献   

5.
L-天冬氨酸α-脱羧酶能够催化L-天冬氨酸生成β-丙氨酸,是泛酸代谢中的关键酶之一,对生物体中的能量代谢和脂肪代谢至关重要。细菌L-天冬氨酸α-脱羧酶属于丙酮酰依赖型的一类酶,具有特别的翻译后加工机制和底物失活作用,本文对L-天冬氨酸α-脱羧酶的分子机制和分子改造进行了综述,并对其在β-丙氨酸合成方面的应用进行了展望。  相似文献   

6.
以大肠杆菌(Escherichia coli)来源的谷氨酸脱羧酶(GadB)为研究对象,通过组合突变,获得了pH适用范围拓宽、催化活力提高和稳定性增强的组合突变体M2。与野生型GadB-WT相比,组合突变体M2的pH适用范围有效拓宽,在pH6.0时催化活力比GadB-WT提高113.43%。之后对含有M2突变体基因重组菌的发酵培养基和诱导条件进行优化,优化后单位培养基酶活力比未优化时提高了104.13%。在此基础上对M2的酶学性质进行测定,测得其最适pH为5.0,最适温度为37℃。通过稳定性测定M2的pH稳定性和热稳定性与野生型GadB-WT相比都有一定程度的增强。M2的动力学参数Km值为7.316μmol/L,kcat为13.387 s-1,kcat/Km为1.830 L/(s·μmol)。研究获得的组合突变体M2进一步丰富了催化合成γ-氨基丁酸的GadB突变体酶库,具有良好应用前景。  相似文献   

7.
固定化啤酒酵母细胞由5’-核苷一磷酸(NMPs)合成5’-核苷三磷酸(NTPs)。在250mL摇瓶中加入20g固定化酵母细胞和20mL反应液(NMP 40mmol/L,葡萄糖150mmol/L,K2HPO4-KH2PO4缓冲液250 mmol/L,硫酸镁10mmol/L),pH 7.0,35℃,反应2.5h,NTP转化率达到80%。底物溶液添加NAD 后,该固定化酵母细胞可反复使用10次,NTP的转化率稳定维持在70%以上。  相似文献   

8.
苏氨酸醛缩酶催化醛和甘氨酸羟醛缩合,一步反应即可构建产物β-羟基-α-氨基酸的两个手性中心,从原子经济性和环境影响角度,是非常具有潜力的绿色合成光学纯β-羟基-α-氨基酸的方式之一.多个不同生物来源的苏氨酸醛缩酶得到分离和表征,较低的β-碳立体选择性以及反应过程中动力学和热力学控制难题,使其在合成应用中面临很大挑战.文...  相似文献   

9.
旨在提高谷氨酸棒杆菌合成尸胺的能力,将CadB克隆至谷氨酸棒杆菌中,与LDC共表达,在谷氨酸棒杆菌合成尸胺的同时,帮助尸胺转运至细胞外,解除尸胺的反馈抑制作用。谷氨酸棒杆菌能够高产赖氨酸脱羧酶的底物L-赖氨酸,但不含ldc和cadB基因,因而不能够直接合成尸胺。从E.coliK12中克隆出赖氨酸-尸胺反向转运蛋白基因,与绿色荧光蛋白基因gfp融合构建成融合表达载体pXBG,并转化至谷氨酸棒杆菌进行诱导表达,结果表明表达的CadB蛋白可以正确的定位于谷氨酸棒杆菌的细胞膜上。将基因cadB连接到含有赖氨酸脱羧酶基因的pXMJ19-ldc上,构建成能够共表达赖氨酸脱羧酶和赖氨酸-尸胺反向转运蛋白的重组质粒pXLB,并转化到谷氨酸棒杆菌中。  相似文献   

10.
抗菌肽结构与功能关系及分子改造研究进展   总被引:3,自引:0,他引:3  
抗菌肽是生物体产生的一种具有抗菌活性的多肽小分子,具有广谱、特异性的抗菌、抗病毒、抗肿瘤等作用。研究表明抗菌肽的正电荷含量、疏水性和肽链结构对抗菌肽的活性至关重要的。围绕以上三个方面对抗菌肽进行分子设计和改造,以期更加有效地提高抗菌肽的抗菌活性,获得到更加高效、低毒的抗菌肽产品。该文主要通过抗菌肽结构与功能的关系,介绍抗菌肽分子设计的研究进展。  相似文献   

11.
The Escherichia coli inducible lysine decarboxylase, LdcI/CadA, together with the inner-membrane lysine-cadaverine antiporter, CadB, provide cells with protection against mild acidic conditions (pH~5). To gain a better understanding of the molecular processes underlying the acid stress response, the X-ray crystal structure of LdcI was determined. The structure revealed that the protein is an oligomer of five dimers that associate to form a decamer. Surprisingly, LdcI was found to co-crystallize with the stringent response effector molecule ppGpp, also known as the alarmone, with 10 ppGpp molecules in the decamer. ppGpp is known to mediate the stringent response, which occurs in response to nutrient deprivation. The alarmone strongly inhibited LdcI enzymatic activity. This inhibition is important for modulating the consumption of lysine in cells during acid stress under nutrient limiting conditions. Hence, our data provide direct evidence for a link between the bacterial acid stress and stringent responses.  相似文献   

12.
1,5-Pentanediol (1,5-PDO) is a high value-added chemical which is widely used as a monomer in the polymer industry. There are no natural organisms that could directly produce 1,5-PDO from renewable carbon sources. In this study, we report metabolic engineering of Escherichia coli for high-level production of 1,5-PDO from glucose via a cadaverine-derived pathway. In the newly proposed pathway, cadaverine can be converted to 1,5-PDO via 5-hydroxyvalerate (5-HV) by introducing only one heterologous enzyme in E. coli. Different endogenous genes of E. coli were screened and heterologous carboxylic acid reductase genes were tested to build a functional pathway. Compared to the previously reported pathways, the engineered cadaverine-based pathway has a higher theoretical yield (0.70 mol/mol glucose) and higher catalytic efficiency. By further combining strategies of pathway engineering and process engineering, we constructed an engineered E. coli strain that could produce 2.62 g/L 1,5-PDO in shake-flask and 9.25 g/L 1,5-PDO with a yield of 0.28 mol/mol glucose in fed-batch fermentation. The proposed new pathway and engineering strategies reported here should be useful for developing biological routes to produce 1,5-PDO for real application.  相似文献   

13.
We describe an optical biosensor for lysine based on the use of lysine decarboxylase and an optical transducer for detection of cadaverine which is formed as a result of enzymatic action. A plasticized PVC (polyvinyl chloride) membrane containing a lipophilic tartrate as the amine carrier acts as the optical cadaverine sensor. The transport of the cadaverine cation into the membrane is coupled to a transport of a proton (of the indicator dye) out of the membrane. This causes a spectral change of the indicator dye which can be related to the cadaverine concentration, provided the pH is kept constant. The enzymatic reaction is performed in an enzyme reactor which is part of a flow-through system. The dynamic range is from 0·1 to 100 mM for both cadaverine and lysine. While the cadaverine sensor is moderately selective (ethylamines, for example, interfere), the whole sensor system is highly specific for lysine, nicotine being the only major interferent.

Unlike other enzyme-based detection schemes where the production of CO2 (in case of decarboxylates) or consumption of oxygen (in case of oxidases) is measured, this scheme is based on the measurement of the organic ammonium ion (cadaverin cation) formed in the enzymatic reaction. The major advantage of this approach is that in many real samples there is a rather low and fairly constant background of organic amines. This is in contrast to sensors based on the measurements of oxygen consumption (in the case of amino acid oxidases) or carbon dioxide production (using decarboxylases), where the background levels of the respective gases (which are ubiquitous) have to be kept constant in order to specifically measure only the concentration changes caused by the enzymatic reaction, or need to be measured in an independent assay.  相似文献   


14.
Studies of the GABA-synthetic enzyme glutamate decarboxylase (glutamic acid decarboxylase; GAD; E.C.4.1.1.15) began in 1951 with the work of Roberts and his colleagues. Since then, many investigators have demonstrated the structural and functional heterogeneity of brain GAD. At least part of this heterogeneity derives from the existence of two GAD genes.In honor of the 70th birthday of Dr. Eugene Roberts  相似文献   

15.
We describe a new technique for cytochemical localization of ornithine decarboxylase by the use of a synthesized conjugate of rhodamine bound to α-difluoromethylornithine a suicidal inhibitor of the enzyme. The labelled inhibitor retained its specificity and irreversibility towards ornithine decarboxylase inhibition. Using this technique we have localized the enzyme in specific regions of the developing rat cerebellum. This novel technique may be generally applicable to other enzymes.  相似文献   

16.
Glutamate decarboxylase (GAD) exists as two isoforms, GAD65 and GAD67. GAD activity is regulated by a cycle of activation and inactivation determined by the binding and release of its co-factor, pyridoxal 5'-phosphate. Holoenzyme (GAD with bound co-factor) decarboxylates glutamate to form GABA, but it also catalyzes a slower transamination reaction that produces inactive apoGAD (without bound co-factor). Apoenzyme can reassociate with pyridoxal phosphate to form holoGAD, thus completing the cycle. Within cells, GAD65 is largely apoenzyme (approximately 93%) while GAD67 is mainly holoenzyme (approximately 72%). We found striking kinetic differences between the GAD isoforms that appear to account for this difference in co-factor saturation. The glutamate dependent conversion of holoGAD65 to apoGAD was about 15 times faster than that of holoGAD67 at saturating glutamate. Aspartate and GABA also converted holoGAD65 to apoGAD at higher rates than they did holoGAD67. Nucleoside triphosphates (such as ATP) are known to affect the activation reactions of the cycle. ATP slowed the activation of GAD65 and markedly reduced its steady-state activity, but had little affect on the activation of GAD67 or its steady-state activity. Inorganic phosphate opposed the effect of ATP; it increased the rate of apoGAD65 activation but had little effect on apoGAD67 activation. We conclude that the apo-/holoenzyme cycle of inactivation and reactivation is more important in regulating the activity of GAD65 than of GAD67.  相似文献   

17.
A gene encoding glutamate decarboxylase A (GadA) from Lactobacillus brevis BH2 was expressed in a His-tagged form in Escherichia coli cells, and recombinant protein exists as a homodimer consisting of identical subunits of 53?kDa. GadA was absolutely dependent on the ammonium sulfate concentration for catalytic activity and secondary structure formation. GadA was immobilized on the metal affinity resin with an immobilization yield of 95.8%. The pH optima of the immobilized enzyme were identical with those of the free enzyme. However, the optimum temperature for immobilized enzyme was 5?°C higher than that for the free enzyme. The immobilized GadA retained its relative activity of 41% after 30 reuses of reaction within 30?days and exhibited a half-life of 19 cycles within 19?days. A packed-bed bioreactor with immobilized GadA showed a maximum yield of 97.8% GABA from 50?mM l-glutamate in a flow-through system under conditions of pH 4.0 and 55?°C.  相似文献   

18.
A possible approach for altering alkaloid biosynthesis in plants is the expression of genes encoding key enzymes of a pathway such as lysine decarboxylase (ldc) in transgenic plants. Two strategies were followed here: one focused on expression of the gene in the cytoplasm, the other on subsequent targeting of the protein to the chloroplasts. Theldcgene fromHafnia alvei was therefore (a) placed under the control of the 1 promoter of the bidirectional Tr promoter fromAgrobacterium tumefaciens Ti- plasmid, and (b) cloned behind therbcS promoter from potato fused to the coding region of therbcS transit peptide. Bothldc constructs, introduced intoNicotiana tabacum with the aid ofA. tumefaciens, were integrated into the plant genome and transcribed as shown by Southern and northern hybridization. However, LDC activity was only detectable in plants expressing mRNA under the control of therbcS promoter directing the LDC fusion protein into chloroplasts with the aid of the transit peptide domain. In plants expressing the processed bacterial enzyme cadaverine levels increased from nearly zero to 0.3–1% of dry mass.  相似文献   

19.
Several hairy root cultures of Nicotiana tabacum varieties, carrying two direct repeats of a bacterial lysine decarboxylase (ldc) gene controlled by the cauliflower mosaic virus (CaMV) 35S promoter expressed LDC activity up to 1 pkat/mg protein. Such activity was, for example, sufficient to increase cadaverine levels of the best line SR3/1-K1,2 from ca. 50 g (control cultures) to about 700 g/g dry mass. Some of the overproduced cadaverine of this line was used for the formation of anabasine, as shown by a 3-fold increase of this alkaloid. In transgenic lines with lower LDC activity the changes of cadaverine and anabasine levels were correspondingly lower and sometimes hardly distinguishable from controls. Feeding of lysine to root cultures, even to those with low LDC activity, greatly enhanced cadaverine and anabasine livels, while the amino acid had no or very little effect on controls and LDC-negative lines.  相似文献   

20.
【目的】阿尔茨海默症治疗药物石杉碱甲(Huperzine A,Hup A)的生物合成途径起始于赖氨酸脱羧酶(Lysine decarboxylase,LDC)。本研究克隆及表达了来源于产Hup A的植物内生真菌的LDC基因,并研究了其功能。【方法】采用RT-PCR扩增法,从一株产Hup A的蛇足石杉内生真菌Shiraia sp.Slf14获得LDC基因,构建表达质粒p ET-22b-LDC与p ET-32a-LDC,转化感受态细胞E.coli BL21,加入IPTG至终浓度为1×10~(–3) mol/L,于24°C、200 r/min培养8 h,诱导表达LDC蛋白质;通过Ni~(2+)金属亲和层析纯化重组LDC并建立酶促反应体系,利用TLC检测了LDC催化活性。利用生物信息学软件分析了LDC的理化性质及蛋白质的空间结构。【结果】成功克隆并异源表达出重组蛋白LDC与Trx-LDC,经SDS-PAGE电泳鉴定分子量分别为24.4 k Da和42.7 k Da,与预计大小相符。TLC结果表明LDC与Trx-LDC均具有赖氨酸脱羧酶活性。【结论】本研究从产Hup A的蛇足石杉内生真菌Shiraia sp.Slf14中成功克隆到LDC基因并进行了异源表达,检测到了其催化活性,为丰富LDC分子信息及阐明内生真菌中Hup A生物合成机制提供参考数据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号