首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 850 毫秒
1.
The phylogenetic relationships of Asian schilbid catfishes of the genera Clupisoma, Ailia, Horabagrus, Laides and Pseudeutropius are poorly understood, especially those of Clupisoma. Herein, we reconstruct the phylogeny of 38 species of catfishes belonging to 28 genera and 14 families using the concatenated mitochondrial genes COI, cytb, and 16S rRNA, as well as the nuclear genes RAG1 and RAG2. The resulting phylogenetic trees consistently place Clupisoma as the sister taxon of Laides, and the five representative Asian schilbid genera form two monophyletic groups with the relationships (Ailia (Laides, Clupisoma)) and (Horabagrus, Pseudeutropius). The so-called “Big Asia” lineage relates distantly to African schilbids. Independent analyses of the mitochondrial and nuclear DNA data yield differing trees for the two Asian schilbid groups. Analyses of the mitochondrial gene data support a sister-group relationship for (Ailia (Laides, Clupisoma)) and the Sisoroidea and a sister-taxon association of (Horabagrus, Pseudeutropius) and the Bagridae. In contrast, analyses of the combined nuclear data indicate (Ailia (Laides, Clupisoma)) to be the sister group to (Horabagrus, Pseudeutropius). Our results indicate that the Horabagridae, recognized by some authors as consisting of Horabagrus, Pseudeutropius and Clupisoma does not include the latter genus. We formally erect a new family, Ailiidae fam. nov. for a monophyletic Asian group comprised of the genera Ailia, Laides and Clupisoma.  相似文献   

2.
3.
Phrynosomatid lizards are among the most common and diverse groups of reptiles in western North America, Mexico, and Central America. Phrynosomatidae includes 136 species in 10 genera. Phrynosomatids are used as model systems in many research programs in evolution and ecology, and much of this research has been undertaken in a comparative phylogenetic framework. However, relationships among many phrynosomatid genera are poorly supported and in conflict between recent studies. Further, previous studies based on mitochondrial DNA sequences suggested that the most species-rich genus (Sceloporus) is possibly paraphyletic with respect to as many as four other genera (Petrosaurus, Sator, Urosaurus, and Uta). Here, we collect new sequence data from five nuclear genes and combine them with published data from one additional nuclear gene and five mitochondrial gene regions. We compare trees from nuclear and mitochondrial data from 37 phrynosomatid taxa, including a “species tree” (from BEST) for the nuclear data. We also present a phylogeny for 122 phrynosomatid species based on maximum likelihood analysis of the combined data, which provides a strongly-supported hypothesis for relationships among most phrynosomatid genera and includes most phrynosomatid species. Our results strongly support the monophyly of Sceloporus (including Sator) and many of the relationships within it. We present a new classification for phrynosomatid lizards and the genus Sceloporus, and offer a new tree with branch lengths for use in comparative studies.  相似文献   

4.
Legume subfamily Caesalpinioideae accommodates approximately 2250 species in 171 genera which traditionally are placed in four tribes: Caesalpinieae, Cassieae, Cercideae and Detarieae. The monophyletic tribe Detarieae includes the Amherstieae subclade which contains about 55 genera. Our knowledge of the relationships among those genera is good in some cases but for many other genera phylogenetic relationships have been unclear. The non-monophyletic nature of at least two amherstioid genera, Cynometra and Hymenostegia has also complicated the picture. During the course of a multi-disciplinary study of Hymenostegia sensu lato, which includes phylogenetic analyses based on matK and trnL data, we have recovered the “Scorodophloeus clade”, an exclusively tropical African clade of four genera which includes the eponymous genus Scorodophloeus, two undescribed generic segregates of Hymenostegia sensu lato, and the previously unsampled rare monospecific genus Micklethwaitia from Mozambique. Zenkerella is suggested as a possible sister genus to the Scorodophloeus clade. A distribution map is presented of the seven species that belong to the Scorodophloeus clade.  相似文献   

5.
Recent phylogenetic studies have shown that Saxifraga, as currently understood, must be divided into two genera: Saxifraga L. sensu stricto and Micranthes Haw. To better understand the evolutionary history of these two genera, we performed phylogenetic analyses inferred from the nuclear ribosomal sequences from the internal transcribed spacer and the sequences of the plastid DNA (rbcL). Our molecular data confirmed the monophyly of the genus Micranthes and the consistency of the existing systematic treatments based on morphological criteria. Moreover, Micranthes species native from the Iberian Peninsula (i.e. M. clusii, M. lepismigena and M. stellaris) should be included into Micranthes sect. Arabisa.  相似文献   

6.
DNA sequence comparisons of two mitochondrial DNA genes were used to infer phylogenetic relationships among four species of mullids. Approximately 238 bp of the mitochondrial 16S ribosomal RNA (rRNA) and 261 bp of the cytochrome b (cytb) genes were sequenced from representatives of three mullid genera (Mullus, Upeneus, Pseudopeneus), present in the Mediterranean Sea. Trees were constructed using three methods: maximum likelihood (ML), neighbor joining (NJ) and parsimony (MP). The results of the analyses of these data together with published data of the same mtDNA segments of two other perciform species (Sparus aurata, Perca fluviatilis), support the previous taxonomic classification of the three genera examined, as well as the classification of the two red mullet species in the same genus.  相似文献   

7.
8.
Cognato, A. I., Hulcr, J., Dole, S. A. & Jordal, B. H. (2010). Phylogeny of haplo‐diploid, fungus‐growing ambrosia beetles (Curculionidae: Scolytinae: Xyleborini) inferred from molecular and morphological data. —Zoologica Scripta, 40, 174–186. The ambrosia beetle tribe Xyleborini currently contains 30 genera and approximately 1200 species which are distributed throughout worldwide forests with most diversity located in the tropics. They also represent the most invasive scolytines in North America. Despite economic concerns and biological curiosity with this group, a comprehensive understanding of generic boundaries and the evolutionary relationship among species is lacking. In this study, we include 155 xyleborine species representing 23 genera in parsimony and Bayesian analyses using 3925 nucleotides from mitochondrial (COI) and nuclear genomes (28S, ArgK, CAD, EF‐1α) and 39 morphological characters. The phylogenies resulting from the parsimony analyses, which treated gap positions either as missing or fifth character states, and the Bayesian analysis were generally similar. Clades with high support or posterior probabilities were found in all trees, while those with low support were not recovered by all analyses. Fourteen of the 23 genera were monophyletic although not all relationships among the genera were resolved. We show monophyly of several species groups associated with particular morphological and biological characters and suggest recognition of these groups as genera. Most interesting was the monophyly of South and Central American species representing several genera. This finding suggests recent and fast radiation of xyleborines in the New World accompanied by morphological and biological diversification.  相似文献   

9.
The lizard genus Phymaturus is widely distributed in Argentina and along the eastern edge of Chile between 25° and 45° south. We sampled 27 of the 38 currently recognized species plus 22 candidate species using two mitochondrial genes (cytb and 12S), four protein coding nuclear genes and seven anonymous nuclear loci, and present the first comprehensive molecular phylogenetic hypothesis for the clade. We recovered two large clades (the palluma or northern group and patagonicus or southern group) previously recognized on the basis of morphological and mitochondrial sequence evidence, and compared results obtained from concatenated-gene analyses with results of a coalescent-based species-tree approach (BEST). With both methods we identified four main clades within the palluma group (mallimaccii, roigorum, verdugo, and vociferator) and five main clades within the patagonicus group (calcogaster, indistinctus, payuniae, somuncurensis, and spurcus). We found several instances of non-monophyly with cytb and cases of incongruence between mitochondrial vs nuclear data for which we discuss alternative hypotheses. Although with lower support values, combined BEST results are more congruent with concatenated nuclear data than with combined concatenated analyses, suggesting that BEST is less influenced by demographic processes than combined concatenated analyses. We discuss the taxonomic, biogeographic and conservation implications of these results and how the future integration of phylogeographic and morphological approaches will allow the further testing of demographic and biogeographic hypotheses.  相似文献   

10.
Members of the genus Exorista are parasitoids of a diverse array of insect hosts in the orders, Lepidoptera, Hymenoptera, Mantodea and Orthoptera. Phylogenetic relationships among subgenera and species of Exorista were inferred using four nuclear (Tpi, white, 18S and 28S) and four mitochondrial DNA (16S, 12S, ND5 and CO1) genes in maximum parsimony (MP), maximum likelihood (ML) and Bayesian Markov chain Monte Carlo (MCMC) analyses. Separate trees based on different sets of genes (mt DNA, nuclear, ribosomal, etc.) were compared and found to be nearly concordant. According to the molecular tree generated from the concatenated sequence data, the genus Exorista is paraphyletic. The phylogenetic analyses indicate the existence of two major clades of Exorista, including two genera Parasetigena and Phorocera. Morphological traits supporting clades indicated by molecular analyses within this genus are evaluated. Evolutionary patterns of the host use and host shifts are examined by optimizing host information using maximum likelihood on the molecular phylogeny. The ancestral host group of the tribe Exoristini (excluding Ctenophorinia and Phorinia) appears to be the order Lepidoptera, although hosts of some species are unknown. A major host shift to the Hymenoptera occurred in the clade of subgenus Adenia, and the ancestral state of subgenus Spixomyia is equivocal because there is little information available on the hosts in members of a subclade of this group (subclade A: Exorista hyalipennis group).  相似文献   

11.
Deep‐sea lobsters previously assigned to the family Thaumastochelidae Bate, 1888, the thaumastocheliforms, have very distinctive, greatly unequal first chelipeds, with the right side extremely elongate and pectinate, and in having short, quadrate pleonal pleura. Despite interesting morphology and a long taxonomic history, the phylogeny of the group has received little detailed analysis. Here, we conduct a species‐level phylogenetic analysis of the thaumastocheliforms based on morphological and molecular data (three mitochondrial genes: COI, 16S rDNA and 12S rDNA; two nuclear protein‐coding genes: H3 and NaK) to robustly reconstruct their evolutionary history and estimate divergence times. Separate and combined analyses of all data sources support thaumastocheliform monophyly, but as a clade deeply nested within the Nephropidae supporting recent synonymy of Thaumastochelidae with Nephropidae. Combined and molecular‐only analyses support generic monophyly of all three thaumastocheliform genera and Dinochelus as sister to Thaumastochelopsis, fully corroborating the current, morphology‐based taxonomy. In contrast, Thaumastocheles is recovered as paraphyletic in morphology‐only analyses owing to minimal character support. The Cretaceous–Paleogene Oncopareia was recovered as a stem‐lineage thaumastocheliform. The fossil record indicates that the thaumastocheliforms once lived in shallow, continental shelf depths, but moved into deeper water in the Cenozoic where they occur today. The thaumastocheliforms originated in northern Europe during the Mid‐Late Cretaceous and later dispersed westwards to the south‐eastern Pacific through the western Atlantic and eastwards to the western Pacific through the Indian Ocean. Thaumastochelopsis can be considered the most derived thaumastocheliform genus based on the degree of structural reduction relative to other thaumastocheliforms, its remote geographical occurrence (Australia) from the hypothesised place of origin (northern Europe) and its more recent estimated divergence than other genera (28 Mya for the MRCA of extant species of the genus).  相似文献   

12.
Recent molecular studies on passerine birds have highlighted numerous discrepancies between traditional classification and the phylogenetic relationships recovered from sequence data. Among the traditional families that were shown to be highly polyphyletic are the Muscicapidae Old World flycatcher. This family formerly included all Old World passerines that forage on small insects by performing short sallies from a perch. Genera previously allocated to the Muscicapidae are now thought to belong to at least seven unrelated lineages. While the peculiarity of most of these lineages has been previously recognized by Linnean classification, usually at the rank of families, one, the so-called Stenostiridae, a clade comprising three Afrotropical and Indo-Malayan genera, has only recently been discovered. Here, we address in greater detail the phylogenetic relationships and biogeographic history of the Stenostiridae using a combination of mitochondrial and nuclear data. Our analyses revealed that one species, Rhipidura hypoxantha, previously attributed to the Rhipiduridae (fantails), is in fact a member of the Stenostiridae radiation and sister to the South African endemic genus Stenostira (Fairy Flycatcher). Our dating analyses, performed in a relative-time framework, suggest that the splits between Stenostira/R. hypoxantha and Culicicapa/Elminia occurred synchronously. Given that the Stenostiridae assemblage has been consistently recovered by independent studies, we clarify its taxonomic validity under the rules of the International Code of Zoological Nomenclature.  相似文献   

13.
Previous phylogenetic analyses of Ranunculales, which have mostly been focused on an individual family and were based on molecular data alone, have recovered three main clades within the order. However, support for relationships among these three clades was weak. Earlier hypotheses were often hampered by limited taxon sampling; to date less than one-tenth of the genera in the order have been sampled. In this study, we used a greatly enlarged taxon sampling (105 species, representing 99 genera of all seven families in the order). Our study is, furthermore, the first to employ morphology (65 characters) in combination with sequence data from four genomic regions, including plastid rbcL, matK and trnL-F, and nuclear ribosomal 26S rDNA to reconstruct phylogenetic relationships within Ranunculales. Maximum parsimony and Bayesian inference were performed on the individual and combined data sets. Our analyses concur with those of previous studies, but in most cases provide stronger support and better resolution for relationships among the three main clades retrieved. The first, comprised solely of the monogeneric family Eupteleaceae, is the earliest-diverging lineage. The second clade is composed exclusively of taxa of Papaveraceae, which is sister to the third clade, the core Ranunculales, comprising the other five families of the order. Circaeasteraceae and Lardizabalaceae form a strongly supported clade. Pteridophyllum is supported as sister to Hypecoum, contradicting the viewpoint that the former is the earliest-diverging genus in Papaveraceae. Glaucidium is basalmost in Ranunculaceae. Within this phylogenetic framework, the evolution of selected characters is inferred and diagnostic morphological characters at different taxonomic levels are identified and discussed. Based on both morphological and molecular evidence, a classification outline for Ranunculales is presented, including the proposal of two new subfamilies, Menispermoideae and Tinosporoideae in Menispermaceae and a new tribe, Callianthemeae, for the genus Callianthemum (Ranunculaceae).  相似文献   

14.
The genera Halosiccatus and Halomicrobium are the most closely related genera within the family Haloarculaceae (class Halobacteria). All species of these two genera are closely related to each other in phylogenetic analyses based on their 16S rRNA gene sequences, and also using the sequences of four housekeeping genes. The genus Halosiccatus was proposed based on inferred phylogeny using only one of the three distinct 16S rRNA genes detected in strain DC8T, while Halomicrobium zhouii, one of three species of Halomicrobium, was omitted from the reference species used in these analyses. The related 16S rRNA gene sequence similarities of type strains of Halomicrobium katesii and Halomicrobium mukohataei were as high as 99.5%–99.7%, much higher than the threshold values proposed as species boundaries. These issues could have resulted in taxonomic inaccuracies in the genera Halosiccatus and Halomicrobium, and a thorough study was undertaken to clarify the status of all species in both genera. Based on phylogenetic and phylogenomic analyses, the current four species of the two genera form a single clade with high bootstrap confidence, indicating that the genus Halosiccatus should be merged with Halomicrobium. Halomicrobium katesii Kharroub et al. 2008 is proposed as a later heterotypic synonym of Halomicrobium mukohataei (Ihara et al. 1997) Oren et al. 2002. An additional species is also described (strains LT50T and TH30), and was isolated from different Gobi saline soil samples of Tarim Basin, Xinjiang, China. Phenotypic, chemotaxonomic, genomic and phylogenetic properties indicated that strains LT50T (=CGMCC 1.15187T = JCM 30837T) and TH30 (=CGMCC 1.15189 = JCM 30839) represent a novel species of the genus Halomicrobium, for which the name Halomicrobium salinisoli sp. nov. is proposed.  相似文献   

15.
GlyptothoraxBlyth (1860) is the most species-diverse and widely-distributed genus in the Sisoridae, but few studies have examined monophyly of the genus and phylogenetic relations within it. We used the nuclear RAG2 gene and mitochondrial COI and Cyt b genes from 50 of the approximately 70 species to examine monophyly of Glyptothorax and phylogenetic relationships within the genus. Molecular phylogenetic trees were constructed using maximum parsimony, maximum likelihood and Bayesian inference methods. All methods strongly supported monophyly of Glyptothorax, with Bagarius as its sister group. Both analyses of two- and three-gene datasets recovered nine major subclades of Glyptothorax, but some internal nodes remained poorly resolved. The phylogenetic relationships within the genus and existing taxonomic problems are discussed.  相似文献   

16.
Phylogenetic analyses of 131 terminals of Paspalum and related genera, based on both plastid and nuclear markers, were performed under maximum parsimony and Bayesian methods. The total evidence analyses generated a hypothesis showing that Paspalum would be monophyletic if Spheneria, Thrasyopsis and Reimarochloa are included within the genus. Paspalum inaequivalve and P. microstachyum, two species of the Inaequivalvia group were related to genus Anthaenantiopsis, excluded from Paspalum, or nested within it by plastid and nuclear markers, respectively. Subgenera Anachyris and Harpostachys were partially recovered as monophyletic assemblages, while subg. Ceresia and Paspalum resolved as polyphyletic. Within subgenus Paspalum, some informal groups were recovered as monophyletic, while others were resolved as paraphyletic or polyphyletic. Phylogenetic relationships among species of Paspalum were partially recovered possibly due to reticulation events among species, autopolyploidization and apomixis; all these processes being common in Paspalum, thus obscuring the infrageneric classification.  相似文献   

17.
The monophyly of the highly diverse weevil subfamily Cryptorhynchinae is tested with a dataset of 203 taxa representing 159 genera of Curculionoidea, 105 of them Cryptorhynchinae s.l. We construct a phylogeny based on an alignment of 5523 bp, consisting of fragments from two mitochondrial genes (two fragments of COI, 16S) and seven nuclear genes (ArgK, CAD, EF1α, enolase, H4, 18S, 28S). Analyses of maximum likelihood and Bayes inference recovered largely congruent results. Groups with different morphology of the rostral furrow (e.g. Aedemonini, Camptorhinini, Cryptorhynchini, Ithyporini) are not closely related to each other. However, most taxa with a mesosternal receptacle are monophyletic and here defined as Cryptorhynchinae s.s., comprising Cryptorhynchini, Gasterocercini, Torneumatini and Psepholacini, but also Arachnopodini and Idopelma Faust. The genus Phyrdenus LeConte is excluded from Cryptorhynchinae and transferred to Conotrachelini of Molytinae. Thus defined, the group still comprises several thousand species with centres of its diversity in South America and Australia. The early lineages we find in America and the Palearctic, while the extremely diverse faunas of Australia and neighbouring islands mainly belong to a more recent, species‐rich radiation. This also includes a clade comprising the majority of litter‐inhabiting species of New Zealand and the genus Miocalles Pascoe. Flightlessness was attained repeatedly and resulted in convergent evolution of a similar habitus in different zoogeographic regions, mainly exhibited by the polyphyletic genus Acalles Schoenherr.  相似文献   

18.
We tested the locus of the nuclear lactate dehydrogenase gene (LDH-C1) as a phylogenetic marker in specimens of 11 salmonid genera (Thymallus, Coregonus, Hucho, Brachymystax, Salmo, Salmothymus, Acantholingua, Parahucho, Salvelinus, Parasalmo, and Oncorhynchus). All the sequences were veraciously clustered according to their taxonomic affiliation at the species and genus levels. It is shown that used complex of characters contains a phylogenetic signal that represents specific information about the phylogenesis process. This allows us to recommend the LDH-C1 locus to specify the phylogeny of salmonids in the combined analysis of several independent nuclear genes and mitochondrial DNA.  相似文献   

19.
The Archiborborinae is a diverse Neotropical subfamily of Sphaeroceridae, with many undescribed species. The existing generic classification includes three genera consisting of brachypterous species, with all other species placed in the genus Archiborborus. We present the first phylogenetic hypothesis for the subfamily based on morphological, molecular, and combined datasets. Morphological data include 53 characters and cover all valid described taxa (33 species in 4 genera) in the subfamily, as well as 83 undescribed species. Molecular data for five genes (mitochondrial 12S rDNA, cytochrome c oxidase subunit I, and cytochrome B, and nuclear alanyl-tRNA synthetase and 28S rDNA) were obtained for 21 ingroup taxa. Data support the separation of the Archiborborinae from the Copromyzinae, with which they were formerly combined. Analyses support consistent groups within the subfamily, but relationships between groups are poorly resolved. The validity of the brachypterous genera Penola Richards and Frutillaria Richards is supported. The former genus Archiborborus Duda is paraphyletic, and will be divided into monophyletic genera on the basis of this work. Aptery and brachyptery have evolved multiple times in the subfamily. Antrops Enderlein, previously including a single brachypterous species, is a senior synonym of Archiborborus.  相似文献   

20.
The acalyptrate fly superfamily Opomyzoidea, as currently recognized, is a poorly-known group of 14 families. The composition of this group and relationships among included families have been controversial. Furthermore, the delimitation of two opomyzoid families, Aulacigastridae and Periscelididae, has been unstable with respect to placement of the genera Stenomicra, Cyamops, and Planinasus. To test the monophyly of Opomyzoidea, previously proposed relationships between families, and the position of the three problematic genera, we sequenced over 3300 bp of nucleotide sequence data from the 28S ribosomal DNA and CAD (rudimentary) genes from 29 taxa representing all opomyzoid families, as well as 13 outgroup taxa. Relationships recovered differed between analyses, and only branches supporting well-established monophyletic families were recovered with high support, with a few exceptions. Opomyzoidea and its included subgroup, Asteioinea, were found to be non-monophyletic. Stenomicra, Cyamops, and Planinasus group consistently with Aulacigastridae, contrary to recent classifications. Xenasteiidae and Australimyzidae, two small, monogeneric families placed in separate superfamilies, were strongly supported as sister groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号