首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The purpose of this study was to examine the effects of skinfold (SF) thicknesses at four locations on the vastus lateralis (VL) muscle and the placement of accelerometers relative to the innervation zone (IZ) on the mechanomyographic (MMG) amplitude and mean power frequency (MPF) responses during incremental cycle ergometry. Twenty adults (age ± SD = 23.8 ± 3.0 years) participated in the investigation. The MMG signals were detected during incremental cycle ergometry using four accelerometers placed on the right VL. Prior to the cycle ergometer test, SF thicknesses were measured. Simple linear regression analyses and one-way repeated measures analyses of variance (ANOVAs) were performed. The present study found that only 10% of the regression analyses and mean comparisons were significant (p < 0.05). Furthermore, the accelerometer placed at the most proximal site (Prox 2) had significantly greater MMG amplitude and MMG MPF than accelerometers placed at more distal sites (Prox 1, Over IZ, and Dist). There were no significant differences, however, in SF thickness between accelerometer placement sites. In addition, the IZ had no effect on MMG amplitude and little effect on MMG MPF values. The results of the present study indicated that the SF thickness values and IZ did not affect the MMG signal.  相似文献   

2.
The purpose of the present study was to examine the patterns of responses for torque, electromyographic (EMG) amplitude, EMG mean power frequency (MPF), mechanomyographic (MMG) amplitude, and MMG MPF across 30 repeated maximal isometric (ISO) and concentric (CON) muscle actions of the leg extensors. Twelve female subjects (21.1 ± 1.4 yrs; 63.3 ± 7.4 kg) performed ISO and CON fatigue protocols with EMG and MMG signals recorded from the vastus lateralis. The relationships for torque, EMG amplitude, EMG MPF, MMG amplitude, and MMG MPF versus repetition number were examined using polynomial regression. The results indicated there were decreases (p < 0.05) across the ISO muscle actions for torque (r2 = 0.95), EMG amplitude (R2 = 0.44), EMG MPF (r2 = 0.62), and MMG MPF (r2 = 0.48), but no change in MMG amplitude (r2 = 0.07). In addition, there were decreases across the CON muscle actions for torque (R2 = 0.97), EMG amplitude (R2 = 0.46), EMG MPF (R2 = 0.86), MMG amplitude (R2 = 0.44), and MMG MPF (R2 = 0.80). Thus, the current findings suggested that the mechanisms of fatigue and motor control strategies used to modulate torque production were similar between maximal ISO and CON muscle actions.  相似文献   

3.
This study aimed to examine within-day and between-days intratester reliability of mechanomyography (MMG) in assessing muscle fatigue. An accelerometer was used to detect the MMG signal from rectus femoris. Thirty one healthy subjects (15 males) with no prior knee problems initially performed three maximum voluntary contractions (MVCs) using an ISOCOM dynamometer. After 10 min rest, subjects performed a fatiguing protocol in which they performed three isometric knee extensions at 75% MVC for 40 s. The fatiguing protocol was repeated on two other days, two to four days apart for between-days reliability. MMG activity was determined by overall root mean squared amplitude (RMS), mean power frequency (MPF) and median frequency (MF) during a 40 s contraction. RMS, MPF and MF linear regression slopes were also analysed. Intraclass Correlation Coefficients (ICC); ICC1,1 and ICC1,2 were used to assess within-day reliability and between-days reliability respectively. Standard error of measurement (SEM) and smallest detectable difference (SDD) described the within-subjects variability. MMG fatigue measures using linear regression slopes showed low reliability and large between-days error (ICC1,2 = 0.43–0.46; SDD = 306.0–324.8% for MPF and MF slopes respectively). Overall MPF and MF, on the other hand, were reliable with high ICCs and lower SDDs compared to linear slopes (ICC1,2 = 0.79–0.83; SDD = 21.9–22.8% for MPF and MF respectively). ICC1,2 for overall MMG RMS and linear RMS slopes were 0.81 and 0.66 respectively; however, the SDDs were high (56.4% and 268.8% respectively). The poor between-days reliability found in this study suggests caution in using MMG RMS, MPF and MF and their corresponding slopes in assessing muscle fatigue.  相似文献   

4.
The purpose of this study was to examine the influence of interelectrode distance (IED) over the estimated innervation zone (IZ) for the vastus lateralis muscle and normalization on the torque-related patterns of responses for electromyographic (EMG) amplitude and mean power frequency (MPF) during concentric isokinetic, eccentric isokinetic, and isometric muscle actions of the leg extensors. Eight men performed submaximal to maximal concentric isokinetic, eccentric isokinetic, and isometric muscle actions of the dominant leg extensors. Surface EMG signals were recorded simultaneously with two bipolar electrode arrangements in single differential configuration (20 and 40 mm IEDs) placed over the estimated IZ for the vastus lateralis muscle and a third electrode arrangement in single differential configuration (20 mm IED) placed distal to the estimated IZ. The results indicated that there were only a few (six of 90 statistical comparisons) significant (p < 0.05) mean differences among the three electrode arrangements for absolute EMG amplitude. There were no mean differences among the three electrode arrangements for absolute or normalized EMG MPF values or normalized EMG amplitude for the three types of muscle actions. Thus, it may be possible to reduce the potential influence of the IZ on amplitude and spectral parameters of the EMG signal through normalization.  相似文献   

5.
IntroductionThe purpose of this study was to examine possible correlations between skinfold thicknesses and the a terms from the log-transformed electromyographic (EMGRMS) and mechanomyographic amplitude (MMGRMS)-force relationships, EMG M-Waves, and MMG gross lateral movements (GLM).MethodsForty healthy subjects performed a 6-s isometric ramp contraction from 5% to 85% of their maximal voluntary contraction with EMG and MMG sensors placed on the vastus lateralis (VL) and rectus femoris (RF). A single electrical stimulus was applied to the femoral nerve to record the EMG M-waves and MMG GLMs. Skinfold thickness was assessed at the site of each electrode. Pearson’s product correlation coefficients were calculated comparing skinfold thicknesses with the a terms from the log-transformed EMGRMS-and MMGRMS-force relationships, EMG M-waves, and MMG GLMs.ResultsThere were no significant cor1relations (p > 0.05) between the a terms and skinfold thicknesses for the RF and VL from the EMGRMS and MMGRMS-force relationships. However, there were significant correlations (p < 0.05) between skinfold thicknesses and the EMG M-waves and MMG GLMs for the RF (r = −0.521, −0.376) and VL (r = −0.479, −0.484).DiscussionRelationships were only present between skinfold thickness and the amplitudes of the EMG and MMG signals during the non-voluntary muscle actions.  相似文献   

6.
Reliability of high-resolution accelerometery (HRA) and mechanomyography (MMG) was evaluated for the assessment of single-leg balance. Subjects (5M/5F, 25 ± 3 yr; 169.4 ± 11.7 cm; 79.0 ± 16.9 kg) participated in fifteen (three randomized bouts of five repetitions) 15-s dominant leg stances. A single HRA was fixed superficial to L3/L4 segment to capture motions relative to the center-of-mass, and three-uniaxial accelerometers were fixed on the surface of the dominant leg correspondent to the vastus medialis (VM), vastus lateralis (VL), and soleus (SOL) muscles to record MMG. Triaxial signals from the HRA (s.r. = 625 Hz) were streamed to a base station, simultaneously with MMG (s.r. = 1000 Hz). Signals were sampled, recorded and later analyzed. HRAs were recorded in g’s for vertical (VT), medial/lateral (ML), anterior/posterior (AP) directions, and resultant (RES) scalar. Intraclass correlation coefficients (ICC) were computed for each and Pearson’s r was calculated for the relationships between MMG and HRA (α ? 0.05). Except for RES (ICC = 0.36), all measures demonstrated moderately strong reliability (ICC = 0.75, 0.73, 0.63, 0.87, 0.89, and 0.86 for VM, VL, SOL, VT, ML, and AP, respectively). HRA and MMG provide reliable information pertaining to balance, and may have application in evaluating postural control and stability.  相似文献   

7.
The purpose of this investigation was to determine the relationships for mechanomyographic (MMG) amplitude, MMG mean power frequency (MPF), electromyographic (EMG) amplitude, and EMG MPF versus power output during incremental cycle ergometry. Seventeen adults volunteered to perform an incremental test to exhaustion on a cycle ergometer. The test began at 50 W and the power output was increased by 30 W every 2 min until the subject could no longer maintain 70 rev min(-1). The MMG and EMG signals were recorded simultaneously from the vastus lateralis during the final 10 s of each power output and analyzed. MMG amplitude, MMG MPF, EMG amplitude, EMG MPF, and power output were normalized as a percentage of the maximal value from the cycle ergometer test. Polynomial regression analyses indicated that MMG amplitude increased (P<0.05) linearly across power output, but there was no change (P>0.05) in MMG MPF. EMG amplitude and MPF were fit best (P<0.05) with quadratic models. These results demonstrated dissociations among the time and frequency domains of MMG and EMG signals, which may provide information about motor control strategies during incremental cycle ergometry. The patterns for amplitude and frequency of the MMG signal may be useful for examining the relationship between motor-unit recruitment and firing rate during dynamic tasks.  相似文献   

8.
The value of electromyography (EMG) is sensitive to many physiological and non-physiological factors. The purpose of the present study was to determine if the torque–velocity test (T–V) can be used to normalize EMG signals into a framework of biological significance. Peak EMG amplitude of gluteus maximus (GMAX), vastus lateralis (VL), rectus femoris (RF), biceps femoris long head (BF), gastrocnemius medialis (GAS) and soleus (SOL) was calculated for nine subjects during isometric maximal voluntary contractions (IMVC) and torque–velocity bicycling tests (T–V). Then, the reference EMG signals obtained from IMVC and T–V bicycling tests were used to normalize the amplitude of the EMG signals collected for 15 different submaximal pedaling conditions. The results of this study showed that the repeatability of the measurements between IMVC (from 10% to 23%) and T–V (from 8% to 20%) was comparable. The amplitude of the peak EMG of VL was 99 ± 43% higher (p < 0.001) when measured during T–V. Moreover, the inter-individual variability of the EMG patterns calculated for submaximal cycling exercises differed significantly when using T–V bicycling normalization method (GMAX: 0.33 ± 0.16 vs. 1.09 ± 0.04, VL: 0.07 ± 0.02 vs. 0.64 ± 0.14, SOL: 0.07 ± 0.03 vs. 1.00 ± 0.07, RF: 1.21 ± 0.20 vs. 0.92 ± 0.13, BF: 1.47 ± 0.47 vs. 0.84 ± 0.11). It was concluded that T–V bicycling test offers the advantage to be less time and energy-consuming and to be as repeatable as IMVC tests to measure peak EMG amplitude. Furthermore, this normalization method avoids the impact of non-physiological factors on the amplitude of the EMG signals so that it allows quantifying better the activation level of lower limb muscles and the variability of the EMG patterns during submaximal bicycling exercises.  相似文献   

9.
This study examined correlations between type I percent myosin heavy chain isoform content (%MHC) and mechanomyographic amplitude (MMGRMS) during isometric muscle actions. Fifteen (age = 21.63 ± 2.39) participants performed 40% and 70% maximal voluntary contractions (MVC) of the leg extensors that included increasing, steady force, and decreasing segments. Muscle biopsies were collected and MMG was recorded from the vastus lateralis. Linear regressions were fit to the natural-log transformed MMGRMS–force relationships (increasing and decreasing segments) and MMGRMS was selected at the targeted force level during the steady force segment. Correlations were calculated among type I%MHC and the b (slopes) terms from the MMGRMS–force relationships and MMGRMS at the targeted force. For the 40% MVC, correlations were significant (P < 0.02) between type I%MHC and the b terms from the increasing (r = −0.804) and decreasing (r = −0.568) segments, and MMGRMS from the steady force segment (r = −0.606). Type I%MHC was only correlated with MMGRMS during the steady force segment (P = 0.044, r = −0.525) during the 70% MVC. Higher type I%MHC reduced acceleration in MMGRMS (b terms) during the 40% MVC and the amplitude during the steady force segments. The surface MMG signal recorded during a moderate intensity contraction provided insight on the contractile properties of the VL in vivo.  相似文献   

10.
This study aimed to determine the characteristics of the in vivo behaviour of human muscle architecture during a pre-motion silent period (PMSP) using ultrasonography. Subjects were requested to perform rapid knee extension with vertical jumping. Electromyographic signals were recorded from the vastus lateralis (VL), vastus medialis, and biceps femoris muscles. Ultrasonic images were recorded from the VL. We found that the cross point between the fascicle and deep aponeurosis in the VL moved to the distal side before the rapid vertical jumps with PMSP. This cross point movement with PMSP was of low amplitude (mean: 1.0 ± 0.3 mm) and velocity (22.2 ± 6.1 mm/s). The amplitude and velocity of the cross point movement were significantly positively related to the angular peak velocity of knee extensor during rapid vertical jumping in trials with PMSP. These results suggest that although low levels of pre-movement muscle architectural change with PMSP may be the result of muscle relaxation behaviour rather than the result of muscle stretching behaviour, this pre-movement effect can influence subsequent muscular performance during a rapid voluntary movement. PMSP may allow pre-movement muscle architectural change to generate a better muscular condition to increase neural activation during the subsequent rapid voluntary contraction.  相似文献   

11.
The purpose of this study was to determine the effects of summation of contraction on acceleration signals in human skeletal muscle. The torque parameters of dorsiflexion and acceleration signals in the tibialis anterior muscle were measured during evoked isometric contractions. In an examination of two-pulse trains with different inter-pulse intervals, the torque and accelerometer responses to inter-pulse intervals of 10–100 ms were recorded. In an investigation of the effects of different numbers of stimuli, the torque and accelerometer responses to 1–8 pulses with a constant inter-pulse interval of 10 ms were recorded. The present study found that there was a difference in acceleration amplitude between the single-pulse and two-pulse trains with an inter-pulse interval of 10 ms but not two-pulse trains with an inter-pulse interval of 20 ms or more. In the investigation of different numbers of stimuli, we found a similar MMG amplitude across 2–8 pulses. Moreover, we observed that the maximal time to the peak acceleration signal was ~27 ms. In a comparison of torque parameters with acceleration signals, the present study clearly shows that acceleration amplitude is poorly correlated to changes in force parameters when the inter-pulse interval or the number of stimuli are increased. These results suggest that the absence of associated changes in acceleration peak is due to the long interval for the subsequent pulses relative to the time at which acceleration peak is achieved (~27 ms). These findings will provide useful information concerning the method for assessing summation of contraction with an accelerometer.  相似文献   

12.
A coordinated activation of distal forearm muscles allows the hand and fingers to be shaped during movement and grasp. However, little is known about how the muscle activation patterns are reflected in multi-channel mechanomyogram (MMG) signals. The purpose of this study is to determine if multi-site MMG signals exhibit distinctive patterns of forearm muscle activity. MMG signals were recorded from forearm muscle sites of nine able-bodied participants during hand movement. By using 14 features selected by a genetic algorithm and classified by a linear discriminant analysis classifier (LDA), we show that MMG patterns are specific and consistent enough to identify 7 ± 1 hand movements with an accuracy of 90 ± 4%. MMG-based movement recognition required a minimum of three recording sites. Further, by classifying five classes of contraction patterns with 98 ± 3% accuracy from MMG signals recorded from the residual limb of an amputee participant, we demonstrate that MMG shows pattern-specificity even in the absence of typical musculature. Multi-site monitoring of the RMS of MMG signals is suggested as a method of estimating the relative contributions of muscles to motor tasks. The patterns in MMG facilitate our understanding of the mechanical activity of muscles during movement.  相似文献   

13.
The purpose of this study was to determine whether surface electromyography (EMG) assessment of myoelectric manifestations of muscle fatigue is capable of detecting differences between the vastus lateralis and medialis muscles which are consistent with the results of previous biopsy studies. Surface EMG signals were recorded from the vastus medialis longus (VML), vastus medialis obliquus (VMO) and vastus lateralis (VL) muscles during isometric knee extension contractions at 60% and 80% of the maximum voluntary contraction (MVC) for 10 s and 60 s, respectively. Initial values and rate of change of mean frequency (MNF), average rectified value (ARV) and conduction velocity (CV) of the EMG signal were calculated. Comparisons between the two force levels revealed that the initial values of MNF for the VL muscle were greater at 80% MVC compared to 60% MVC (P < 0.01). Comparisons between the vasti muscles demonstrated lower initial values of CV for VMO compared to VL at 60% MVC (P < 0.01) and lower than VML and VL at 80% MVC (P < 0.01). In addition, initial values of MNF were higher for VL with respect to both VML and VMO at 80% MVC (P < 0.01) and initial estimates of ARV were higher for VMO compared to VML at both force levels (P < 0.01 at 60% MVC and P < 0.05 at 80% MVC). For the sustained contraction at 80% MVC, VL demonstrated a greater decrease in CV over time compared to VMO (P < 0.05).These findings suggest that surface EMG signals and their time course during sustained isometric contractions may be useful to non-invasively describe functional differences between the vasti muscles.  相似文献   

14.
Normalization of electromyographic (EMG) amplitudes is necessary in the study of human motion. However, there is a lack of agreement on the most reliable and appropriate normalization method. This study evaluated the reliability of single leg stance (SLS) and maximal voluntary isometric contraction (MVIC) normalization methods and the relationship between these measures for the gluteus maximus (GMax), gluteus medius (GMed), rectus femoris (RF), vastus lateralis (VL), hip adductor group (ADD), and biceps femoris (BF). Surface EMG was recorded in 20 subjects during three 5 s trials of SLS and MVIC. SLS and MVIC methods both demonstrated good-to-excellent reliability in all muscles (ICCs > 0.80). Intrasubject coefficients of variation were lower for the MVIC method (9–36%) than for the SLS method (20–59%). EMG amplitudes during MVIC and SLS were significantly correlated for all muscles (Pearson r’s = 0.604–0.905, p < 0.005) except GMax (r = 0.250, p = 0.288). Use of SLS normalization for the RF, VL, and BF is not recommended due to a lack of measurement precision. However, this method is justified in the GMax, GMed, and ADD and may provide a better representation of coordinated muscle function during a functional task.  相似文献   

15.
Therapeutic effects of functional electrical stimulation (FES) cycling for persons with spinal cord injury (SCI) are limited by high rates of muscular fatigue. FES-cycling performance limits and surface mechanomyography (MMG) of 12 persons with SCI were compared under two different stimulation protocols of the quadriceps muscles. One strategy used the standard “co-activation” protocol from the manufacturer of the FES cycle which involved intermittent simultaneous activation of the entire quadriceps muscle group for 400 ms. The other strategy was an “alternation” stimulation protocol which involved alternately stimulating the rectus femoris (RF) muscle for 100 ms and the vastus medialis (VM) and vastus lateralis (VL) muscles for 100 ms, with two sets with a 400 ms burst. Thus, during the alternation protocol, each of the muscle groups rested for two 100 ms “off” periods in each 400 ms burst. There was no difference in average cycling cadence (28 RPM) between the two protocols. The alternation stimulation protocol produced longer ride times and longer virtual distances traveled and used lower stimulation intensity levels with no differences in average MMG amplitudes compared to the co-activation protocol. These results demonstrate that FES-cycling performance can be enhanced by a synergistic muscle alternation stimulation strategy.  相似文献   

16.
Recent evidence suggests different regions of the rectus femoris (RF) muscle respond differently to squat exercises. Such differential adaptation may result from neural inputs distributed locally within RF, as previously reported for isometric contractions, walking and in response to fatigue. Here we therefore investigate whether myoelectric activity distributes evenly within RF during squat. Surface electromyograms (EMGs) were sampled proximally and distally from RF with arrays of electrodes, while thirteen healthy volunteers performed 10 consecutive squats with 20% and 40% of their body weight. The root mean square (RMS) value, computed separately for thirds of the concentric and eccentric phases, was considered to assess the proximo-distal changes in EMG amplitude during squat. The channels with variations in EMG amplitude during squat associated with shifts in the muscle innervation zone were excluded from analysis. No significant differences were observed between RF regions when considering squat phases and knee joint angles individually (P > 0.16) while a significant interaction between phase and knee joint angle with detection site was observed (P < 0.005). For the two loads considered, proximal RMS values were greater during the eccentric phase and for the more flexed knee joint position (P < 0.001). Our results suggest inferences on the degree of RF activation during squat must be made cautiously from surface EMGs. Of more practical relevance, there may be a potential for the differential adaption of RF proximal and distal regions to squat exercises.  相似文献   

17.
The purpose of this study was to examine the responses of peak torque (PT), mean power output (MP), mechanomyographic (MMG) and electromyographic (EMG) amplitudes, and mean power frequencies (MPFs) of the vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM) in men and women during dynamic muscle actions. Twelve women (mean +/- SD age = 22 +/- 3 years) and 11 men (22 +/- 3 years) performed maximal, concentric, isokinetic leg extensions at velocities of 60, 120, 180, 240, and 300 degrees x s(-1) on a Cybex 6000 dynamometer. Piezoelectric MMG-recording sensors and bipolar surface EMG electrodes were placed over the VL, RF, and VM muscles. No sex-related differences were found among the velocity-related patterns for PT, MP, MMG amplitude, MMG MPF, or EMG MPF. There were, however, sex-related differences in the patterns of EMG amplitude across velocity. The results indicated similar velocity-related patterns of increase of MP and MMG amplitude for all 3 muscles and of EMG amplitude for the VL and VM in the women. Velocity-related decreases (p 0.05) across velocity. MMG MPF increased (p < or = 0.05) only between 240 and 300 degrees x s(-1). Overall, these findings suggested that there were sex- and muscle-specific, velocity-related differences in the associations among motor unit activation strategies (EMG amplitude and MPF) and the mechanical aspects of muscular activity (MMG amplitude and MPF). With additional examination and validation, however, MMG may prove useful to practitioners for monitoring training-induced changes in muscle power output.  相似文献   

18.
A wide variety of accelerometer systems, with differing sensor characteristics, are used to detect impact loading during physical activities. The study examined the effects of system characteristics on measured peak impact loading during a variety of activities by comparing outputs from three separate accelerometer systems, and by assessing the influence of simulated reductions in operating range and sampling rate. Twelve healthy young adults performed seven tasks (vertical jump, box drop, heel drop, and bilateral single leg and lateral jumps) while simultaneously wearing three tri-axial accelerometers including a criterion standard laboratory-grade unit (Endevco 7267A) and two systems primarily used for activity-monitoring (ActiGraph GT3X+, GCDC X6-2mini). Peak acceleration (gmax) was compared across accelerometers, and errors resulting from down-sampling (from 640 to 100 Hz) and range-limiting (to ±6 g) the criterion standard output were characterized. The Actigraph activity-monitoring accelerometer underestimated gmax by an average of 30.2%; underestimation by the X6-2mini was not significant. Underestimation error was greater for tasks with greater impact magnitudes. gmax was underestimated when the criterion standard signal was down-sampled (by an average of 11%), range limited (by 11%), and by combined down-sampling and range-limiting (by 18%). These effects explained 89% of the variance in gmax error for the Actigraph system. This study illustrates that both the type and intensity of activity should be considered when selecting an accelerometer for characterizing impact events. In addition, caution may be warranted when comparing impact magnitudes from studies that use different accelerometers, and when comparing accelerometer outputs to osteogenic impact thresholds proposed in literature.  相似文献   

19.
ProjectChronic visceral leishmaniasis (VL) is an increasingly common problem in disease endemic states of India. Identification of prognosis risk factor in patients with VL may lead to preventive actions, toward decreasing its mortality in chronic individuals. Though serum Zinc levels are decreased in patients of VL, limited information is available regarding trace elements status in acute and chronic VL patients. The present study was undertaken to compare serum trace elements concentrations in acute and chronic VL patients.ProcedureAcute (mean age = 28.64 years), chronic (mean age = 23.68 years) VL patients and healthy controls (mean age = 23.05 years) who agreed to provide blood specimens for laboratory investigations participated in this study. Serum zinc (Zn), copper (Cu), iron (Fe), magnesium (Mg) and calcium (Ca) were measured spectrophotometrically using chemistry analyzer.ResultsSerum Zn concentration was comparatively much decreased in chronic VL than to acute ones (p = 0.007) while serum Mg was higher in chronic VL than acute (p = 0.002) ones. There was no statistically significant difference between acute and chronic VL in serum concentrations of Cu, Fe and Ca.ConclusionsSerum Zn levels were much decreased and serum Mg were increased in chronic VL as compared to acute cases. The serum concentrations of Fe and Ca did not show any difference between two groups. The serum Cu was increased in both groups but more in chronic ones. Serum Zn and Mg could be a potential prognosis factor for chronic VL patients. We hypothesize zinc supplementation as a chemo preventive agent for chronic VL cases, particularly in endemic areas.  相似文献   

20.
The purpose of the present study was to evaluate the intra and interday reliability of surface electromyographic amplitude values of the scapular girdle muscles and upper limbs during 3 isometric closed kinetic chain exercises, involving upper limbs with the fixed distal segment extremity on stable base of support and on a Swiss ball (relatively unstable). Twenty healthy adults performed the exercises push-up, bench-press and wall-press with different effort levels (80% and 100% maximal load). Subjects performed three maximal voluntary contractions (MVC) in muscular testing position of each muscle to obtain a reference value for root mean square (RMS) normalization. Individuals were instructed to randomly perform three isometric contraction series, in which each exercise lasted 6 s with a 2-min resting-period between series and exercises. Intra and interday reliabilities were calculated through the intraclass correlation coefficient (ICC 2.1), standard error of the measurement (SEM). Results indicated an excellent intraday reliability of electromyographic amplitude values (ICC ? 0.75). The interday reliability of normalized RMS values ranged between good and excellent (ICC 0.52–0.98). Finally, it is suggested that the reliability of normalized electromyographic amplitude values of the analyzed muscles present better values during exercises on a stable surface. However, load levels used during the exercises do not seem to have any influence on variability levels, possibly because the loads were quite similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号