首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We isolated a group of genes that are rapidly and transiently induced in 3T3 cells by tetradecanoyl phorbol acetate (TPA). These genes are called TIS genes (for TPA-inducible sequences). Epidermal growth factor (EGF), fibroblast growth factor (FGF), and TPA activated TIS gene expression with similar induction kinetics. TPA pretreatment to deplete protein kinase C activity did not abolish the subsequent induction of TIS gene expression by epidermal growth factor or fibroblast growth factor; both peptide mitogens can activate TIS genes through a protein kinase C-independent pathway(s). We also analyzed TIS gene expression in three TPA-nonproliferative variants (3T3-TNR2, 3T3-TNR9, and A31T6E12A). The results indicate that (i) modulation of a TPA-responsive sodium-potassium-chloride transport system is not necessary for TIS gene induction either by TPA or by other mitogens and (ii) TIS gene induction is not sufficient to guarantee a proliferative response to mitogenic stimulation.  相似文献   

2.
Mitogen-activated protein (MAP) kinase is a serine/threonine-specific protein kinase which is activated in response to various mitogenic agonists (e.g., epidermal growth factor, insulin, and the tumor promoter tetradecanoyl phorbol acetate [TPA]) and requires both threonine and tyrosine phosphorylation for activity. This enzyme has recently been shown to be identical or closely related to pp42, a protein which becomes tyrosine phosphorylated in response to mitogenic stimulation. Neither the kinases which regulate MAP kinase/pp42 nor the in vivo substrates for this enzyme are known. Because MAP MAP kinase is activated and phosphorylated in response both to agents which stimulate tyrosine kinase receptors and to agents which stimulate protein kinase C, a serine/threonine kinase, we have examined the regulation and phosphorylation of this enzyme in 3T3-TNR9 cells, a variant cell line partially defective in protein kinase C-mediated signalling. In this communication, we show that in the 3T3-TNR9 variant cell line, TPA does not cause the characteristically rapid phosphorylation of pp42 or the activation and phosphorylation of MAP kinase. This defective response is not due to the absence of the MAP kinase/pp42 protein itself because both tyrosine phosphorylation of MAP kinase/pp42 and its enzymatic activation could be induced by platelet-derived growth factor in the 3T3-TNR9 cells. Thus, the defect in these variant cells apparently resides in some aspect of the regulation of MAP kinase phosphorylation. Since the 3T3-TNR9 cells are also defective with respect to the TPA-induced increase in ribosomal protein S6 kinase, these in vivo results reinforce the earlier in vitro finding that MAP kinase can regulate S6 kinase activity. These findings suggest a key role for MAP kinase in a kinase cascade cascade involved in the control of cell proliferation.  相似文献   

3.
To investigate the mechanism of the morphological changes induced in cells by tumor-promoting phorbol esters, we isolated a 3T3 cell variant which was morphologically unresponsive to phorbol esters and analyzed the activation of protein kinase C induced by the phorbol esters in it. The variant resembled the parent cells in its activation and appeared to have been altered at some step distal to the early events of protein kinase C activation.  相似文献   

4.
Proteins of the ras family of oncogenes have been implicated in signal transduction pathways initiated by protein kinase C (PKC) and by tyrosine kinase oncogenes and receptors, but the role that ras plays in these diverse signalling systems is poorly defined. The activity of ras proteins has been shown to be controlled in part by a cellular protein, GAP (GTPase-activating protein), that negatively regulates p21c-ras by enhancing its intrinsic GTPase activity. Thus, overexpression of GAP provides a tool for determining the step(s) in signal transduction dependent on p21c-ras activity. In this paper, we report that overexpression of GAP blocks the phorbol ester (tetradecanoyl phorbol acetate [TPA])-induced activation of p42 mitogen-activated protein kinase (p42mapk), c-fos expression, and DNA synthesis. GAP overexpression did not block responses to serum or fluoroaluminate. Moreover, not all biochemical events elicited by TPA were affected by GAP overexpression, as increased glucose uptake and phosphorylation of MARCKS, a major PKC substrate, occurred normally. Reduction of GAP expression to near normal levels restored the ability of the cells to activate p42mapk in response to TPA. These findings suggest that ras and GAP together play a key role in a PKC-dependent signal transduction pathway which leads to p42mapk activation and cell proliferation.  相似文献   

5.
Autophosphorylation of 3T3 cells, utilizing endogenous membrane protein kinase, can be detected by incubating the cells with μgM32P-ATP. The phosphorylation activity of growing cells is two to four-fold greater than quiescent ones. In this study, the increased phosphorylation activity of serum-stimulated cells was examined. Phosphorylation, measured at times after serum stimulation of quiescent cultures, was found to increase in early G1 and to reach a maximum prior to DNA synthesis. This increase in stimulated cells was dependent on RNA and protein synthesis but not on DNA synthesis. The increased activity decayed quickly (half-life approximately 2–3 hours) in the presence of cycloheximide, while the basal activity in quiescent cells was relatively unchanged. Insulin, prostaglandin E1 or prostaglandin F2α were also found to bring about the same increase in phosphorylation as serum, although in contrast with serum they caused only a small percentage of the culture to synthesize DNA. The results suggest that enhanced phosphorylation activity is a G1 event. It does not depend on subsequent DNA synthesis. Phosphorylation may be one of the biochemical steps in G1, necessary but not sufficient for cells to move into S phase.  相似文献   

6.
The identity of the genetic defect(s) in Swiss 3T3 TNR-2 and TNR-9 that confers nonresponsiveness to the proliferative effect of 12-0-tetradecanoylphorbol-13-acetate (TPA) is not known. In BALB/c 3T3 cells, loss (via mutation) of a specific membrane ion transport system, the furosemide-sensitive Na+K+Cl- cotransporter, is associated with decreased responsiveness to TPA. In this study, the transport properties of parental Swiss 3T3 cells and the TPA-nonresponsive lines TNR-2 and TNR-9 were determined in the presence and absence of TPA. When the rate of 86Rb+ efflux (as a tracer for K+) was measured from each of the three cell lines, a furosemide- and TPA-inhibitable component of efflux was clearly evident in parental and TNR-9 cells but was virtually absent in TNR-2 cells. 86Rb+ influx measurements indicated the presence in parental 3T3 cells and the TNR-9 line of a substantial furosemide-sensitive flux that could be inhibited by TPA. In contrast, much less furosemide-sensitive influx was present in 3T3-TNR-2 cells and it was relatively unaffected by TPA. In both parental 3T3 and 3T3-TNR-2 cells, most of the furosemide-sensitive 86Rb+ influx is dependent on extracellular Na+ and Cl-. The apparent affinities of the transporter for these two ions, as well as for K+, were similar in both cell lines. In parental cells, the inhibition of furosemide-sensitive 86Rb+ influx was quite sensitive to TPA (K1/2 approximately equal to 1 nM) and occurred very rapidly after phorbol ester exposure. As expected because of its volume-regulatory role, inhibition of Na+K+Cl- cotransport by TPA in parental cells caused a substantial reduction in cell volume (25%). In contrast, because of the reduced level of cotransport activity in TNR-2 cells, TPA had only a slight effect on cell volume. These results suggest that the genetic defect in 3T3-TNR-2 cells (but not TNR-9 cells) responsible for nonresponsiveness to phorbol esters may be the reduction of Na+K+Cl- cotransport activity. Thus this membrane transport system may be an important component of the signal transduction pathway used by phorbol esters in 3T3 cells.  相似文献   

7.
Protein degradation in 3T3 cells and tumorigenic transformed 3T3 cells   总被引:1,自引:0,他引:1  
To study the relation of overall rates of protein degradation in the control of cell growth, we determined if transformation of fibroblasts to tumorigenicity affected their rates of degradation of short- and long-lived proteins. Rates of protein degradation were measured in nontumorigenic mouse Balb/c 3T3 fibroblasts, and in tumorigenic 3T3 cells transformed by different agents. Growing 3T3 cells, and cells transformed with Moloney sarcoma virus (MA-3T3) or Rous sarcoma virus (RS-3T3), degraded short- and long-lived proteins at similar rates. Simian virus 40 (SV-3T3)- and benzo(a)pyrene (BP-3T3)-transformed cells had slightly lower rates of degradation of both short- and long-lived proteins. Reducing the serum concentration in the culture medium from 10% to 0.5%, immediately caused about a twofold increase in the rate of degradation of long-lived proteins in 3T3 cells. Transformed lines increased their rates of degradation of long-lived proteins only by different amounts upon serum deprivation, but none of them to the same extent as did 3T3. Greater differences in the degradation rates of proteins were seen among the transformed cells than between 3T3 cells and some transformed cells. Thus, there was no consistent change in any rate of protein degradation in 3T3 cells due to transformation to tumorigenicity.  相似文献   

8.
K562 cells were stably transfected with a plasmid vector constitutively expressing a full-length human c-myb gene. Parental cells possess the dual potential of inducibility of cellular differentiation along two lineages, i.e., erythroid and megakaryocytic. The resulting lineage is dependent on the inducing agent, with a number of compounds being competent to various degrees for inducing erythroid differentiation, while the tumor promoter tetradecanoyl phorbol acetate (TPA) induces a macrophage-like morphology with enhanced expression of proteins associated with megakaryocytes. Exogeneous expression of c-myb in transfected cell lines abrogated erythroid differentiation induced by cadaverine or cytosine arabinoside as assessed by hemoglobin production. However, TPA-induced megakaryocytic differentiation was left intact, as assessed by cell morphology, cytochemical staining, and the expression of the megakaryocytic antigens. These results indicate that c-Myb and protein kinase C play important roles in cellular differentiation of K562 cells and suggest that agents which directly modulate protein kinase C can induce differentiation in spite of constitutively high levels of c-Myb.  相似文献   

9.
A detergent extract isolated from the enriched fraction of integral membrane proteins of Jurkat cells showed an enhanced tyrosine phosphate level when phosphorylated in the presence of phorbol 12-myristate 13-acetate (TPA) and phorbol 12,13-dibutyrate (PDBu). The enhanced tyrosine phosphorylation was observed when the reaction time exceeded 6 min; at shorter incubation times, however, TPA inhibited tyrosine phosphorylation. When the reaction proceeded for a constant time period longer than 6 min and phorbol esters were added at different times after the start of the reaction, two phases of an enhanced tyrosine phosphorylation of a 50 kDa protein were observed. An increased phosphorylation of the 50 kDa protein was correlated with an enhanced phosphorylation of poly(Glu4,Tyr1). The two phases of enhanced phosphorylation differed in their TPA and PDBu requirement and in the proteins that were tyrosine phosphorylated. Studies with protein kinase C (PKC) inhibitors showed a negatively correlated effect on the enhanced tyrosine phosphorylation in phase I; tyrosine phosphorylation was further augmented. In phase II the regulation of tyrosine phosphorylation correlated with the efficiency of the PKC inhibitors on the alpha-isoform of PKC which was found in the cell extract. Separation of the proteins present in the investigated cell extract by gel filtration revealed a co-migration of the alpha-PKC and the 50 kDa protein. The metabolic labeling of intact Jurkat cells with 32Pi indicated that phorbol esters are also able to induce tyrosine phosphorylation of the 50 kDa protein underin vivo conditions. These data suggest an activation of two different tyrosine phosphorylation pathways by phorbol esters involving tyrosine phosphorylation/autophosphorylation of a 50 kDa kinase, as confirmed by 5'-p-fluorosulfonylbenzoyladenosine (FSBA) labeling, that are accurately regulated by alpha-PKC.  相似文献   

10.
Protein tyrosine kinases play fundamental roles in the transduction of signals that regulate cell growth, differentiation, and functional responses to a diversity of external stimuli. It is therefore likely that understanding protein tyrosine kinase activity in NK cells will be crucial in further defining the intracellular regulation of their unique and specialized functions. We investigated the role of protein tyrosine phosphorylation in receptor-mediated signal transduction using stimuli known to play major roles in regulating NK cell activation. Immunoblot analyses with antiphosphotyrosine antibodies demonstrated that IL-2, a potent stimulus for NK cell proliferation and an agent that enhances NK cytotoxic function, induced the tyrosine phosphorylation of at least eight proteins in clonal CD16+/CD3-human NK cells. In contrast, IL-4, which modulates NK cell function without inducing proliferation, had no apparent effect on protein tyrosine phosphorylation. Because protein kinase C (PKC) activation plays a prominent, yet distinct role in NK cell-mediated cytolytic reactions, we next investigated whether PKC activation affects NK cell protein tyrosine phosphorylation. Surprisingly, PKC-activating agents, including the phorbol esters 12-O-tetradecanoylphorbol-13-acetate and 4 beta-phorbol 12, 13-didecanoate, as well as the synthetic diacylglycerol,1-oleoyl-2-acetylglycerol, also induced the tyrosine phosphorylation of a distinct set of proteins. The 4 beta-phorbol 12,13-didecanoate homolog, 4 alpha-phorbol 12,13-didecanoate, which does not activate PKC, also failed to induce protein tyrosine phosphorylation. Further, the PKC inhibitor, 1-O-hexadecyl-2-O-methylglycerol blocked tyrosine phosphorylation induced by 1-oleoyl-2-acetylglycerol. In subsequent studies, both CD8+ and CD8- NK clones were found to express the src-family tyrosine kinase, p56lck, which was detected by immunoblot analysis with anti-p56lck antiserum. In both types of clonal NK cell lines, IL-2 and 12-O-tetradecanoyl-phorbol appeared to stimulate the differential phosphorylation of p56lck as evidenced by the appearance of higher molecular mass isoforms on SDS-polyacrylamide gels. Thus, our results identify and characterize a potential role for tyrosine phosphorylation and for the lymphocyte-specific tyrosine kinase p56lck in the signaling events that regulate NK cell activation.  相似文献   

11.
We have used adenoviral vectors to express dominant negative variants of protein kinase C epsilon (PKCepsilon) or mitogen kinase kinase 1 (MKK1) to investigate their involvement in phorbol ester-induced connexin-43 (Cx43) phosphorylation in cardiomyocytes. Stimulation of cardiomyocytes with phorbol 12-myristate 13-acetate (PMA) increased the fraction of the slower migrating (> or = 45 kDa) and more extensively phosphorylated Cx43 species. Expression of dominant negative MKK1 did not prevent the effect of PMA on Cx43 phosphorylation. Selective inhibition of PKCE significantly decreased baseline levels of Cx43 phosphorylation and the PMA-induced accumulation of > or = 45 kDa Cx43. Thus, production of the more extensively phosphorylated species of Cx43 in cardiomyocytes by PMA requires activation of PKCepsilon.  相似文献   

12.
A system of digitonin-permeabilized islet cells was developed to characterize Ca2+- and calmodulin-dependent protein phosphorylation further and to determine whether activation of this membrane-bound process was sufficient for initiation of Ca2+-stimulated insulin secretion. The efficacy of digitonin in permeabilizing the plasma membrane was assessed by Trypan Blue exclusion, by extracellular leakage of lactate dehydrogenase, and by permeability to [gamma-32P]ATP. This treatment did not detectably alter the ultrastructure of the permeabilized cells. Digitonin was equally effective when presented to islet cells that had been previously dispersed or directly to intact isolated islets. The Ca2+- and calmodulin-dependent phosphorylation of endogenous membrane-bound substrates could be demonstrated in the permeabilized cells incubated with [gamma-32P]ATP. This activity displayed characteristics that were similar to those described for the protein kinase measured in subcellular fractions and was dependent on addition of exogenous calmodulin, indicating that calmodulin had been removed from the kinase by permeabilization of the cells. Ca2+-dependent insulin release by the digitonin-permeabilized islet was demonstrated, with half-maximal release occurring at 0.1 microM-free Ca2+ and maximal secretion at 0.2 microM-free Ca2+. Under these conditions, calmodulin did not further enhance insulin release, although a stimulatory effect of calmodulin was observed in the absence of free Ca2+. These studies indicate that the permeabilized-islet model will be useful in dissecting out the factors involved in Ca2+-activated insulin secretion.  相似文献   

13.
Tyrosine phosphorylation of cellular proteins induced by heparin-binding growth factor 1 (HBGF-1) was studied by using the murine fibroblast cell line NIH 3T3 (clone 2.2). HBGF-1 specifically induced the rapid tyrosine phosphorylation of polypeptides of Mr 150,000, 130,000, and 90,000 that were detected with polyclonal and monoclonal antiphosphotyrosine (anti-P-Tyr) antibodies. The concentration of HBGF-1 required for half-maximal induction of tyrosine phosphorylation of the Mr-150,000 Mr-130,000, and Mr-90,000 proteins was approximately 0.2 to 0.5 ng/ml, which was consistent with the half-maximal concentration required for stimulation of DNA synthesis in NIH 3T3 cells. HBGF-1-induced tyrosine phosphorylation of the Mr-150,000 and Mr-130,000 proteins was detected within 30 s, whereas phosphorylation of the Mr-90,000 protein was not detected until 3 min after HBGF-1 stimulation. All three proteins were phosphorylated maximally after 15 to 30 min. Phosphoamino acid analysis of the Mr-150,000 and Mr-90,000 proteins confirmed the phosphorylation of these proteins on tyrosine residues. Phosphorylation of the Mr-150,000 and Mr-90,000 proteins occurred when cells were exposed to HBGF-1 at 37 degrees C but not at 4 degrees C. Exposure of cells to sodium orthovanadate, a potent P-Tyr phosphatase inhibitor, before stimulation with HBGF-1 resulted in enhanced detection of the Mr-150,000, Mr-130,000, and Mr-90,000 proteins by anti-P-Tyr antibodies. Anti-P-Tyr affinity-based chromatography was used to adsorb the HBGF-1 receptor affinity labeled with 125I-HBGF-1. The cross-linked HBGF-1 receptor-ligand complex was eluded with phenyl phosphate as two components: Mr 170,000 and 150,000. P-Tyr, but not phosphoserine or phosphothreonine, inhibited adsorption of the (125)I-HBGF-1-receptor complex to the anti-P-Tyr antibody matrix. Treatment of cells with sodium orthovanadate also enhanced recognition of the cross-linked (125)I-HBGF-1-receptor complex by the anti-P-Tyr matrix. These data suggest that (i) the (125)I-HBGF-1-receptor complex is phosphorylated on tyrosine residues and (ii) HBGF-1-induced signal transduction involves, in part, the tyrosine phosphorylation of at least three polypeptides.  相似文献   

14.
The potent tumor promoter 12-0-tetradecanoyl phorbol-13-acetate (TPA) is alos an excellent mitogen for 3T3 cells. We have previously isolated two independent variants, 3T3-TNR-2 and 3T3-TNR-9, that are unable to divide in response to TPA (Butler-Gralla and Herschman, 1981). We have now tested tow components of the pleiotypic response, elevation of 2-deoxyglucose uptake and ornithine decarboxylase induction, in these cells. Basal levels of 2-deoxyglucose uptake were nearly tenfold higher in confluent 3T3-TNR-2 and 3T3-TNR-9 cells than in 3T3 cells. In contrast, basal ornithine decarboxylase levels were five- to tenfold lower in the variants. TPA stimulation of 2-deoxyglucose uptake was as great in absolute terms in the variant cell lines as that of 3T3 cells but was only half that observed with serum. TPA was unable to induce any elevation of ornithine decarboxylase in 3T3-TNR-9 cells. treated with TPA, the maximal specific activity in the variant was less than the unstimulated value for 3T3 cells.  相似文献   

15.
The effects of phorbol esters, dioctanoylglycerol (DiC8), and micromolar Ca2+ on protein phosphorylation and catecholamine secretion in digitonin-treated chromaffin cells were investigated. [gamma-32P]ATP was used as a substrate for phosphorylation in the permeabilized cells. 12-O-Tetradecanoylphorbol-13-acetate (TPA) enhanced Ca2+-dependent catecholamine secretion from digitonin-permeabilized cells. The enhancement required MgATP. Only those phorbol esters which activate protein kinase C in vitro enhanced both catecholamine secretion and protein phosphorylation. DiC8, which activates protein kinase C in vitro and mimics phorbol ester effects in situ, also enhanced both catecholamine secretion and protein phosphorylation. Preincubation of intact cells with TPA or DiC8 was necessary for maximal effects on both catecholamine secretion and protein phosphorylation in subsequently digitonin-treated chromaffin cells. The TPA-induced enhancement of protein phosphorylation was almost entirely Ca2+-independent, whereas DiC8-induced enhancement of protein phosphorylation was mainly Ca2+-dependent. Micromolar Ca2+ alone also enhanced the phosphorylation of a large number of proteins. Most of the proteins phosphorylated in response to TPA or potentiated by DiC8 in combination with Ca2+ were also phosphorylated by micromolar Ca2+ in the absence of exogenous protein kinase C activators. In intact cells, 1,1-dimethyl-4-phenylpiperazinium (DMPP) induced Ca2+-dependent phosphorylation of at least 17 proteins which were detected by two-dimensional gel electrophoresis. All of the proteins phosphorylated upon incubation with 1,1-dimethyl-4-phenylpiperazinium were phosphorylated upon incubation with micromolar Ca2+ in digitonin-treated cells. These results demonstrate that TPA- or DiC8-enhanced Ca2+-dependent catecholamine secretion is associated with enhanced protein phosphorylation which is probably mediated by protein kinase C and that activation of protein kinase C modulates catecholamine secretion from digitonin-treated chromaffin cells.  相似文献   

16.
The expression of members of the Ca2+ and phospholipid-dependent protein kinase (PKC) family were studied in murine Swiss 3T3 cells. In addition to PKC-alpha, the presence of immunoreactive PKC-delta, -epsilon, and zeta was detected. Treatment with 500 nM 12-0-tetradecanoylphorbol-13-acetate (TPA) led to the down-regulation of alpha, delta, and epsilon isoforms, but not that of zeta. Higher concentrations of TPA similarly had no effect on the level of PKC-zeta. In contrast to PKC-alpha, the membrane localization of PKC-delta, -epsilon, and -zeta was not enhanced by extraction in Ca(2+)-containing buffers, whereas acute TPA treatment increased membrane association of PKC-alpha, -delta, and -epsilon but not that of PKC-zeta.  相似文献   

17.
The phorbol ester tumor promoters induce multiple cellular responses in cell culture, including mitogenesis. We have analyzed 3 variants of mouse 3T3 cells mitogenically unresponsive to the phorbol esters for phorbol ester receptors. All resembled control 3T3 cells in their specific [3H]phorbol 12,13-dibutyrate binding. The variants thus appear to be altered at steps distal to receptor occupancy in the mitogenic response to the phorbol esters.  相似文献   

18.
The effects of the pyrethroids fucythrinate, cyfluthrin, bioallethrin and resmethrin on metabolic cooperation between V79 cells were investigated. Addition offucythrinate to cocultures of 6-thioguanine-resistant and 6-thioguanine-sensitive V79 cells significantly increased the mutant cell recovery, indicating inhibition of intercellular communication. No such effect was observed by the other pyrethroids tested. To compare the modes of action of TPA-, DDT-, and pyrethroid-induced inhibition of intercellular communication, co-exposure experiments were undertaken. Addition of TPA, together with increasing doses of fenvalerate or fucythrinate, produced a synergistic response. Various combinations of fenvalerate-, fucythrinate- and DDT-exposure gave results in accordance with an additive response. The result suggest different pathways of action for TPA and the insecticides investigated in this study.Abbreviations DDT 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane - DMSO dimethyl sulfoxide - 6-TG 6thioguanine - TPA 12-0-tetradecanoyl phorbol-13-acetate  相似文献   

19.
The asialoglycoprotein (ASGP) receptor on Hep G2 cells undergoes constitutive recycling and ligand endocytosis in the presence of phorbol dibutyrate, at a 50% reduced rate relative to control cells (Fallon, R. J., and Schwartz, A. L. (1986) J. Biol. Chem. 261, 15081-15089). The relevance of receptor phosphorylation to these events was investigated by selective immunoprecipitation of surface receptors with polyclonal anti-human ASGP antiserum and pulse-chase labeling with [32P]orthophosphate to identify subcellular locations of initial receptor phosphorylation events as well as the eventual fate of phosphorylated receptor during recycling. The surface immunoprecipitation method recovers greater than 95% of surface ASGP receptors and only 5% or less of intracellular (brief[35S]methionine pulse-labeled) receptors. With this assay we detected low levels of ASGP receptor phosphorylation at the cell surface in control cells (0.1 mol of P/mol of R) which were rapidly (less than 1 min) stimulated 20-fold by 400 nM phorbol dibutyrate addition (1.7 mol of P/mol of R). Staurosporine, a protein kinase C inhibitor, blocks this stimulation by phorbol. Receptor phosphorylation at early time points in the presence of phorbol esters was restricted to the plasma membrane. Subsequent chase in the presence of excess unlabeled phosphate and phorbol esters lowered [32P] ATPi specific activity by 68% at 1 h. Surface immunoprecipitation during this chase period showed the phosphorylated ASGP receptors were rapidly lost from the cell surface (t1/2 = 20 min). In contrast, examination of intracellular receptor during the pulse-chase experiment in phorbol dibutyrate-treated cells showed the presence of phosphorylated pool(s) of ASGP receptors which were detectable for 6 h of chase. Since no labeled receptor can be detected at the cell surface at this time, the described intracellular phosphorylated receptors are in a non-recycling pool.  相似文献   

20.
The mitogenicity of 12-O-tetradecanoyl phorbol-13-acetate (TPA) for normal human peripheral blood mononuclear cells was investigated. TPA was a weak mitogen giving simulation indices in the range 2.5 to 10.5 at the optimum concentration (10 ng/ml) compared with 39 to 95 for phytohemagglutinin (PHA) at its optimum concentration (1 μg/ml). No absolute requirement for a comitogen could be demonstrated, however TPA and PHA were synergistic in their action at low concentrations, and additive at optimum concentrations. Cell fractionation by rosetting with sheep erythrocytes showed that most of the proliferative response to TPA occurred in the T-cell fraction, however some proliferation of non-T cells was also observed. Surface marker studies showed that this could not have been due to residual T cells in the non-T fraction. A small number of monocytes was required for optimal proliferation of T cells in response to TPA. After a 3-day incubation with mitogen, the responding cell populations were tested for binding of a range of antibodies specific for T-cell (OKT3, OKT4, OKT8, and OKT11), “natural killer” (NK) cell (anti-Leu-7), monocyte (FMC17), and B-cell (anti-human immunoglobulin) surface markers. These experiments indicated that the responding cell types were T cells and B cells, but not NK cells or monocytes. Marked modulation of the antigen detected by OKT4, and to a lesser extent that detected by OKT3, in the presence of TPA precluded determination of which subpopulations of T cells proliferated in response to TPA. TPA was also tested for its ability to “maintain” activated T-cell blasts in a standard assay for interleukin 2 (IL-2). Mitogen-activated T cells were strongly responsive to TPA in this assay, but progressively lost responsiveness when maintained in crude IL-2 for about 2 weeks. Thus TPA does not have “maintenance” (i.e., IL-2-like) activity. However, small amounts of TPA acted synergistically with PHA in maintaining blast populations which were not responsive to TPA alone. This illustrates the importance of using long term IL-2-dependent cell lines for quantitation of IL-2 in supernatants prepared by stimulating T cells with these agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号