首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been suggested (Chiba et al., Biochem. Biophys. Res. Communs. (1984) 120, 574) that the neurotoxic effects of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), which causes Parkinsonian symptoms in humans and other primates, are due to compounds resulting from the oxidation of MPTP by monoamine oxidase B in the brain. We reported recently that both monoamine oxidase A and B oxidize MPTP to MPDP+, the 2,3-dihydropyridinium form and that the reaction is accompanied by time-dependent, irreversible inactivation of the enzymes. Of the two forms of monoamine oxidase, the B enzyme oxidizes MPTP more rapidly and is also more sensitive to inactivation. We now wish to report that MPTP, as well as its oxidation products, MPDP+ and MPP+, the 4-phenylpyridinium form, are also potent reversible, competitive inhibitors of both monoamine oxidase A and B, particularly the former, and that the order of inhibition for the A enzyme is MPDP+ greater than MPP+ greater than MPTP, while for the B enzyme MPTP greater than MPDP+ greater than MPP+. We further report on the spectral changes and isotope incorporation accompanying the irreversible inactivation.  相似文献   

2.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a thermal breakdown product of a meperidine-like narcotic used by drug abusers as a heroin substitute, produces Parkinsonian symptoms in humans and primates. The nigrostriatal toxicity is not due to MPTP itself but to one or more oxidation products resulting from the action of monoamine oxidase (MAO) on this tertiary allylamine. Both MAO A and B catalyse the oxidation of MPTP to the 1-methyl-4-phenyl-2,3-dihydropyridinium species (MPDP+), which undergoes further oxidation to the fully aromatic 1-methyl-4-phenylpyridinium species (MPP+). These bio-oxidations are blocked by selective inhibitors of MAO A and B. Additionally, MPTP, MPDP+ and MPP+ are competitive inhibitors of MAO A and B. The A form of the enzyme is particularly sensitive to this type of reversible inhibition. Both MAO A and B also are irreversibly inactivated by MPTP and MPDP+, but not by MPP+. This inactivation obeys the characteristics of a mechanism-based or 'suicide' process. The inactivation, which is accompanied by the incorporation of radioactivity from methyl-labelled MPTP, is likely to result from covalent modification of the enzyme.  相似文献   

3.
Kinetic deuterium isotope effects for the noncompetitive, intermolecular monoamine oxidase B-catalyzed oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to the corresponding 1-methyl-4-phenyl-2,3-dihydropyridinium species MPDP+ were found to be 3.55 on Vmax and 8.01 on Vmax/Km with MPTP-6,6-d2 as the deuterated substrate. Similar values were obtained with MPTP-2,2,6-d4 and MPTP-CD3-2,2,6,6-d4. The deuterium isotope effect for the electrochemical oxidation of 1 mM MPTP-2,2,6,6-d4 was only 1.35. These results indicate that the monoamine oxidase B-catalyzed oxidation of this substrate may not proceed via a reaction pathway involving alpha-carbon deprotonation of an aminium radical intermediate. Isotope effect measurements also established that the rate of inactivation of monoamine oxidase B by MPTP is unaffected by replacement of the C-6 methylene protons with deuterons, but is retarded by replacement of the C-2 methylene protons (DKi = 1.9). The mechanism-based inactivation of monoamine oxidase B by MPTP, therefore, is likely to mediated by a species derived from the enzyme-generated 2,3-dihydropyridinium oxidation product.  相似文献   

4.
MPTP (1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is converted by monoamine oxidase B to its putative toxic metabolite MPP+ (1-methyl-4-phenylpyridinium ion) via MPDP+ (1-methyl-4-phenyl-2,3-dihydropyridinium ion). Both the parent compound and these two major metabolites were toxic to isolated rat hepatocytes with MPDP+ being the most toxic and MPP+ the least effective. MPP+ produced a slight increase in lipid peroxidation above control levels in hepatocytes, while both MPTP and MPDP+ showed antioxidant effects. The latter two compounds also protected against chemically and nonchemically induced lipid peroxidation in rat liver microsomes. MPDP+ was effective at much lower concentrations than MPTP. MPDP+ was also markedly more efficient when NADPH was used to induce microsomal lipid peroxidation. Lipid peroxidation as a consequence of oxygen radical generation is therefore unlikely to be involved in MPTP toxicity in vitro and the rationale of using chain-breaking antioxidants as protective agents in vivo needs a more careful evaluation.  相似文献   

5.
The parkinsonian-inducing compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is converted by isolated hepatocytes to its primary metabolite, the 1-methyl-4-phenyl-2,3-dihydropyridinium ion (MPDP+), and to its fully oxidized derivative, 1-methyl-4-phenylpyridinium ion (MPP+). Only the latter, however, accumulates in the cells. Incubation of hepatocytes in the presence of MPDP+ also results in the selective intracellular accumulation of MPP+. Conversion to MPP+ is more rapid and extensive after exposure to MPDP+, than with MPTP and the former is also more toxic. Addition of MPP+ itself is toxic to hepatocytes but only after a long lag period, which presumably reflects its limited access to the cell and its relatively slow intracellular accumulation. As previously shown with MPTP and MPP+, the cytotoxicity of MPDP+ is dose-dependent and is consistently preceeded by complete depletion of intracellular ATP. Similar to MPP+ but not MPTP, MPDP+ causes a comparable rate and extent of cytotoxicity and ATP loss in hepatocytes pretreated with the monoamine oxidase inhibitor pargyline. Pargyline blocks hepatocyte biotransformation of MPTP to MPP+, but it has no significant effect on MPP+ accumulation after exposure to either MPDP+ or MPP+. It is concluded that MPTP is toxic to hepatocytes via its monoamine oxidase-dependent metabolism and that MPP+ is likely to be the ultimate toxic metabolite which accumulates in the cell, causing ATP depletion and eventual cell death.  相似文献   

6.
Shi H  Noguchi N  Xu Y  Niki E 《FEBS letters》1999,461(3):196-200
We have studied the interaction of coenzyme Q with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its metabolites, 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP(+)) and 1-methyl-4-phenylpyridinium (MPP(+)), the real neurotoxin to cause Parkinson's disease. Incubation of MPTP or MPDP(+) with rat brain synaptosomes induced complete reduction of endogenous ubiquinone-9 and ubiquinone-10 to corresponding ubiquinols. The reduction occurred in a time- and MPTP/MPDP(+) concentration-dependent manner. The reduction of ubiquinone induced by MPDP(+) went much faster than that by MPTP. MPTP did not reduce liposome-trapped ubiquinone-10, but MPDP(+) did. The real toxin MPP(+) did not reduce ubiquinone in either of the systems. The reduction by MPTP but not MPDP(+) was completely prevented by pargyline, a type B monoamine oxidase (MAO-B) inhibitor, in the synaptosomes. The results indicate that involvement of MAO-B is critical for the reduction of ubiquinone by MPTP but that MPDP(+) is a reductant of ubiquinone per se. It is suggested that ubiquinone could be an electron acceptor from MPDP(+) and promote the conversion from MPDP(+) to MPP(+) in vivo, thus accelerating the neurotoxicity of MPTP.  相似文献   

7.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its primary oxidation product, 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP+), are mechanism-based inhibitors of monoamine oxidases A and B. The pseudo-first-order rate constants for inactivation were determined for various analogues of MPTP and MPDP+ and the concentrations in all redox states were measured throughout the reaction. Disproportionation was observed for all the dihydropyridiniums, but non-enzymic oxidation was insignificant. The dihydropyridiniums were poor substrates for monoamine oxidase A and, consequently, inactivated the enzyme only slowly, despite partition coefficients lower than those for the tetrahydropyridines. For monoamine oxidase B, the dihydropyridiniums were more effective inactivators than the tetrahydropyridines. Substitutions in the aromatic ring had no major effect on the inactivation of monoamine oxidase B, but the 2'-ethyl- and 3'-chloro-substituted compounds were very poor mechanism-based inactivators of monoamine oxidase A. It is clear that both oxidation steps can generate the reactive species responsible for inactivation.  相似文献   

8.
The metabolism of the selective nigrostriatal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been studied in rat brain mitochondrial incubation mixtures. The 1-methyl-4-phenylpyridinium species MPP+ has been characterized by chemical ionization mass spectral and 1H NMR analysis. Evidence also was obtained for the formation of an intermediate product which, with the aid of deuterium incorporation studies, was tentatively identified as the alpha-carbon oxidation product, the 1-methyl-4-phenyl-2,3-dihydropyridinium species MPDP+. Comparison of the diode array UV spectrum of this metabolite with that of the synthetic perchlorate salt of MPDP+ confirmed this assignment. The oxidation of MPTP to MPDP+ but not of MPDP+ to MPP+ is completely inhibited by 10(-7) M pargyline. MPDP+, on the other hand, is unstable and rapidly undergoes disproportionation to MPTP and MPP+. Based on these results, we speculate that the neurotoxicity of MPTP is mediated by its intraneuronal oxidation to MPDP+, a reaction which appears to be catalyzed by MAO. The interactions of MPDP+ and/or MPP+ with dopamine, a readily oxidizable compound present in high concentration in the nigrostriatum, to form neurotoxic species may account for the selective toxic properties of the parent drug.  相似文献   

9.
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is a neurotoxin causing symptoms that resemble those observed in patients suffering from Parkinson's disease. However, in animal or human organisms, MPTP is converted to MPDP(+) (1-methyl-4-phenyl-2,3-dihydropyridinium) and further to MPP(+) (1-methyl-4-phenylpyridinium); the latter compound is the actual neurotoxin. In this report, we demonstrate that MPDP(+) and MPP(+) can form stacking complexes with methylxanthines (caffeine and penthoxifylline), which leads to significant impairment of the biological activity of these toxins (as measured by their mutagenicity).  相似文献   

10.
The effects of the neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and its toxic metabolites MPDP+ (1-methyl-4-phenyl-2,3-dihydropyridinium) and MPP+ (1-methyl-4-phenylpyridinium) on liposomal membrane were assessed using fluorescence-polarization and carboxyfluorescein leakage studies as well as in biological membrane preparations. Of the three compounds, MPTP was found to cause the greatest perturbation of membrane followed by MPDP+ and then MPP+. The ability of the three toxins to inhibit cytochrome P-450 enzyme activity (a microsomal membrane-bound enzyme system) was also studied and their relative potency was again found to be MPTP > MPDP+ > MPP+. The changes in the physicochemical property of the liposomal membrane can be related to the ability of the neurotoxin's ability to inhibit cytochrome P-450 activity.  相似文献   

11.
1-Methyl-4-phenyl-2,3-dihydropyridinium (MPDP+), a metabolic product of the nigrostriatal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), has been shown to generate superoxide radicals during its autoxidation process. The generation of superoxide radicals was detected as a 5,5-dimethyl-1-pyrroline-N-oxide (DMPO).O2- spin adduct by spin trapping in combination with EPR techniques. The rate of formation of spin adduct was dependent not only on the concentrations of MPDP+ and oxygen but also on the pH of the system. Superoxide dismutase inhibited the spin adduct formation in a dose-dependent manner. The ability of DMPO to trap superoxide radicals, generated during the autoxidation of MPDP+, and of superoxide dismutase to effectively compete with this reaction for the available O2-, has been used as a convenient competition reaction to quantitatively determine various kinetic parameters. Thus, using this technique the rate constant for scavenging of superoxide radical by superoxide dismutase was found to be 7.56 x 10(9) M-1 s-1. The maximum rate of superoxide generation at a fixed spin trap concentration using different amounts of MPDP+ was found to be 4.48 x 10(-10) M s-1. The rate constant (K1) for MPDP+ making superoxide radical was found to be 3.97 x 10(-6) s-1. The secondary order rate constant (KDMPO) for DMPO-trapping superoxide radicals was found to be 10.2 M-1 s-1. The lifetime of superoxide radical at pH 10.0 was calculated to be 1.25 s. These values are in close agreement to the published values obtained using different experimental techniques. These results indicate that superoxide radicals are produced during spontaneous oxidation of MPDP+ and that EPR spin trapping can be used to determine the rate constants and lifetime of free radicals generated in aqueous solutions. It appears likely that the nigrostriatal toxicity of MPTP/MPDP+ leading to Parkinson's disease may largely be due to the reactivity of these radicals.  相似文献   

12.
The parkinsonian inducing agent, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), is a cyclic tertiary allylamine exhibiting good monoamine oxidase B (MAO-B) substrate properties. MAO-B catalyzes the ring alpha-carbon 2-electron bioactivation of MPTP to yield the 1-methyl-4-phenyl-2,3-dihydropyridinium species (MPDP(+)). The corresponding 5-membered ring MPTP analogue, 1-methyl-3-phenyl-3-pyrroline, also undergoes MAO-B-catalyzed oxidation to give the 2-electron oxidation product, 1-methyl-3-phenylpyrrole. Here we report the kinetic deuterium isotope effects on V(max) and V(max)/K(m) for the steady-state oxidation of 1-methyl-3-phenyl-3-pyrroline and 1-methyl-3-(4-fluorophenyl)-3-pyrroline by baboon liver MAO-B, using the corresponding pyrroline-2,2,4,5,5-d(5) analogues as the deuterated substrates. The apparent isotope effects for the two substrates were 4.29 and 3.98 on V(max), while the isotope effects on V(max)/K(m) were found to be 5.71 and 3.37, respectively. The values reported for the oxidation of MPTP by bovine liver MAO-B with MPTP-6,6-d(2), as deuterated substrate, are (D)(V(max))=3.55; (D)(V(max)/K(m))=8.01. We conclude that the mechanism of the MAO-B-catalyzed oxidation of pyrrolinyl substrates is similar to that of the tetrahydropyridinyl substrates and that a carbon-hydrogen bond cleavage step is, at least partially, rate determining.  相似文献   

13.
1-Methyl-4-phenyl-2,3-dihydropyridinium perchlorate (MPDP+), an intermediate in the metabolism of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, was found to generate superoxide radicals during its autoxidation process. The generation of superoxide radicals was detected by their ability to reduce ferricytochrome c. Superoxide dismutase inhibited this reduction in a dose-dependent manner. The rate of reduction of ferricytochrome c was dependent not only on the concentration of MPDP+ but also on the pH of the system. Thus, the rate of autoxidation of MPDP+ and the sensitivity of this autoxidation to superoxide dismutase-inhibitable ferricytochrome c reduction were both augmented, as the pH was raised from 7.0 to 10.5. The rate constant (Kc) for the reaction of superoxide radical with ferricytochrome c to form ferricytochrome c was found to be 3.48 x 10(5) M-1 s-1. The rate constant (KMPDP+) for the reaction of MPDP+ with ferricytochrome3+ c was found to be only 4.86 M-1 s-1. These results, in conjunction with complexities in the kinetics, lead to the proposal that autoxidation of MPDP+ proceeds by at least two distinct pathways, one of which involves the production of superoxide radicals and hence is inhibitable by superoxide dismutase. It is possible that the free radicals so generated could induce oxidative injury which may be central to the MPTP/MPDP(+)-induced neuropathy.  相似文献   

14.
To obtain direct evidence of the involvement of aldehyde oxidase (AO), a cytosolic molybdoflavoenzyme, in the metabolism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we investigated thein vitrometabolism of MPTP and the two-electron-oxidized 1-methyl-4-phenyl-2,3-dihydropyridinium species (MPDP+) by using mouse liver enzyme preparations. Incubation of MPTP with mitochondrial fraction gave exclusively 1-methyl-4-phenylpyridinium (MPP+); this reaction was inhibited by deprenyl, a monoamine oxidase (MAO)-B inhibitor, and KCN. When the mitochondrial fraction was combined with the cytosolic fraction, MPP+formation was markedly decreased, while a large amount of 1-methyl-4-phenyl-5,6-dihydro-2-pyridone (MPTP lactam) was newly formed. Incubation of MPDP+with the cytosolic fraction led to rapid formation of MPTP lactam with concomitant disappearance of the substrate. The cytosol-dependent formation of MPTP lactam was inhibited by known AO inhibitors, such as menadione, norharman, and KCN. The activity of cytosol in MPTP lactam formation was completely duplicated by purified mouse liver AO. These results indicate that AO catalyzes the metabolic conversion of MPDP+, produced from MPTP by MAO-B, to MPTP lactam. This metabolic pathway might be an important detoxification route, averting the formation of toxic MPP+.  相似文献   

15.
Expression of the selective nigrostriatal neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine [MPTP] requires its bioactivation by MAO B which leads to the formation of potentially reactive metabolites including the 2-electron oxidation product, 1-methyl-4-phenyl-2,3-dihydropyridinium species [MPDP+] and the 4-electron oxidation product, the 1-methyl-4-phenyl pyridinium species [MPP+]. The latter metabolite accumulates in brain striatal tissues, is a substrate for dopaminergic active uptake systems and is an inhibitor of mitochondrial NADH dehydrogenase, a respiratory chain enzyme located in the inner mitochondrial membrane. In intact mitochondria this inhibition of respiration may be facilitated by active uptake of MPP+, a process dependent on the membrane electrical gradient. In considering possible mechanisms involved in the biochemical effects of MPP+, its redox cycling potential appears to be much lower than its chemical congener paraquat, based on attempted radical formation by chemical or enzymic reduction. Theoretically, a carbon-centered radical intermediate could be formed by 1-electron reduction of MPP+, or by 1-electron oxidation of 1-methyl-4-phenyl-1,2-dihydropyridine, the free base form of MPDP+. The 1-electron reduction of such a radical could form 1-methyl-4-phenyl-1,4-dihydropyridine [DHP]. Synthetic DHP is neurotoxic in C57B mice, and its administration leads to the formation of MPP+ in the brain, presumably through rapid auto-oxidation. The hydrolysis of DHP would yield 3-phenylglutaraldehyde and methylamine. Recent studies demonstrating the formation of methylamine in brain mitochondrial preparations containing MPTP support our suggestion that DHP may be a brain metabolite of MPTP.  相似文献   

16.
The reaction of the neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) with monoamine oxidase from a variety of tissues including rat and monkey brain, bovine liver, and human placenta and platelets was found to yield, as a primary product, a reactive photosensitive substance with an absorbance maximum at 345 nm which is not the cation 1-methyl-4-phenylpyridinium ion previously reported as a monoamine oxidase-MPTP metabolite in vivo and in vitro. Our results suggest that the 1-methyl-4-phenyl-pyridinium ion is probably only generated in subsequent nonenzymatic transformations of this reactive monoamine oxidase metabolite. This substance was found to specifically inactivate the B-form of monoamine oxidase by a photo-induced mechanism and to react directly with NADPH and dopamine. Properties of the metabolite and potential significance of its reactions to MPTP neurotoxicity are discussed.  相似文献   

17.
Explants of embryonic rat substantia nigra in organotypic culture are sensitive to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) at concentrations approximating the doses given in vivo to monkeys. Fluorescence microscopy and 3H-dopamine uptake measurements reveal that the toxicity is selective for dopamine neurons, whereas other neurons and cells in the culture appear normal by phase contrast microscopy. Reduced MPTP (piperidine analog) is inactive in the tissue culture model, while fully oxidized MPTP (pyridinium analog) destroys dopamine neurons. Pargyline and deprenyl, two monoamine oxidase inhibitors, inhibit the neurotoxic action of MPTP. Pargyline and deprenyl also protect monkeys in vivo. The results implicate monoamine oxidase in the mechanism of action of MPTP. Two possible mechanisms for protection by monoamine oxidase are discussed.  相似文献   

18.
2-Methyl-1,2,3,4-tetrahydro-beta-carboline (2-Me-THbetaC) and 2,9-dimethyl-1,2,3,4-tetrahydro-beta-carboline (2,9-diMe-THbetaC) are naturally occurring analogs of the Parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), whereas their corresponding aromatic 2-methyl-beta-carbolinium cations resemble 1-methyl-4-phenylpyridinium (MPP(+)) and are considered potential toxins involved in Parkinson's disease (PD). To become toxicants, 2-methyltetrahydro-beta-carbolines need to be oxidized (aromatized) by human metabolic enzymes to pyridinium-like (beta-carbolinium) cations as occur with MPTP/MPP(+) model. In contrast to MPTP, human MAO-A or -B were not able to oxidize 2-Me-THbetaC to pyridinium-like cations. Neither, cytochrome P-450 2D6 or a mixture of six P450 enzymes carried out this oxidation in a significant manner. However, 2-Me-THbetaC and 2,9-diMe-THbetaC were efficiently oxidized by horseradish peroxidase (HRP), lactoperoxidase (LPO), and myeloperoxidase (MPO) to 2-methyl-3,4-dihydro-beta-carbolinium cations (2-Me-DHbetaC(+), 2,9-diMe-DHbetaC(+)) as the main products, and detectable amount of 2-methyl-beta-carbolinium cations (2-Me-betaC(+), 2,9-diMe-betaC(+)). The apparent kinetic parameters (k(cat), k(4)) were similar for HRP and LPO and higher for MPO. Peroxidase inhibitors (hydroxylamine, sodium azide, and ascorbic acid) highly reduced or abolished this oxidation. Although MPTP was not oxidized by peroxidases; its intermediate metabolite 1-methyl-4-phenyl-2,3-dihydropyridinium cation (MPDP(+)) was efficiently oxidized to MPP(+) by heme peroxidases. It is concluded that heme peroxidases could be key catalysts responsible for the aromatization (bioactivation) of endogenous and naturally occurring N-methyltetrahydro-beta-carbolines and related protoxins to toxic pyridinium-like cations resembling MPP(+), suggesting a role for these enzymes in toxicological and neurotoxicological processes.  相似文献   

19.
The mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced toxicity to isolated hepatocytes was studied. MPTP was more toxic to hepatocytes than its major metabolite, 1-methyl-4-phenylpyridine (MPP+); this may, in part, be explained by the lesser permeability of the hepatocyte plasma membrane to the cation compared to its parent compound, MPTP. Loss of cell viability was preceded by plasma membrane bleb formation and disturbance of intracellular Ca2+ homeostasis. MPTP caused a rapid depletion of the mitochondrial Ca2+ pool which was followed by a marked and sustained elevation of cytosolic free Ca2+ concentration. This increase of cytosolic Ca2+ level appeared to be associated with the impairment of the cell's Ca2+ extrusion system since the plasma membrane Ca2+-ATPase was markedly inhibited in MPTP-treated hepatocytes. Preincubation of hepatocytes with inhibitors of monoamine oxidase type B, but not A, protected the cells from MPTP-induced cytotoxicity. Moreover, the monoamine oxidase B inhibitor, pargyline, prevented the rise in cytosolic free Ca2+ concentration and partially protected the plasma membrane Ca2+-ATPase from inhibition by MPTP. As observed with MPTP, MPP+ caused an extensive loss of mitochondrial Ca2+ and significantly decreased the rate of Ca2+ efflux from hepatocytes. However, MPP+ was without effect on the plasma membrane Ca2+-ATPase. In conclusion, our studies demonstrate that MPTP caused a substantial elevation of cytosolic Ca2+ which preceded loss of cell viability and we propose that calcium ions are of major importance in the mechanism of MPTP- and MPP+-induced toxicity in hepatocytes.  相似文献   

20.
The one-electron reduction product of 1-methyl-4-phenyl-2,3-dihydropyridinium ion has been generated by pulse radiolysis and its absorption spectrum recorded. This radical was found to decay by second-order kinetics (2k = 9.5 x 10(8) M-1 s-1) to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenyl-2,3-dihydropyridinium ion. Reactions of the above radical species and that formed by one-electron reduction of 1-methyl-4-phenylpyridinium ion, which can also be generated by one-electron oxidation of 1-methyl-4-phenyl-1,2-dihydropyridine, with a number of molecules of biochemical interest have been studied. The one-electron reduction product of oxidised nicotinamide adenine dinucleotide efficiently reduced 1-methyl-4-phenyl-2,3-dihydropyridinium ion (k = 2.2 x 10(9) M-1 s-1). The relevance of these results in relation to redox cycling, a possible mechanism for 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号