首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The quadrupled autologous semitendinosus-gracilis graft is the first choice of many orthopaedic surgeons when reconstructing the anterior cruciate ligament. The effect that this procedure has on voluntary muscle control remains unclear. The purpose of this study was to evaluate the effect that anterior cruciate ligament reconstruction with autologous semitendinosus-gracilis graft has on voluntary muscle control by assessing subjects' specificity of muscle action. METHODS: The voluntary muscle control of 10 people (seven males, three females) with acute, isolated ACL ruptures was assessed in the days prior to when they underwent anterior cruciate ligament reconstruction with quadrupled autologous semitendinosus-gracilis grafts and after they had returned to play in sports requiring quick changes of direction and jumping (approximately 6 months later). The experimental protocol included the use of an established target-matching protocol that requires subjects to produce and modulate force with fine control, electromyographic recordings from 11 muscles about the knee, and the use of circular statistics to calculate specificity indices that describe the degree of focus (specificity) associated with the activity pattern of each muscle. Data were analyzed by performing pre-surgery and post-return to sports side-to-side comparisons, as well as, pre-surgery to post-surgery ipsilateral comparisons. RESULTS: Diminished specificity of muscle action was observed in the activity patterns of most of the muscles of the subjects' anterior cruciate ligament deficient knees prior to surgery. The quadriceps muscles were particularly affected. Post-return to sports results indicated that voluntary muscle control had improved in most muscles. There was no significant difference in pre-surgery and post-return to sports semitendinosus and gracilis muscle control. The semimembranosus muscle displayed less specific muscle activity patterns following surgery, which may represent a compensation strategy for minor changes in neuromuscular function. CONCLUSIONS: Voluntary muscle control improved in most muscles following ACL reconstruction with semitendinosus-gracilis autografts. Semitendinosus and gracilis muscle control did not appear to be altered significantly by the procedure.  相似文献   

2.
Surgical intervention and early-phase rehabilitation after anterior cruciate ligament (ACL) reconstruction have undergone a relatively rapid and global evolution over the past 25 years. Despite the advances that have significantly improved outcomes, decreases in healthcare coverage (limited visits allowed for physical therapy) have increased the role of the strength and conditioning specialist in the rehabilitation of athletes returning to sport after ACL reconstruction. In addition, there is an absence of standardized, objective criteria to accurately assess an athlete's ability to progress through the end stages of rehabilitation and safely return to sport. The purpose of this Scientific Commentary is to present an example of a progressive, end-stage return to sport protocol that is targeted to measured deficits of neuromuscular control, strength, power, and functional symmetry that are rehabilitative landmarks after ACL reconstruction. The proposed return to sport training protocol incorporates quantitative measurement tools that will provide the athlete with objective feedback and targeted goal setting. Objective feedback and targeted goal setting may aid the strength and conditioning specialist with exercise selection and progression. In addition, a rationale for exercise selection is outlined to provide the strength and conditioning specialist with a flexible decision-making approach that will aid in the modification of return to sport training to meet the individual athlete's abilities and to target objectively measured deficits. This algorithmic approach may improve the potential for athletes to return to sport after ACL reconstruction at the optimal performance level and with minimized risk of reinjury.  相似文献   

3.
Results of the surgical reconstruction of the anterior cruciate ligament (ACL), using as a graft fourfold hamstring tendons (gracilis and semitendinosus) and middle third of the patellar ligament, were compared. In all patients that were participating in this study clinical examination and magnetic resonance showed ACL rupture, and apart from the choice of the graft, surgical technique was identical. We evaluated 112 patients with implemented patellar ligament graft and fourfold hamstring tendons graft six months after the procedure. Both groups were similar according to age, sex, activity level, knee instability level and rehabilitation program. The results showed that there was no significant difference between groups regarding Lysholm Knee score, IKDC 2000 score, activity level, musculature hypotrophy, and knee joint stability 6 months after the surgery. Anterior knee pain incidence is significantly higher in the group with patellar ligament graft (44% vs. 21%). Both groups had a significant musculature hypotrophy of the upper leg of the knee joint that was surgically treated, six months after the procedure. Both grafts showed good subjective and objective results.  相似文献   

4.
The objective of this study is to determine how kinematical parameters and electromyography data of selected muscles may change as a result of anterior cruciate ligament (ACL) deficiency and following ACL reconstruction. The study was conducted on 25 anterior cruciate ligament deficient subjects prior to and 6 weeks, 4 months, 8 months and 12 months following ACL reconstructive surgery using the bone-patellar tendon-bone technique. Gait analysis was performed by applying the zebris three-dimensional ultrasound-based system with surface electromyograph (zebris). Kinematic data were recorded for the lower limb. The muscles surveyed include vastus lateralis and medialis, biceps femoris and adductor longus. The results obtained from the injured subjects were compared with those of 51 individuals without any ACL damage whatsoever. Acute ACL deficient patients exhibited a quadriceps avoidance pattern prior to and 6 weeks following surgery. No quadriceps avoidance phenomenon develops in chronic ACL deficient patients. In operated individuals, tempo-spatial parameters and the knee angle regained a normal pattern for the ACL-deficient limb during gait as early as 4 months following surgery. However, the relative ACL movement parameter, which describes the tibial translation into the direction of ACL, and the EMG traces show no significant statistical difference compared with the same values of the healthy control group just 8 months following surgery. The analysis of spatial-temporal parameters and EMG traces show that the development of a quadriceps avoidance pattern is less common than previously reported. These data suggest that anterior cruciate ligament deficiency and reconstruction produce considerable changes in the lower extremity gait pattern. The results suggest that gait parameters tend to shift towards a normal value pattern; and the re-establishment of pre-injury gait patterns-including the normal biphase of muscles-takes at least 8 months to occur.  相似文献   

5.
The purpose of this study was to examine whether joint angle specificity occurs in open and closed kinetic chain resistance training of the knee extensors after anterior cruciate ligament reconstruction (ACLR). Isokinetic knee extensor strength was measured at 60 and 210 degrees.s(-1) in 32 patients, 2 and 6 weeks after surgery. Between test sessions, patients participated in a 4-week program of injured leg resistance training of the knee extensors in either open kinetic chain (OKC) knee extension or leg press exercises. Isokinetic testing knee range of motion (ROM) was divided into 5 equal portions from flexion to extension, and the mean torque was calculated over those divisions: 0-20%, 20-40%, 40-60%, 60-80%, and 80-100% ROM. Analysis of variance indicated that there were no significant differences between patients in the knee extension or leg press exercise groups.  相似文献   

6.
The purpose of this study was to examine the moment-arm and cross-sectional area (CSA) of the patellar tendon (PT) and the hamstrings after anterior cruciate ligament (ACL) reconstruction. The right knee of five males who underwent ACL reconstruction with a PT graft and five age-matched controls was scanned using magnetic resonance image scans. Based on three-dimensional (3D) solids of the PT, CSAs and moment-arms of semitendinous (ST), biceps femoris (BF) long head and semimembranosus (SM) were estimated. Analysis of variance indicated no significant group differences in muscle moment-arms (p>0.05). 3D moment-arms of PT, ST and BF were significantly lower than the corresponding 2D values (p < 0.05). The ACL group displayed a significantly higher maximum BF CSA, a lower ST CSA (p < 0.05) but similar PT and SM CSAs compared with controls. It is concluded that any alterations in PT properties 1 year after harvesting do not affect knee muscle moment-arms compared with age-matched controls. Moment-arm estimation differed between 3D and 2D data, although it did not affect comparisons between ACL reconstruction group and controls. Design of rehabilitation programmes should take into consideration a potential alteration in hamstring morphology following surgery with a PT graft.  相似文献   

7.

Background

ACL reconstruction is recommended to improve function in subjects with ligament injuries. However, after surgery, some individuals are not able to return to their pre-injury functional level. The mechanisms related to this incapacity are not well understood.

Study design

Cross-sectional study.

Methods

Co-contraction levels were assessed in individuals who returned to their pre-injury functional level and in 10 individuals who were not able to return to full activity after unilateral ACL reconstruction. Electromyography of the vastus lateralis and biceps femoris muscles before and after sudden perturbations applied during the stance phase of walking was used to calculate co-contraction.

Results

The involved limb had lower co-contraction pre-perturbation than the non-involved limb in both groups (p = 0.049). The co-contraction level post-perturbation was significantly higher in the limited return group than in the full return group (p = 0.03).

Conclusion

Decreased co-contraction in the involved limb before perturbation may be caused by sensorial changes resulting from surgery or injury. Increased co-contraction levels observed in the limited return group after perturbation may be a compensatory mechanism to make up for possible decreased intrinsic stability of the knee joint.

Clinical relevance

Increased co-contraction after perturbation does not contribute to knee stability.  相似文献   

8.
Altered joint motion has been thought to be a contributing factor in the long-term development of osteoarthritis after ACL reconstruction. While many studies have quantified knee kinematics after ACL injury and reconstruction, there is limited in vivo data characterizing the effects of altered knee motion on cartilage thickness distributions. Thus, the objective of this study was to compare cartilage thickness distributions in two groups of patients with ACL reconstruction: one group in which subjects received a non-anatomic reconstruction that resulted in abnormal joint motion and another group in which subjects received an anatomically placed graft that more closely restored normal knee motion. Ten patients with anatomic graft placement (mean follow-up: 20 months) and 12 patients with non-anatomic graft placement (mean follow-up: 18 months) were scanned using high-resolution MR imaging. These images were used to generate 3D mesh models of both knees of each patient. The operative and contralateral knee models were registered to each other and a grid sampling system was used to make site-specific comparisons of cartilage thickness. Patients in the non-anatomic graft placement group demonstrated a significant decrease in cartilage thickness along the medial intercondylar notch in the operative knee relative to the intact knee (8%). In the anatomic graft placement group, no significant changes were observed. These findings suggest that restoring normal knee motion after ACL injury may help to slow the progression of degeneration. Therefore, graft placement may have important implications on the development of osteoarthritis after ACL reconstruction.  相似文献   

9.
Low amplitude mechanical noise vibration has been shown to improve somatosensory acuity in various clinical groups with comparable deficiencies through a phenomenon known as Stochastic Resonance (SR). This technology showed promising outcomes in improving somatosensory acuity in other clinical patients (e.g., Parkinson’s disease and osteoarthritis). Some degree of chronic somatosensory deficiency in the knee has been reported following anterior cruciate ligament (ACL) reconstruction surgery. In this study, the effect of the SR phenomenon on improving knee somatosensory acuity (proprioception and kinesthesia) in female ACL reconstructed (ACLR) participants (n = 19) was tested at three months post-surgery, and the results were compared to healthy controls (n = 28). Proprioception was quantified by the measure of joint position sense (JPS) and kinesthesia with the threshold to detection of passive movement (TDPM).The results based on the statistical analysis demonstrated an overall difference between the somatosensory acuity in the ACLR limb compared to healthy controls (p = 0.007). A larger TDPM was observed in the ACLR limb compared to the healthy controls (p = 0.002). However, the JPS between the ACLR and healthy limbs were not statistically significantly different (p = 0.365). SR significantly improved JPS (p = 0.006) while the effect was more pronounced in the ACLR cohort. The effect on the TDPM did not reach statistical significance (p = 0.681) in either group.In conclusion, deficient kinesthesia in the ACLR limb was observed at three months post-surgery. Also, the positive effects of SR on somatosensory acuity in the ACL reconstructed group warrant further investigation into the use of this phenomenon to improve proprioception in ACLR and healthy groups.  相似文献   

10.
Achieving anatomical graft placement remains a concern in Anterior Cruciate Ligament (ACL) reconstruction. The purpose of this study was to quantify the effect of femoral graft placement on the ability of ACL reconstruction to restore normal knee kinematics under in vivo loading conditions. Two different groups of patients were studied: one in which the femoral tunnel was placed near the anterior and proximal border of the ACL (anteroproximal group, n=12) and another where the femoral tunnel was placed near the center of the ACL (anatomic group, n=10) MR imaging and biplanar fluoroscopy were used to measure in vivo kinematics in these patients during a quasi-static lunge. Patients with anteroproximal graft placement had up to 3.4mm more anterior tibial translation, 1.1mm more medial tibial translation and 3.7° more internal tibial rotation compared to the contralateral side. Patients with anatomic graft placement had motion that more closely replicated that of the intact knee, with anterior tibial translation within 0.8mm, medial tibial translation within 0.5mm, and internal tibial rotation within 1°. Grafts placed anteroproximally on the femur likely provide insufficient restraint to these motions due to a more vertical orientation. Anatomical femoral placement of the graft is more likely to reproduce normal ACL orientation, resulting in a more stable knee. Therefore, achieving anatomical graft placement on the femur is crucial to restoring normal knee function and may decrease the rates of joint degeneration after ACL reconstruction.  相似文献   

11.
Anterior cruciate ligament reconstruction (ACLR) restores joint stability following ACL injury but does not attenuate the heightened risk of developing knee osteoarthritis. Additionally, patellar tendon (PT) grafts incur a greater risk of osteoarthritis compared to hamstring grafts (HT). Aberrant gait biomechanics, including greater loading rates (i.e. impulsive loading), are linked to the development of knee osteoarthritis. However, the role of graft selection on walking gait biomechanics linked to osteoarthritis is poorly understood, thus the purpose of this study was to compare walking gait biomechanics between individuals with HT and PT grafts. Ninety-eight (74 PT; 24 HT) subjects with a history of ACLR performed walking gait at a self-selected speed from which the peak vertical ground reaction force (vGRF) during the first 50% of the stance phase and its instantaneous loading rate, peak internal knee extension and valgus moments, and peak knee flexion and varus angles were obtained. When controlling for time since ACLR and quadriceps strength, there were no differences in any kinetic or kinematic variables between graft types. While not significant, 44% of the PT cohort were identified as impulsive loaders (displaying a heelstrike transient in the majority of walking trials) compared to only 25% of the HT cohort (odds ratio = 2.3). This more frequent observation of impulsive loading may contribute to the greater risk of osteoarthritis with PT grafts. Future research is necessary to determine if impulsive loading and small magnitude differences between graft types contribute to osteoarthritis risk when extrapolated over thousands of steps per day.  相似文献   

12.
Quadriceps dysfunction is a common, chronic complication following anterior cruciate ligament reconstruction (ACLR) that contributes to aberrant gait biomechanics and poor joint health. Vibration enhances quadriceps function in individuals with ACLR, but the duration of these effects is unknown. This study evaluated the time course of the effects of whole body vibration (WBV) and local muscle vibration (LMV) on quadriceps function. Twenty-four volunteers with ACLR completed 3 testing sessions during which quadriceps isometric peak torque, rate of torque development, and EMG amplitude were assessed prior to and immediately, 10, 20, 30, 45, and 60 min following a WBV, LMV, or control intervention. WBV and LMV (30 Hz, 2g) were applied during six one-minute bouts. WBV increased peak torque 5–11% relative to baseline and control at all post-intervention time points. LMV increased peak torque 6% relative to baseline at 10 min post-intervention and 4–6% relative to control immediately, 10 min, and 20 min post-intervention. The interventions did not influence EMG amplitudes or rate of torque development. The sustained improvements in quadriceps following vibration, especially WBV, suggest that it could be applied at the beginning of rehabilitation sessions to “prime” the central nervous system, potentially improving the efficacy of ACLR rehabilitative exercise.  相似文献   

13.
Biomechanics and Modeling in Mechanobiology - In this work, a nonlinear strain rate dependent plugin developed for the OpenSim® platform was used to estimate the instantaneous strain rate...  相似文献   

14.
Interlimb and sex-based differences in gait mechanics and neuromuscular control are common after anterior cruciate ligament reconstruction (ACLR). Following ACLR, individuals typically exhibit elevated co-contraction of knee muscles, which may accelerate knee osteoarthritis (OA) onset. While directed (medial/lateral) co-contractions influence tibiofemoral loading in healthy people, it is unknown if directed co-contractions are present early after ACLR and if they differ across limbs and sexes. The purpose of this study was to compare directed co-contraction indices (CCIs) of knee muscles in both limbs between men and women after ACLR. Forty-five participants (27 men) completed overground walking at a self-selected speed 3 months after ACLR during which quadriceps, hamstrings, and gastrocnemii muscle activities were collected bilaterally using surface electromyography. CCIs of six muscle pairs were calculated during the weight acceptance interval. The CCIs of the vastus lateralis/biceps femoris muscle pair (lateral musculature) was greater in the involved limb (vs uninvolved; p = 0.02). Compared to men, women exhibited greater CCIs in the vastus medialis/lateral gastrocnemius and vastus lateralis/lateral gastrocnemius muscle pairs (p < 0.01 and p = 0.01, respectively). Limb- and sex-based differences in knee muscle co-contractions are detectable 3 months after ACLR and may be responsible for altered gait mechanics.  相似文献   

15.
16.
Injuries to the anterior cruciate ligament (ACL) result in immediate and long-term morbidity and expense. Young women are more likely to sustain ACL injuries than men who participate in similar athletic and military activities. Although significant attention has focused on the role that female sex hormones may play in this disparity, it is still unclear whether the female ACL also responds to androgens. The purpose of this study was to determine whether the female ACL was an androgen-responsive tissue. To identify and localize androgen receptors in the female ACL, we used Western blotting and immunofluorescent labeling, respectively, of ACL tissue harvested during surgery from young women (n = 3). We then measured ACL stiffness and assessed total testosterone (T) and free [free androgen index (FAI)] testosterone concentrations, as well as relative estradiol to testosterone ratios (E(2)/T and E(2)/FAI) at three consecutive menstrual stages (n = 20). There were significant rank-order correlations between T (0.48, P = 0.031), FAI (0.44, P = 0.053), E(2)/T (-0.71, P < 0.001), E(2)/FAI (-0.63, P = 0.003), and ACL stiffness near ovulation. With the influences of the other variables controlled, there were significant negative partial rank-order correlations between ACL stiffness and E(2)/T (-0.72, P < 0.001) and E(2)/FAI (-0.59, P = 0.012). The partial order residuals for T and FAI were not significant. These findings suggest that the female ACL is an androgen-responsive tissue but that T and FAI are not independent predictors of ACL stiffness near ovulation. Instead, the relationship between T, FAI, and ACL stiffness was likely influenced by another hormone or sex hormone binding globulin.  相似文献   

17.
The purpose of this study was to determine whether mechanical adaptations were present in patients with anterior cruciate ligament (ACL)-deficient knees during high-demand activities. Twenty-two subjects with unilateral ACL deficiency (11 males and 11 females, 19.6 months after injury) performed five different activities at a comfortable speed (level walking, ascending and descending steps, jogging, jogging to a 90-degree side cutting toward the opposite direction of the tested side). Three-dimensional knee kinematics for the ACL-deficient knees and uninjured contralateral knees were evaluated using the Point Cluster Technique. There was no significant difference in knee flexion angle, but an offset toward the knee in less valgus and more external tibial rotation was observed in the ACL-deficient knee. The tendency was more obvious in high demand motions, and a significant difference was clearly observed in the side cutting motions. These motion patterns, with the knee in less valgus and more external tibial rotation, are proposed to be an adaptive movement to avoid pivot shift dynamically, and reveal evidence in support of a dynamic adaptive motion occurring in ACL-deficient knees.  相似文献   

18.
Accurate and flexible measurements of length, area, and volume are important in evaluation of the mechanical properties of soft tissue. Although a number of contact-based and non-contact techniques have been reported in the literature, due to a variety of reasons such as cost, complexity, and low accuracy, the research community has not adopted a standardized technique. In this paper, an alternative method of measuring the geometric parameters of cadaver anterior cruciate ligament (ACL) is presented. In this method, a 3-D scan of the ACL is constructed using a simple, commercially available, scanning system. The 3-D scan is then analyzed using the 3-D Doctor Software to extract important information regarding the length, cross-sectional area, and volume of the ACL. The accuracy and repeatability of measurements obtained by this method are acceptable and comparable to existing non-contact methods. The limitation of the method is that surface concavities cannot be detected. However, the non-contact optical method, described here, has inherent advantages over the existing methods: (1) it is inexpensive; (2) it allows the determination of area at any distance along the length of the tissue of interest; (3) all relevant information including minimum area is extracted from one single application of the method; (4) the volume can be calculated with a simple additional step of length measurement although, for accurate results, condylar blockage must be minimized by coring the ACL out. The entire process of scanning takes less than 30 min. This technique has the potential to become a standard method in anthropometry of soft tissue.  相似文献   

19.
目的探讨不同浓度辛伐他汀/脱蛋白骨复合物对兔前交叉韧带(ACL)重建腱-骨早期愈合的影响。方法选取80只实验兔随机分为4组各20只,A组(0.125%复合物)、B组(0.25%复合物)、C组(0.5%复合物)及D组(空白对照),均行ACL重建。实验组腱-骨界面分别相应植入不同浓度复合物,D组不作处理。术后4、8、12周取材行生物力学测试及病理观察。结果0.5%复合物组移植肌腱抗拉性能、腱-骨界面成熟度均优于其余3组。结论辛伐他汀/脱蛋白骨可促进ACL重建腱-骨早期愈合,且以浓度为0.5%时效果最佳。  相似文献   

20.
Pattern of anterior cruciate ligament force in normal walking   总被引:6,自引:0,他引:6  
The goal of this study was to calculate and explain the pattern of anterior cruciate ligament (ACL) loading during normal level walking. Knee-ligament forces were obtained by a two-step procedure. First, a three-dimensional (3D) model of the whole body was used together with dynamic optimization theory to calculate body-segmental motions, ground reaction forces, and leg-muscle forces for one cycle of gait. Joint angles, ground reaction forces, and muscle forces obtained from the gait simulation were then input into a musculoskeletal model of the lower limb that incorporated a 3D model of the knee. The relative positions of the femur, tibia, and patella and the forces induced in the knee ligaments were found by solving a static equilibrium problem at each instant during the simulated gait cycle. The model simulation predicted that the ACL bears load throughout stance. Peak force in the ACL (303 N) occurred at the beginning of single-leg stance (i.e., contralateral toe off). The pattern of ACL force was explained by the shear forces acting at the knee. The balance of muscle forces, ground reaction forces, and joint contact forces applied to the leg determined the magnitude and direction of the total shear force acting at the knee. The ACL was loaded whenever the total shear force pointed anteriorly. In early stance, the anterior shear force from the patellar tendon dominated the total shear force applied to the leg, and so maximum force was transmitted to the ACL at this time. ACL force was small in late stance because the anterior shear forces supplied by the patellar tendon, gastrocnemius, and tibiofemoral contact were nearly balanced by the posterior component of the ground reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号